1
|
Ranji P, Jonasson E, Andersson L, Filges S, Luna Santamaría M, Vannas C, Dolatabadi S, Gustafsson A, Myklebost O, Håkansson J, Fagman H, Landberg G, Åman P, Ståhlberg A. Deciphering the role of FUS::DDIT3 expression and tumor microenvironment in myxoid liposarcoma development. J Transl Med 2024; 22:389. [PMID: 38671504 PMCID: PMC11046918 DOI: 10.1186/s12967-024-05211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Myxoid liposarcoma (MLS) displays a distinctive tumor microenvironment and is characterized by the FUS::DDIT3 fusion oncogene, however, the precise functional contributions of these two elements remain enigmatic in tumor development. METHODS To study the cell-free microenvironment in MLS, we developed an experimental model system based on decellularized patient-derived xenograft tumors. We characterized the cell-free scaffold using mass spectrometry. Subsequently, scaffolds were repopulated using sarcoma cells with or without FUS::DDIT3 expression that were analyzed with histology and RNA sequencing. RESULTS Characterization of cell-free MLS scaffolds revealed intact structure and a large variation of protein types remaining after decellularization. We demonstrated an optimal culture time of 3 weeks and showed that FUS::DDIT3 expression decreased cell proliferation and scaffold invasiveness. The cell-free MLS microenvironment and FUS::DDIT3 expression both induced biological processes related to cell-to-cell and cell-to-extracellular matrix interactions, as well as chromatin remodeling, immune response, and metabolism. Data indicated that FUS::DDIT3 expression more than the microenvironment determined the pre-adipocytic phenotype that is typical for MLS. CONCLUSIONS Our experimental approach opens new means to study the tumor microenvironment in detail and our findings suggest that FUS::DDIT3-expressing tumor cells can create their own extracellular niche.
Collapse
Affiliation(s)
- Parmida Ranji
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emma Jonasson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lisa Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stefan Filges
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Manuel Luna Santamaría
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Christoffer Vannas
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Soheila Dolatabadi
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Gustafsson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ola Myklebost
- Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Science, University of Bergen, Bergen, Norway
| | - Joakim Håkansson
- RISE Unit of Biological Function, Division Materials and Production, RISE Research Institutes of Sweden, Borås, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, Faculty of Science at University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Landberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pierre Åman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Dolatabadi S, Jonasson E, Andersson L, Luna Santamaría M, Lindén M, Österlund T, Åman P, Ståhlberg A. FUS-DDIT3 Fusion Oncoprotein Expression Affects JAK-STAT Signaling in Myxoid Liposarcoma. Front Oncol 2022; 12:816894. [PMID: 35186752 PMCID: PMC8851354 DOI: 10.3389/fonc.2022.816894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022] Open
Abstract
Myxoid liposarcoma is one of the most common sarcoma entities characterized by FET fusion oncogenes. Despite a generally favorable prognosis of myxoid liposarcoma, chemotherapy resistance remains a clinical problem. This cancer stem cell property is associated with JAK-STAT signaling, but the link to the myxoid-liposarcoma-specific FET fusion oncogene FUS-DDIT3 is not known. Here, we show that ectopic expression of FUS-DDIT3 resulted in elevated levels of STAT3 and phosphorylated STAT3. RNA sequencing identified 126 genes that were regulated by both FUS-DDIT3 expression and JAK1/2 inhibition using ruxolitinib. Sixty-six of these genes were connected in a protein interaction network. Fifty-three and 29 of these genes were confirmed as FUS-DDIT3 and STAT3 targets, respectively, using public chromatin immunoprecipitation sequencing data sets. Enriched gene sets among the 126 regulated genes included processes related to cytokine signaling, adipocytokine signaling, and chromatin remodeling. We validated CD44 as a target gene of JAK1/2 inhibition and as a potential cancer stem cell marker in myxoid liposarcoma. Finally, we showed that FUS-DDIT3 interacted with phosphorylated STAT3 in association with subunits of the SWI/SNF chromatin remodeling complex and PRC2 repressive complex. Our data show that the function of FUS-DDIT3 is closely connected to JAK-STAT signaling. Detailed deciphering of molecular mechanisms behind tumor progression opens up new avenues for targeted therapies in sarcomas and leukemia characterized by FET fusion oncogenes.
Collapse
Affiliation(s)
- Soheila Dolatabadi
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emma Jonasson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lisa Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Manuel Luna Santamaría
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin Lindén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pierre Åman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Oliver GR, Jenkinson G, Klee EW. Computational Detection of Known Pathogenic Gene Fusions in a Normal Tissue Database and Implications for Genetic Disease Research. Front Genet 2020; 11:173. [PMID: 32180803 PMCID: PMC7059617 DOI: 10.3389/fgene.2020.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
Several recent studies have demonstrated the utility of RNA-Seq in the diagnosis of rare inherited disease. Diagnostic rates 35% higher than those previously achievable with DNA-Seq alone have been attained. These studies have primarily profiled gene expression and splicing defects, however, some have also shown that fusion transcripts are diagnostic or phenotypically relevant in patients with constitutional disorders. Fusion transcripts have traditionally been studied as oncogenic phenomena, with relevance only to cancer testing. Consequently, fusion detection algorithms were biased toward the detection of well-known oncogenic fusions, hindering their application to rare Mendelian genetic disease studies. A recent methodology published by the authors successfully tailored a traditional algorithm to the detection of pathogenic fusion events in inherited disease. A key mechanism of decreasing false positive or biologically benign events was comparison to a database of events detected in normal tissues. This approach is akin to population frequency-based filtering of genetic variants. It is predicated on the idea that pathogenic fusion transcripts are absent from normal tissue. We report on an analysis of RNA-Seq data from the genotype-tissue expression (GTEx) project in which known pathogenic fusions are computationally detected at low levels in normal tissues unassociated with the disease phenotype. Examples include archetypal cancer fusion transcripts, as well as fusions responsible for rare inherited disease. We consider potential explanations for the detectability of such transcripts and discuss the bearing such results have on the future profiling of genetic disease patients for pathogenic gene fusions.
Collapse
Affiliation(s)
- Gavin Robert Oliver
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Garrett Jenkinson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Lindén M, Thomsen C, Grundevik P, Jonasson E, Andersson D, Runnberg R, Dolatabadi S, Vannas C, Luna Santamarίa M, Fagman H, Ståhlberg A, Åman P. FET family fusion oncoproteins target the SWI/SNF chromatin remodeling complex. EMBO Rep 2019; 20:embr.201845766. [PMID: 30962207 PMCID: PMC6500973 DOI: 10.15252/embr.201845766] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Members of the human FET family of RNA‐binding proteins, comprising FUS, EWSR1, and TAF15, are ubiquitously expressed and engage at several levels of gene regulation. Many sarcomas and leukemias are characterized by the expression of fusion oncogenes with FET genes as 5′ partners and alternative transcription factor‐coding genes as 3′ partners. Here, we report that the N terminus of normal FET proteins and their oncogenic fusion counterparts interact with the SWI/SNF chromatin remodeling complex. In contrast to normal FET proteins, increased fractions of FET oncoproteins bind SWI/SNF, indicating a deregulated and enhanced interaction in cancer. Forced expression of FET oncogenes caused changes of global H3K27 trimethylation levels, accompanied by altered gene expression patterns suggesting a shift in the antagonistic balance between SWI/SNF and repressive polycomb group complexes. Thus, deregulation of SWI/SNF activity could provide a unifying pathogenic mechanism for the large group of tumors caused by FET fusion oncoproteins. These results may help to develop common strategies for therapy.
Collapse
Affiliation(s)
- Malin Lindén
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Thomsen
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pernilla Grundevik
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emma Jonasson
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Andersson
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rikard Runnberg
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Soheila Dolatabadi
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christoffer Vannas
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Manuel Luna Santamarίa
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden .,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Pierre Åman
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden .,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
5
|
The Role of Molecular Testing in the Differential Diagnosis of Salivary Gland Carcinomas. Am J Surg Pathol 2019; 42:e11-e27. [PMID: 29076877 DOI: 10.1097/pas.0000000000000980] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Salivary gland neoplasms are a morphologically heterogenous group of lesions that are often diagnostically challenging. In recent years, considerable progress in salivary gland taxonomy has been reached by the discovery of tumor type-specific fusion oncogenes generated by chromosome translocations. This review describes the clinicopathologic features of a selected group of salivary gland carcinomas with a focus on their distinctive genomic characteristics. Mammary analog secretory carcinoma is a recently described entity characterized by a t(12;15)(p13;q25) translocation resulting in an ETV6-NTRK3 fusion. Hyalinizing clear cell carcinoma is a low-grade tumor with infrequent nodal and distant metastasis, recently shown to harbor an EWSR1-ATF1 gene fusion. The CRTC1-MAML2 fusion gene resulting from a t(11;19)(q21;p13) translocation, is now known to be a feature of both low-grade and high-grade mucoepidermoid carcinomas associated with improved survival. A t(6;9)(q22-23;p23-34) translocation resulting in a MYB-NFIB gene fusion has been identified in the majority of adenoid cystic carcinomas. Polymorphous (low-grade) adenocarcinoma and cribriform adenocarcinoma of (minor) salivary gland origin are related entities with partly differing clinicopathologic and genomic profiles; they are the subject of an ongoing taxonomic debate. Polymorphous (low-grade) adenocarcinomas are characterized by hot spot point E710D mutations in the PRKD1 gene, whereas cribriform adenocarcinoma of (minor) salivary glands origin are characterized by translocations involving the PRKD1-3 genes. Salivary duct carcinoma (SDC) is a high-grade adenocarcinoma with morphologic and molecular features akin to invasive ductal carcinoma of the breast, including HER2 gene amplification, mutations of TP53, PIK3CA, and HRAS and loss or mutation of PTEN. Notably, a recurrent NCOA4-RET fusion has also been found in SDC. A subset of SDC with apocrine morphology is associated with overexpression of androgen receptors. As these genetic aberrations are recurrent they serve as powerful diagnostic tools in salivary gland tumor diagnosis, and therefore also in refinement of salivary gland cancer classification. Moreover, they are promising as prognostic biomarkers and targets of therapy.
Collapse
|
6
|
Identification of inhibitors regulating cell proliferation and FUS-DDIT3 expression in myxoid liposarcoma using combined DNA, mRNA, and protein analyses. J Transl Med 2018; 98:957-967. [PMID: 29588491 PMCID: PMC6070472 DOI: 10.1038/s41374-018-0046-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022] Open
Abstract
FUS-DDIT3 belongs to the FET (FUS, EWSR1, and TAF15) family of fusion oncogenes, which collectively are considered to be key players in tumor development. Even though over 90% of all myxoid liposarcomas (MLS) have a FUS-DDIT3 gene fusion, there is limited understanding of the signaling pathways that regulate its expression. In order to study cell proliferation and FUS-DDIT3 regulation at mRNA and protein levels, we first developed a direct cell lysis approach that allows DNA, mRNA, and protein to be analyzed in the same sample using quantitative PCR, reverse transcription quantitative qPCR and proximity ligation assay, respectively. We screened 70 well-characterized kinase inhibitors and determined their effects on cell proliferation and expression of FUS-DDIT3 and FUS at both mRNA and protein levels in the MLS 402-91 cell line, where twelve selected inhibitors were evaluated further in two additional MLS cell lines. Both FUS-DDIT3 and FUS mRNA expression correlated with cell proliferation and both transcripts were co-regulated in most conditions, indicating that the common 5' FUS promotor is important in transcriptional regulation. In contrast, FUS-DDIT3 and FUS protein levels displayed more cell line dependent expression. Furthermore, most JAK inhibitors caused FUS-DDIT3 downregulation at both mRNA and protein levels. In conclusion, defining factors that regulate FUS-DDIT3 expression opens new means to understand MLS development at the molecular level.
Collapse
|
7
|
Willis RE. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment. Int J Mol Sci 2016; 17:ijms17091552. [PMID: 27649156 PMCID: PMC5037825 DOI: 10.3390/ijms17091552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis.
Collapse
Affiliation(s)
- Rudolph E Willis
- OncoStem Biotherapeutics LLC, 423 W 127th St., New York, NY 10027, USA.
| |
Collapse
|
8
|
Åman P, Dolatabadi S, Svec D, Jonasson E, Safavi S, Andersson D, Grundevik P, Thomsen C, Ståhlberg A. Regulatory mechanisms, expression levels and proliferation effects of the FUS-DDIT3 fusion oncogene in liposarcoma. J Pathol 2016; 238:689-99. [PMID: 26865464 DOI: 10.1002/path.4700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/06/2016] [Accepted: 02/01/2016] [Indexed: 12/28/2022]
Abstract
Fusion oncogenes are among the most common types of oncogene in human cancers. The gene rearrangements result in new combinations of regulatory elements and functional protein domains. Here we studied a subgroup of sarcomas and leukaemias characterized by the FET (FUS, EWSR1, TAF15) family of fusion oncogenes, including FUS-DDIT3 in myxoid liposarcoma (MLS). We investigated the regulatory mechanisms, expression levels and effects of FUS-DDIT3 in detail. FUS-DDIT3 showed a lower expression than normal FUS at both the mRNA and protein levels, and single-cell analysis revealed a lack of correlation between FUS-DDIT3 and FUS expression. FUS-DDIT3 transcription was regulated by the FUS promotor, while its mRNA stability depended on the DDIT3 sequence. FUS-DDIT3 protein stability was regulated by protein interactions through the FUS part, rather than the leucine zipper containing DDIT3 part. In addition, in vitro as well as in vivo FUS-DDIT3 protein expression data displayed highly variable expression levels between individual MLS cells. Combined mRNA and protein analyses at the single-cell level showed that FUS-DDIT3 protein expression was inversely correlated to the expression of cell proliferation-associated genes. We concluded that FUS-DDIT3 is uniquely regulated at the transcriptional as well as the post-translational level and that its expression level is important for MLS tumour development. The FET fusion oncogenes are potentially powerful drug targets and detailed knowledge about their regulation and functions may help in the development of novel treatments.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Half-Life
- Humans
- Liposarcoma, Myxoid/genetics
- Liposarcoma, Myxoid/metabolism
- Liposarcoma, Myxoid/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Processing, Post-Translational
- Protein Stability
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Time Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Pierre Åman
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Soheila Dolatabadi
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - David Svec
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Emma Jonasson
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Setareh Safavi
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Daniel Andersson
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Pernilla Grundevik
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Christer Thomsen
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Cancer Centre, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Sweden
| |
Collapse
|
9
|
Gordley RM, Bugaj LJ, Lim WA. Modular engineering of cellular signaling proteins and networks. Curr Opin Struct Biol 2016; 39:106-114. [PMID: 27423114 DOI: 10.1016/j.sbi.2016.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022]
Abstract
Living cells respond to their environment using networks of signaling molecules that act as sensors, information processors, and actuators. These signaling systems are highly modular at both the molecular and network scales, and much evidence suggests that evolution has harnessed this modularity to rewire and generate new physiological behaviors. Conversely, we are now finding that, following nature's example, signaling modules can be recombined to form synthetic tools for monitoring, interrogating, and controlling the behavior of cells. Here we highlight recent progress in the modular design of synthetic receptors, optogenetic switches, and phospho-regulated proteins and circuits, and discuss the expanding role of combinatorial design in the engineering of cellular signaling proteins and networks.
Collapse
Affiliation(s)
- Russell M Gordley
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Lukasz J Bugaj
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Wendell A Lim
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States.
| |
Collapse
|
10
|
Chi Y, Yang Y, Li G, Wang F, Fan B, Chen Z. Identification and characterization of a novel group of legume-specific, Golgi apparatus-localized WRKY and Exo70 proteins from soybean. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3055-70. [PMID: 25805717 PMCID: PMC4449531 DOI: 10.1093/jxb/erv104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Many plant genes belong to families that arise from extensive proliferation and diversification allowing the evolution of functionally new proteins. Here we report the characterization of a group of proteins evolved from WRKY and exocyst complex subunit Exo70 proteins through fusion with a novel transmembrane (TM) domain in soybean (Glycine max). From the soybean genome, we identified a novel WRKY-related protein (GmWRP1) that contains a WRKY domain with no binding activity for W-box sequences. GFP fusion revealed that GmWRP1 was targeted to the Golgi apparatus through its N-terminal TM domain. Similar Golgi-targeting TM domains were also identified in members of a new subfamily of Exo70J proteins involved in vesicle trafficking. The novel TM domains are structurally most similar to the endosomal cytochrome b561 from birds and close homologues of GmWRP1 and GmEx070J proteins with the novel TM domain have only been identified in legumes. Transient expression of some GmExo70J proteins or the Golgi-targeting TM domain in tobacco altered the subcellular structures labelled by a fluorescent Golgi marker. GmWRP1 transcripts were detected at high levels in roots, flowers, pods, and seeds, and the expression levels of GmWRP1 and GmExo70J genes were elevated with increased age in leaves. The legume-specific, Golgi apparatus-localized GmWRP1 and GmExo70J proteins are probably involved in Golgi-mediated vesicle trafficking of biological molecules that are uniquely important to legumes.
Collapse
Affiliation(s)
- Yingjun Chi
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yang
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Guiping Li
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- Department of Botany and Plant Pathology, 915W. State Street, Purdue University, West Lafayette, IN 47907, USA
| | - Baofang Fan
- Department of Botany and Plant Pathology, 915W. State Street, Purdue University, West Lafayette, IN 47907, USA
| | - Zhixiang Chen
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China Department of Botany and Plant Pathology, 915W. State Street, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules 2014; 19:13848-77. [PMID: 25191874 PMCID: PMC6271846 DOI: 10.3390/molecules190913848] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/27/2023] Open
Abstract
Tyrosine kinases (TKs) play an important role in pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Aberrant activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to interfere with the activity of deregulated kinases. These TKIs are remarkably effective in the treatment of various human cancers including head and neck, gastric, prostate and breast cancer and several types of leukemia. However, these TKIs are transported out of the cell by ATP-binding cassette (ABC) transporters, resulting in development of a characteristic drug resistance phenotype in cancer patients. Interestingly, some of these TKIs also inhibit the ABC transporter mediated multi drug resistance (MDR) thereby; enhancing the efficacy of conventional chemotherapeutic drugs. This review discusses the clinically relevant TKIs and their interaction with ABC drug transporters in modulating MDR.
Collapse
|
12
|
Stenman G. Fusion oncogenes in salivary gland tumors: molecular and clinical consequences. Head Neck Pathol 2013; 7 Suppl 1:S12-9. [PMID: 23821214 PMCID: PMC3712096 DOI: 10.1007/s12105-013-0462-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/10/2013] [Indexed: 01/03/2023]
Abstract
Salivary gland tumors constitute a heterogeneous group of uncommon diseases that pose significant diagnostic and therapeutic challenges. However, the recent discovery of a translocation-generated gene fusion network in salivary gland carcinomas as well in benign salivary gland tumors opens up new avenues for improved diagnosis, prognostication, and development of specific targeted therapies. The gene fusions encode novel fusion oncoproteins or ectopically expressed normal or truncated oncoproteins. The major targets of the translocations are transcriptional coactivators, tyrosine kinase receptors, and transcription factors involved in growth factor signaling and cell cycle regulation. Notably, several of these targets or pathways activated by these targets are druggable. Examples of clinically significant gene fusions in salivary gland cancers are the MYB-NFIB fusion specific for adenoid cystic carcinoma, the CRTC1-MAML2 fusion typical of low/intermediate-grade mucoepidermoid carcinoma, and the recently identified ETV6-NTRK3 fusion in mammary analogue secretory carcinoma. Similarly, gene fusions involving the PLAG1 and HMGA2 oncogenes are specific for benign pleomorphic adenomas. Continued studies of the molecular consequences of these fusion oncoproteins and their down-stream targets will ultimately lead to the identification of novel driver genes in salivary gland neoplasms and will also form the basis for the development of new therapeutic strategies for salivary gland cancers and, perhaps, other neoplasms.
Collapse
Affiliation(s)
- Göran Stenman
- Department of Pathology, Sahlgrenska Cancer Center, University of Gothenburg, Box 425, 405 30 Göteborg, Sweden
| |
Collapse
|
13
|
Shukla S, Chen ZS, Ambudkar SV. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist Updat 2012; 15:70-80. [PMID: 22325423 DOI: 10.1016/j.drup.2012.01.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 12/23/2022]
Abstract
Tyrosine kinases (TKs) are involved in key signaling events/pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Deregulated activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to inhibit specific kinases whose constitutive activity results in specific cancer types. These TKIs have been found to demonstrate effective anticancer activity and some of them have been approved by the Food and Drug Administration for clinical use or are in clinical trials. However, these targeted therapeutic agents are also transported by ATP-binding cassette (ABC) transporters, resulting in altered pharmacokinetics or development of resistance to these drugs in cancer patients. This review covers the recent findings on the interactions of clinically important TKIs with ABC drug transporters. Future research efforts in the development of novel TKIs with specific targets, seeking improved activity, should consider these underlying causes of resistance to TKIs in cancer cells.
Collapse
Affiliation(s)
- Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
14
|
Chen JM, Cooper DN, Férec C, Kehrer-Sawatzki H, Patrinos GP. Genomic rearrangements in inherited disease and cancer. Semin Cancer Biol 2010; 20:222-33. [PMID: 20541013 DOI: 10.1016/j.semcancer.2010.05.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/22/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Genomic rearrangements in inherited disease and cancer involve gross alterations of chromosomes or large chromosomal regions and can take the form of deletions, duplications, insertions, inversions or translocations. The characterization of a considerable number of rearrangement breakpoints has now been accomplished at the nucleotide sequence level, thereby providing an invaluable resource for the detailed study of the mutational mechanisms which underlie genomic recombination events. A better understanding of these mutational mechanisms is vital for improving the design of mutation detection strategies. At least five categories of mutational mechanism are known to give rise to genomic rearrangements: (i) homologous recombination including non-allelic homologous recombination (NAHR), gene conversion, single strand annealing (SSA) and break-induced replication (BIR), (ii) non-homologous end joining (NHEJ), (iii) microhomology-mediated replication-dependent recombination (MMRDR), (iv) long interspersed element-1 (LINE-1 or L1)-mediated retrotransposition and (v) telomere healing. Focussing on the first three of these general mechanisms, we compare and contrast their hallmark characteristics, and discuss the role of various local DNA sequence features (e.g. recombination-promoting motifs, repetitive sequences and sequences capable of non-B DNA formation) in mediating the recombination events that underlie gross genomic rearrangements. Finally, we explore how studies both at the level of the gene (using the neurofibromatosis type-1 gene as an example) and the whole genome (using data derived from cancer genome sequencing studies) are shaping our understanding of the impact of genomic rearrangements as a cause of human genetic disease.
Collapse
Affiliation(s)
- Jian-Min Chen
- Etablissement Français du Sang (EFS) - Bretagne, Brest, France.
| | | | | | | | | |
Collapse
|
15
|
Klein G. Burkitt lymphoma--a stalking horse for cancer research? Semin Cancer Biol 2009; 19:347-50. [PMID: 19607918 DOI: 10.1016/j.semcancer.2009.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 07/03/2009] [Indexed: 11/16/2022]
Abstract
Joe Burchenal has predicted in 1966 that Burkitt lymphoma may serve as a stalking horse for cancer research, in revealing new principles. This has been the case with regard to the definition of the Epstein-Barr virus (EBV) in the genesis of virally driven immunoblastomas in immunodefectives, the discovery of the Ig/myc translocation, the main rate limiting event in the genesis of Burkitt lymphoma, the role of secondary events, particularly the inactivation of the Rb and p53 pathways in cells driven by constitutively active myc and other oncogenes and the discovery of the EBV encoded nuclear antigen complex (EBNA) and its role in viral transformation and latency.
Collapse
Affiliation(s)
- George Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
16
|
Alvegård T, Hall KS, Bauer H, Rydholm A. The Scandinavian Sarcoma Group: 30 years' experience. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2009; 80:1-104. [PMID: 19919379 DOI: 10.1080/17453690610046602] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Andersson MK, Ståhlberg A, Arvidsson Y, Olofsson A, Semb H, Stenman G, Nilsson O, Aman P. The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol 2008; 9:37. [PMID: 18620564 PMCID: PMC2478660 DOI: 10.1186/1471-2121-9-37] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 07/11/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND FUS, EWS and TAF15 are structurally similar multifunctional proteins that were first discovered upon characterization of fusion oncogenes in human sarcomas and leukemias. The proteins belong to the FET (previously TET) family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity and mRNA/microRNA processing. In the present study, we investigated the expression and cellular localization of FET proteins in multiple human tissues and cell types. RESULTS FUS, EWS and TAF15 were expressed in both distinct and overlapping patterns in human tissues. The three proteins showed almost ubiquitous nuclear expression and FUS and TAF15 were in addition present in the cytoplasm of most cell types. Cytoplasmic EWS was more rarely detected and seen mainly in secretory cell types. Furthermore, FET expression was downregulated in differentiating human embryonic stem cells, during induced differentiation of neuroblastoma cells and absent in terminally differentiated melanocytes and cardiac muscle cells. The FET proteins were targeted to stress granules induced by heat shock and oxidative stress and FUS required its RNA-binding domain for this translocation. Furthermore, FUS and TAF15 were detected in spreading initiation centers of adhering cells. CONCLUSION Our results point to cell-specific expression patterns and functions of the FET proteins rather than the housekeeping roles inferred from earlier studies. The localization of FET proteins to stress granules suggests activities in translational regulation during stress conditions. Roles in central processes such as stress response, translational control and adhesion may explain the FET proteins frequent involvement in human cancer.
Collapse
Affiliation(s)
- Mattias K Andersson
- Lundberg Laboratory for Cancer Research, Department of Pathology, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gasparini P, Sozzi G, Pierotti MA. The role of chromosomal alterations in human cancer development. J Cell Biochem 2008; 102:320-31. [PMID: 17722107 DOI: 10.1002/jcb.21481] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer cells become unstable and compromised because several cancer-predisposing mutations affect genes that are responsible for maintaining the genomic instability. Several factors influence the formation of chromosomal rearrangements and consequently of fusion genes and their role in tumorigenesis. Studies over the past decades have revealed that recurring chromosome rearrangements leading to fusion genes have a biological and clinical impact not only on leukemias and lymphomas, but also on certain epithelial tumors. With the implementation of new and powerful cytogenetic and molecular techniques the identification of fusion genes in solid tumors is being facilitated. Overall, the study of chromosomal translocations have revealed several recurring themes, and reached important insights into the process of malignant transformation. However, the mechanisms behind these translocations remain unclear. A more thorough understanding of the mechanisms that cause translocations will be aided by continuing characterization of translocation breakpoints and by developing in vitro and in vivo model systems that can generate chromosome translocation.
Collapse
Affiliation(s)
- Patrizia Gasparini
- Cytogenetic and Molecular Cytogenetic Department, Fondazione IRCCS Istituto Nazional Tumori, Italy
| | | | | |
Collapse
|
19
|
Abstract
The cAMP response element-binding protein (CREB) is a stimulus-induced transcription factor that responds rapidly to phosphorylation and/or coactivator activation. Regulated activation of CREB has a significant impact on cellular growth, proliferation and survival. To overturn the cellular control of these processes, tumor cells have developed various mechanisms to achieve constitutive activation of CREB, including gene amplification, chromosome translocation, interaction with viral oncoproteins, and inactivation of tumor suppressor genes. These mechanisms converge on the phosphorylation of CREB and/or the activation of transducer of regulated CREB activity (TORC) coactivators to effect uncontrolled proliferation of cells. This minireview summarizes the different lines of existing evidence that support a direct role of CREB in oncogenesis.
Collapse
Affiliation(s)
- Yeung-Tung Siu
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
20
|
Engström K, Willén H, Kåbjörn-Gustafsson C, Andersson C, Olsson M, Göransson M, Järnum S, Olofsson A, Warnhammar E, Aman P. The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1642-53. [PMID: 16651630 PMCID: PMC1606602 DOI: 10.2353/ajpath.2006.050872] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myxoid/round cell liposarcoma (MLS/RCLS) is the most common subtype of liposarcoma. Most MLS/RCLS carry a t(12;16) translocation, resulting in a FUS-DDIT3 fusion gene. We investigated the role of the FUS-DDIT3 fusion in the development of MLS/RCLS in FUS-DDIT3- and DDIT3-transfected human HT1080 sarcoma cells. Cells expressing FUS-DDIT3 and DDIT3 grew as liposarcomas in severe combined immunodeficient mice and exhibited a capillary network morphology that was similar to networks of MLS/RCLS. Microarray-based comparison of HT1080, the transfected cells, and an MLS/RCLS-derived cell line showed that the FUS-DDIT3- and DDIT3-transfected variants shifted toward an MLS/RCLS-like expression pattern. DDIT3-transfected cells responded in vitro to adipogenic factors by accumulation of fat and transformation to a lipoblast-like morphology. In conclusion, because the fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype when expressed in a primitive sarcoma cell line, MLS/RCLS may develop from cell types other than preadipocytes. This may explain the preferential occurrence of MLS/RCLS in nonadipose tissues. In addition, development of lipoblasts and the typical MLS/RCLS capillary network could be an effect of the DDIT3 transcription factor partner of the fusion oncogene.
Collapse
Affiliation(s)
- Katarina Engström
- Department of Oncology, Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|