1
|
Kuret T, Kreft ME, Veranič P, Čemažar M, Pavlin M, Jerman UD. Phases of tight junction barrier disruption during transurothelial migration of invasive urothelial cancer cells. Sci Rep 2025; 15:12975. [PMID: 40234478 PMCID: PMC12000480 DOI: 10.1038/s41598-025-96267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
Bladder cancer is characterised by its multifocal nature and a high recurrence, yet the underlying mechanisms of these phenomena remain only partially understood. In the present study, we aimed to investigate transurothelial invasion of urothelial cancer cells as a potential mechanism for dissemination of bladder cancer and to identify the key molecules involved in urothelial barrier disruption. Using confocal and electron microscopy, we were able to show that within a 24-hour timeframe muscle-invasive urothelial cancer cells T24 adhere to the partially differentiated normal urothelial in vitro model and initially cause localised disruption of the tight junctions between urothelial cells. Subsequently, urothelial cells separate and individual T24 cells migrate paracellularly through the urothelium. qPCR analysis identified fibroblast activation protein (FAP)/seprase as the candidate most likely to be involved in urothelial barrier disruption. In addition, treatment of T24 cells with Pefabloc resulted in the inhibition of T24 cell invasion. Our results contribute to the understanding of the mechanisms underlying transurothelial invasion of urothelial cancer cells. Among the molecules tested, FAP/sepraseis likely involved in cancer cell-induced disruption of the urothelial barrier, suggesting its potential as a therapeutic target to prevent progression and recurrence of bladder cancer.
Collapse
Affiliation(s)
- Tadeja Kuret
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Strandgaard T, Nordentoft I, Birkenkamp-Demtröder K, Salminen L, Prip F, Rasmussen J, Andreasen TG, Lindskrog SV, Christensen E, Lamy P, Knudsen M, Steiniche T, Jensen JB, Dyrskjøt L. Field Cancerization Is Associated with Tumor Development, T-cell Exhaustion, and Clinical Outcomes in Bladder Cancer. Eur Urol 2024; 85:82-92. [PMID: 37718188 DOI: 10.1016/j.eururo.2023.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Field cancerization is characterized by areas of normal tissue affected by mutated clones. Bladder field cancerization may explain the development and recurrence of bladder cancer and may be associated with treatment outcomes. OBJECTIVE To investigate the predictive and prognostic roles of field cancerization in patients with high-risk non-muscle-invasive bladder cancer (NMIBC) treated with bacillus Calmette-Guérin (BCG). DESIGN, SETTING, AND PARTICIPANTS We conducted comprehensive genomic and proteomic analyses for 751 bladder biopsies and 234 urine samples from 136 patients with NMIBC. The samples were collected at multiple time points during the disease course. Field cancerization in normal-appearing bladder biopsies was measured using deep-targeted sequencing and error correction models. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Endpoints included the rates of recurrence and progression. Cox regression and Wilcoxon rank-sum and Fisher's exact tests were used. RESULTS AND LIMITATIONS A high level of field cancerization was associated with high tumor mutational burden (p = 0.007), high tumor neoantigen load (p = 0.029), and high tumor-associated CD8 T-cell exhaustion (p = 0.017). In addition, high field cancerization was associated with worse short-term outcomes (p = 0.029). Nonsynonymous mutations in bladder cancer-associated genes such as KDM6A, ARID1A, and TP53 were identified as early disease drivers already found in normal-appearing bladder biopsies. Urinary tumor DNA (utDNA) levels reflected the bladder tumor burden and originated from tumors and field cancerization. High levels of utDNA after BCG were associated with worse clinical outcomes (p = 0.027) and with disease progression (p = 0.003). High field cancerization resulted in high urinary levels of proteins associated with angiogenesis and proliferation. Limitations include variation in the number of biopsies and time points analyzed. CONCLUSIONS Field cancerization levels are associated with tumor development, immune responses, and clinical outcomes. utDNA measurements can be used to monitor disease status and treatment response. PATIENT SUMMARY Molecular changes in the tissue lining the bladder result in tumor recurrence. Urinary measurements may be used to monitor bladder cancer status and treatment responses.
Collapse
Affiliation(s)
- Trine Strandgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Iver Nordentoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Karin Birkenkamp-Demtröder
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Liina Salminen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Urology, Turku University Hospital and University of Turku, Turku, Finland
| | - Frederik Prip
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julie Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tine Ginnerup Andreasen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sia Viborg Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Emil Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Philippe Lamy
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Michael Knudsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Torben Steiniche
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus N, Denmark
| | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Dyrskjøt L, Hansel DE, Efstathiou JA, Knowles MA, Galsky MD, Teoh J, Theodorescu D. Bladder cancer. Nat Rev Dis Primers 2023; 9:58. [PMID: 37884563 PMCID: PMC11218610 DOI: 10.1038/s41572-023-00468-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Bladder cancer is a global health issue with sex differences in incidence and prognosis. Bladder cancer has distinct molecular subtypes with multiple pathogenic pathways depending on whether the disease is non-muscle invasive or muscle invasive. The mutational burden is higher in muscle-invasive than in non-muscle-invasive disease. Commonly mutated genes include TERT, FGFR3, TP53, PIK3CA, STAG2 and genes involved in chromatin modification. Subtyping of both forms of bladder cancer is likely to change considerably with the advent of single-cell analysis methods. Early detection signifies a better disease prognosis; thus, minimally invasive diagnostic options are needed to improve patient outcomes. Urine-based tests are available for disease diagnosis and surveillance, and analysis of blood-based cell-free DNA is a promising tool for the detection of minimal residual disease and metastatic relapse. Transurethral resection is the cornerstone treatment for non-muscle-invasive bladder cancer and intravesical therapy can further improve oncological outcomes. For muscle-invasive bladder cancer, radical cystectomy with neoadjuvant chemotherapy is the standard of care with evidence supporting trimodality therapy. Immune-checkpoint inhibitors have demonstrated benefit in non-muscle-invasive, muscle-invasive and metastatic bladder cancer. Effective management requires a multidisciplinary approach that considers patient characteristics and molecular disease characteristics.
Collapse
Affiliation(s)
- Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Donna E Hansel
- Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremy Teoh
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Theodorescu
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Marzouka NAD, Eriksson P, Bernardo C, Hurst CD, Knowles MA, Sjödahl G, Liedberg F, Höglund M. The Lund Molecular Taxonomy Applied to Non-Muscle-Invasive Urothelial Carcinoma. J Mol Diagn 2022; 24:992-1008. [PMID: 35853574 DOI: 10.1016/j.jmoldx.2022.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
The precise classification of tumors into relevant molecular subtypes will facilitate both future research and optimal treatment. In the present investigation, the Lund Taxonomy system for molecular classification of urothelial carcinoma was applied to two large and independent cohorts of non-muscle-invasive tumors. Of 752 tumors classified, close to 100% were of the luminal subtypes, 95% urothelial-like (Uro; UroA, UroB, or UroC) and 5% genomically unstable. We show that the obtained subtype structure organizes the tumors into groups with specific and coherent gene mutation, genomic, and clinical profiles. The intrasubtype variability in the largest group of tumors, UroA, is caused by infiltration and proliferation, not considered as cancer cell type-defining properties. Within the UroA subtype, a HOXB/late cell-cycle gene expression polarity is described, strongly associated with FGFR3, STAG2, and TP53 mutations, as well as with chromosome 9 losses. Kaplan-Meier analyses identified the genomically unstable subtype as a progression high-risk group, also valid in the subgroup of T1 tumors. Almost all progression events occurred within 12 months in this subtype. In addition, a general progression gene signature was derived that identifies high- and low-risk tumors. All findings were demonstrated in two independent cohorts. We conclude that the Lund Taxonomy system is applicable to both non-muscle- and muscle-invasive tumors and is a useful biological framework for translational studies.
Collapse
Affiliation(s)
- Nour-Al-Dain Marzouka
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pontus Eriksson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Carina Bernardo
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, United Kingdom
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, United Kingdom
| | - Gottfrid Sjödahl
- Urology-Urothelial Cancer, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Fredrik Liedberg
- Urology-Urothelial Cancer, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Mattias Höglund
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Attachment of Cancer Urothelial Cells to the Bladder Epithelium Occurs on Uroplakin-Negative Cells and Is Mediated by Desmosomal and Not by Classical Cadherins. Int J Mol Sci 2021; 22:ijms22115565. [PMID: 34070317 PMCID: PMC8197456 DOI: 10.3390/ijms22115565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Urinary bladder cancer is often multifocal; however, the intraluminal dissemination of the urothelial cancer cells is poorly understood. The involvement of N-cadherin in the adhesion of the cancer urothelial cells to the urothelium had not previously been studied. Therefore, we herein explore the possibility of the intraluminal dissemination of the urothelial cancer cells by evaluating the role of classical cadherins in the adhesion of urothelial cancer cells to the urothelium. We used E-cadherin negative T24 cells and established a T24 Ncadlow cell line with an additionally decreased expression of N-cadherin in the plasma membrane and a decreased secretion of proform of metalloproteinase 2. The labelled T24 and T24 Ncadlow cells were seeded onto urothelial in vitro models. After 24 h in co-culture, unattached cancer cells were rinsed and urothelia with attached cancer urothelial cells were processed for fluorescence and electron microscopy. Both the T24 and T24 Ncadlow cells attached to the urothelium, yet only to the uroplakin-negative urothelial cells. The ultrastructural analysis showed that T24 and T24 Ncadlow cells adhere to poorly differentiated urothelial cells by desmosomes. To achieve this, they first disrupt tight junctions of superficial urothelial cells. This study indicates that the lack of E-cadherin expression and decreased expression of N-cadherin in the plasma membrane of T24 cells does not interfere with their adhesion to the urothelium; therefore, our results suggest that intraluminal dissemination of cancer urothelial cells along the urothelium occurs on uroplakin-negative cells and is desmosome-mediated.
Collapse
|
6
|
Pan Q, Qin F, Yuan H, He B, Yang N, Zhang Y, Ren H, Zeng Y. Normal tissue adjacent to tumor expression profile analysis developed and validated a prognostic model based on Hippo-related genes in hepatocellular carcinoma. Cancer Med 2021; 10:3139-3152. [PMID: 33818013 PMCID: PMC8085948 DOI: 10.1002/cam4.3890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common malignant disease worldwide. Although the diagnosis and treatment of HCC have greatly improved in the recent years, there is still a lack of accurate methods to predict the prognosis of patients. Evidence has shown that Hippo signaling in tissues adjacent to HCC plays a significant role in HCC development. In the present study, we aimed to construct a model based on the expression of Hippo‐related genes (HRGs) in tissues adjacent to HCC to predict the prognosis of HCC patients. Methods Gene expression data of paired normal tissues adjacent to HCC (PNTAH) and clinical information were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The HRG signature was constructed using four canonical Hippo‐related pathways. Univariate Cox regression analysis was used to screen survival‐related HRGs. LASSO and multivariate Cox regression analyses were used to construct the prognostic model. The true and false positive rates of the model were confirmed using receiver operating characteristic (ROC) analysis. Results The prognostic model was constructed based on the expression levels of five HRGs (NF2, MYC, BIRC3, CSNK1E, and MINK1) in PNTAH. The mortality rate of HCC patients increased as the risk score determined by the model increased. Furthermore, the risk score was found to be an independent risk factor for the survival of patients. ROC analysis showed that the prognostic model had a better predictive value than the other conventional clinical parameters. Moreover, the reliability of the prognostic model was confirmed in TCGA‐LIHC cohort. A nomogram was generated to predict patient survival. An exploration of the predictive value of the model in HCC tissues indicated that the model is PNTAH‐specific. Conclusions We developed and validated a prognostic model based on the expression levels of five HRGs in PNTAH, and this model should be helpful in predicting the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Qingbo Pan
- Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fanbo Qin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanyu Yuan
- Caojie Community Medical Service Centre Hechuan, Chongqing, China
| | - Baoning He
- Chongqing YuCai Secondary School, Chongqing, China
| | - Ni Yang
- Chongqing YuCai Secondary School, Chongqing, China
| | - Yitong Zhang
- Chongqing YuCai Secondary School, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Zeng
- Department of Infectious Diseases, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Marzouka NAD, Lindgren D, Eriksson P, Sjödahl G, Bernardo C, Liedberg F, Axelson H, Höglund M. Recurring urothelial carcinomas show genomic rearrangements incompatible with a direct relationship. Sci Rep 2020; 10:19539. [PMID: 33177554 PMCID: PMC7658206 DOI: 10.1038/s41598-020-75854-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
We used the fact that patients with non-muscle invasive bladder tumors show local recurrences and multiple tumors to study re-initiation of tumor growth from the same urothelium. By extensive genomic analyses we show that tumors from the same patient are clonal. We show that gross genomic chromosomal aberrations may be detected in one tumor, only to be undetected in a recurrent tumor. By analyses of incompatible changes i.e., genomic alterations that cannot be reversed, we show that almost all tumors from a single patient may show such changes, thus the tumors cannot have originated from each other. As recurring tumors share both genomic alterations and driver gene mutations, these must have been present in the urothelium in periods with no tumor growth. We present a model that includes a growing and evolving field of urothelial cells that occasionally, and locally, produce bursts of cellular growth leading to overt tumors.
Collapse
Affiliation(s)
- Nour-Al-Dain Marzouka
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pontus Eriksson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Gottfrid Sjödahl
- Division of Urological Research, Department of Translational Medicine, Malmö University Hospital, Malmö, Sweden
| | - Carina Bernardo
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Fredrik Liedberg
- Division of Urological Research, Department of Translational Medicine, Malmö University Hospital, Malmö, Sweden.,Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Mattias Höglund
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
8
|
Kang HW, Kim WJ, Yun SJ. The therapeutic and prognostic implications of molecular biomarkers in urothelial carcinoma. Transl Cancer Res 2020; 9:6609-6623. [PMID: 35117271 PMCID: PMC8798786 DOI: 10.21037/tcr-20-1243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022]
Abstract
Urothelial cell carcinoma (UCC) of the bladder and upper urinary tract is a heterogeneous disease with distinct biologic features resulting in different clinical behaviors. Bladder cancer (BC) is classified into non-muscle invasive BC (NMIBC) and muscle invasive BC (MIBC). NMIBC is associated with high recurrence rates and risk of progression to invasive disease, whereas MIBC is complicated by systemic recurrence after radical cystectomy because of the limited efficacy of available therapies. UCC of the upper urinary tract (UUT-UCC) is a rare but aggressive urologic cancer characterized by multifocality, local recurrence, and metastasis. Conventional histopathologic evaluation of UCC, including tumor stage and grade, cannot accurately predict the behavior of BC and UUT-UCC. Recent clinical and preclinical studies aimed at understanding the molecular landscape of UCC have provided insight into molecular subtyping, inter- or intratumoral heterogeneity, and potential therapeutic targets. Combined analysis of molecular markers and standard pathological features may improve risk stratification and help monitor tumor progression and treatment response, ultimately improving patient outcomes. This review discusses prognostic and therapeutic biomarkers for BC and UUT-UCC, and describes recent advances in molecular stratification that may guide prognosis, patient stratification, and treatment selection.
Collapse
Affiliation(s)
- Ho Won Kang
- Department of Urology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, South Korea
| | - Wun-Jae Kim
- Department of Urology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, South Korea
| | - Seok Joong Yun
- Department of Urology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, South Korea
| |
Collapse
|
9
|
Strandgaard T, Nordentoft I, Lamy P, Christensen E, Thomsen MBH, Jensen JB, Dyrskjøt L. Mutational Analysis of Field Cancerization in Bladder Cancer. Bladder Cancer 2020. [DOI: 10.3233/blc-200282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND: Morphologically normal tissue, adjacent to tumors, contains multiple molecular changes, the so-called field cancerization. The multifocal and recurrent nature of bladder cancer has been hypothesized to originate from this. However, further studies are required to explore the mutational composition of normal tissue adjacent to tumors. OBJECTIVE: To analyze field cancerization in bladder cancer patients using a non-tumor guided approach. METHODS: We investigated the mutational landscape of normal appearing urothelium and paired bladder tumors from four patients by applying deep-targeted sequencing. RESULTS: Sequencing of 509 cancer driver genes revealed the presence of 2– 13 mutations exclusively localized in normal tissue (average target read depth 634×). Furthermore, 6– 13 mutations were shared between tumor and normal samples and 8– 75 mutations were exclusively detected in tumor samples. More mutations were observed in normal samples from patients with multifocal disease compared to patients with unifocal disease. Mutations in normal samples had lower variant allele fractions (VAF) compared to tumor mutations (p < 2.2*10–16). Furthermore, significant differences in the type of nucleotide changes between tumor, normal and shared mutations (p = 2.2*10–5) were observed, and mutations in APOBEC context were observed primarily among tumor mutations (p = 0.02). No differences in functional impact between normal, shared and tumor mutations were observed (p = 0.61). CONCLUSION: Overall, these findings support the presence of more than one field in the bladder, and document non-tumor specific driver mutations to be present in normal appearing bladder tissue.
Collapse
Affiliation(s)
- Trine Strandgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus C, Denmark
| | - Iver Nordentoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Philippe Lamy
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Emil Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus C, Denmark
| | | | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Health, Aarhus University, Aarhus C, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
10
|
Accurate Quantification of Residual Cancer Cells in Pelvic Washing Reveals Association with Cancer Recurrence Following Robot-Assisted Radical Cystectomy. J Urol 2019; 201:1105-1114. [PMID: 30730413 DOI: 10.1097/ju.0000000000000142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Bladder cancer recurrence following cystectomy remains a significant cause of bladder cancer specific mortality. Residual cancer cells contribute to cancer recurrence due to tumor spillage or undetectable preexisting micrometastatic tumor clones. We detected and quantified residual cancer cells in pelvic washing using ultradeep targeted sequencing. We compared the levels of residual cancer cells with clinical variables and cancer recurrence. MATERIALS AND METHODS The primary tumor specimen was available in 17 patients who underwent robot-assisted radical cystectomy. All tumors had negative surgical margins. Pelvic washes and blood were collected intraoperatively before and after robot-assisted radical cystectomy, after pelvic lymph node dissection and in the suction fluid collected during the procedure. Two-step sequencing, including whole exome sequencing followed by ultradeep targeted sequencing (× greater than 50,000), was done to quantify residual cancer cells in each sample. Eight patients were excluded from study due to sample quality issues. The final analysis cohort comprised 9 patients. The residual cancer cell level was quantified for each sample as the relative cancer cell fraction and compared between time points. The peak relative cancer cell fraction of each patient was correlated with clinical and pathological variables. RESULTS Residual cancer cells were detected in approximately half of the pelvic washing specimens during or after but not before robot-assisted radical cystectomy. Higher residual cancer cell levels were associated with aggressive variant histology and cancer recurrence. Verifying the feasibility of using residual cancer cells as a novel biomarker for recurrence requires larger cohorts. CONCLUSIONS Detection of residual cancer cells in intraoperative peritoneal washes of patients with bladder cancer who undergo radical cystectomy may represent a robust biomarker of tumor aggressiveness and metastatic potential.
Collapse
|
11
|
Baker KT, Salk JJ, Brentnall TA, Risques RA. Precancer in ulcerative colitis: the role of the field effect and its clinical implications. Carcinogenesis 2018; 39:11-20. [PMID: 29087436 PMCID: PMC6248676 DOI: 10.1093/carcin/bgx117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/22/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Cumulative evidence indicates that a significant proportion of cancer evolution may occur before the development of histological abnormalities. While recent improvements in DNA sequencing technology have begun to reveal the presence of these early preneoplastic clones, the concept of 'premalignant field' was already introduced by Slaughter more than half a century ago. Also referred to as 'field effect', 'field defect' or 'field cancerization', these terms describe the phenomenon by which molecular alterations develop in normal-appearing tissue and expand to form premalignant patches with the potential to progress to dysplasia and cancer. Field effects have been well-characterized in ulcerative colitis, an inflammatory bowel disease that increases the risk of colorectal cancer. The study of the molecular alterations that define these fields is informative of mechanisms of tumor initiation and progression and has provided potential targets for early cancer detection. Herein, we summarize the current knowledge about the molecular alterations that comprise the field effect in ulcerative colitis and the clinical utility of these fields for cancer screening and prevention.
Collapse
Affiliation(s)
- Kathryn T Baker
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jesse J Salk
- Division of Hematology and Oncology, Department of Medicine, University of
Washington, Seattle, WA, USA
- TwinStrand Biosciences Seattle, WA, USA
| | - Teresa A Brentnall
- Division of Gasteroenterology, Department of Medicine, University of
Washington, Seattle, WA, USA
| | - Rosa Ana Risques
- To whom correspondence should be addressed. Tel: +206-616-4976; Fax:
+206-543-1140;
| |
Collapse
|
12
|
Comprehensive multiregional analysis of molecular heterogeneity in bladder cancer. Sci Rep 2017; 7:11702. [PMID: 28916750 PMCID: PMC5600970 DOI: 10.1038/s41598-017-11291-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022] Open
Abstract
Genetic alterations identified in adjacent normal appearing tissue in bladder cancer patients are indicative of a field disease. Here we assessed normal urothelium transformation and intra-tumour heterogeneity (ITH) in four patients with bladder cancer. Exome sequencing identified private acquired mutations in a lymph node metastasis and local recurrences. Deep re-sequencing revealed presence of at least three and four subclones in two patients with multifocal disease, while no demarcation of subclones was identified in the two patients with unifocal disease. Analysis of adjacent normal urothelium showed low frequency mutations in patients with multifocal disease. Expression profiling showed intra-tumour and intra-patient co-existence of basal- and luminal-like tumour regions, and patients with multifocal disease had a greater degree of genomic and transcriptomic ITH, as well as transformation of adjacent normal cells, compared to patients with unifocal disease. Analysis of the adjacent urothelium may pave the way for therapies targeting the field disease.
Collapse
|
13
|
Shin K, Lim A, Odegaard JI, Honeycutt JD, Kawano S, Hsieh MH, Beachy PA. Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma. Nat Cell Biol 2014; 16:469-78. [PMID: 24747439 PMCID: PMC4196946 DOI: 10.1038/ncb2956] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/25/2014] [Indexed: 12/21/2022]
Abstract
Understanding how malignancies arise within normal tissues requires identification of the cancer cell of origin and knowledge of the cellular and tissue dynamics of tumor progression. Here we examine bladder cancer in a chemical carcinogenesis model that mimics muscle-invasive human bladder cancer. With no prior bias regarding genetic pathways or cell types, we prospectively mark or ablate cells to show that muscle-invasive bladder carcinomas arise exclusively from Sonic hedgehog (Shh)-expressing stem cells in basal urothelium. These carcinomas arise clonally from a single cell whose progeny aggressively colonize a major portion of the urothelium to generate a lesion with histological features identical to human carcinoma-in-situ. Shh-expressing basal cells within this precursor lesion become tumor-initiating cells, although Shh expression is lost in subsequent carcinomas. We thus find that invasive carcinoma is initiated from basal urothelial stem cells but that tumor cell phenotype can diverge significantly from that of the cancer cell-of-origin.
Collapse
Affiliation(s)
- Kunyoo Shin
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Agnes Lim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Justin I Odegaard
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jared D Honeycutt
- Stanford Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sally Kawano
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Michael H Hsieh
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Philip A Beachy
- 1] Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA [3] Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA [4] Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
14
|
Dotto GP. Multifocal epithelial tumors and field cancerization: stroma as a primary determinant. J Clin Invest 2014; 124:1446-53. [PMID: 24691479 DOI: 10.1172/jci72589] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is increasingly evident that cancer results from altered organ homeostasis rather than from deregulated control of single cells or groups of cells. This applies especially to epithelial cancer, the most common form of human solid tumors and a major cause of cancer lethality. In the vast majority of cases, in situ epithelial cancer lesions do not progress into malignancy, even if they harbor many of the genetic changes found in invasive and metastatic tumors. While changes in tumor stroma are frequently viewed as secondary to changes in the epithelium, recent evidence indicates that they can play a primary role in both cancer progression and initiation. These processes may explain the phenomenon of field cancerization, i.e., the occurrence of multifocal and recurrent epithelial tumors that are preceded by and associated with widespread changes of surrounding tissue or organ "fields."
Collapse
|
15
|
Abstract
Urinary diversion after radical cystectomy in patients with bladder cancer normally takes the form of an ileal conduit or neobladder. However, such diversions are associated with a number of complications including increased risk of infection. A plausible alternative is the construction of a neobladder (or bladder tissue) in vitro using autologous cells harvested from the patient. Biomaterials can be used as a scaffold for naturally occurring regenerative stem cells to latch onto to regrow the bladder smooth muscle and epithelium. Such engineered tissues show great promise in urologic tissue regeneration, but are faced with a number of challenges. For example, the differentiation mesenchymal stem cells from various sources can be difficult and the smooth muscle cells formed do not precisely mimic the natural cells.
Collapse
|
16
|
Palmeira C, Oliveira PA, Lameiras C, Amaro T, Silva VM, Lopes C, Santos L. Biological similarities between murine chemical-induced and natural human bladder carcinogenesis. Oncol Lett 2010; 1:373-377. [PMID: 22966311 DOI: 10.3892/ol_00000066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 11/30/2009] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the similarities between rodent and human urothelial carcinogenesis models using DNA content, p53 and Ki-67 immunoexpression as surrogate markers of bladder carcinogenesis. Following N-butyl-N-(4-hydroxybutyl)-nitrosamine exposure, 49 human cystectomy specimens of bladder cancer and 53 rat bladder specimens were studied. All of the tumours and adjacent mucosa present in each specimen were evaluated. High similarities were observed between the rodent urothelium carcinogenesis process and the corresponding process in humans, in regards to the histopathological features and biological alteration profile: DNA aneuploidy, p53 overexpression and high proliferative index measured by Ki-67 immunoexpression. Despite these similarities, a higher frequency of alterations was observed in earlier stages in the rat chemical-induced carcinogenesis, namely in 5c aneuploid cells, p53 overexpression and higher Ki-67 labelling index. These results confirm that this experimental animal model is a suitable and reproducible model of bladder carcinogenesis, particularly in regards to high-risk non-invasive and invasive urothelial carcinomas. These features mandate its use in the identification of new molecular targets and evaluation of tumour response to new cytotoxic drugs or drug combinations in bladder cancer therapeutic intervention.
Collapse
Affiliation(s)
- Carlos Palmeira
- Department of Immunology, Portuguese Institute of Oncology, Porto
| | | | | | | | | | | | | |
Collapse
|
17
|
Palmeira C, Lameiras C, Amaro T, Lima L, Koch A, Lopes C, Oliveira PA, Santos L. CIS is a surrogate marker of genetic instability and field carcinogenesis in the urothelial mucosa. Urol Oncol 2009; 29:205-11. [PMID: 19854077 DOI: 10.1016/j.urolonc.2009.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/13/2009] [Accepted: 07/13/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate whether carcinoma in situ (CIS) lesion could be considered a surrogate marker of urothelium genetic instability and field carcinogenesis or not, we evaluated DNA content, p53 overexpression, and proliferative index (Ki-67 expression) in primary tumor, in tumor-adjacent mucosa, and distant urothelial mucosa with and without presence of CIS. PATIENTS AND METHODS A retrospective study in radical cystectomy specimens from 49 patients was carried out. All the lesions present in each cystectomy specimen were studied, including the tumor area and the adjacent mucosa (AM). Whenever possible, the distant mucosa (DM) was also studied. When CIS was detected, this lesion and the surrounding normal mucosa were also studied. The 49 tumor areas included high grade papillary urothelial carcinoma (HGP) in 19 cases (38.8%) and invasive urothelial cell carcinomas in 30 cases (61.2%). The nuclear DNA content of cancer cells was evaluated using image cytometry allowing the determination of the DNA ploidy and 5cER parameters. The p53 and Ki-67 immunoexpression was evaluated by immunohistochemistry. RESULTS CIS lesions were observed in the AM and DM of both tumor groups: 15.8% and 15.4% in AM and DM, for each one of them, in HGP group and 26.7% and 22.2% in AM and DM, for each one of them, in invasive tumors group. In CIS lesion aneuploid DNA content, p53 overexpression and high proliferative labeling index were observed. The so-called normal mucosa (AM and DM) with and without focus of CIS lesions were compared for genetic instability and molecular alterations profile. Statistical differences were observed between the normal mucosa with and without CIS: the so-called normal mucosa areas with focus of CIS revealed significantly higher frequencies of DNA content alterations, p53 overexpression, and higher proliferative index. These differences were significantly different in the invasive UCC group, but this profile it is also present in HPG group. CONCLUSION This study points out that CIS is a marker of genetic instability of the urothelium mucosa. The CIS surrounding morphologically normal urothelium showed a high frequency of abnormal DNA content, with high percentage of clear aneuploid cells (high 5cER), p53 mutated protein expression, and a proliferative status underlying a field carcinogenesis. These alterations in normal mucosa were not found when CIS was not present.
Collapse
Affiliation(s)
- Carlos Palmeira
- Department of Immunology, Portuguese Institute of Oncology, Porto, and Health School of University Fernando Pessoa, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Rhiner C, Moreno E. Super competition as a possible mechanism to pioneer precancerous fields. Carcinogenesis 2009; 30:723-8. [DOI: 10.1093/carcin/bgp003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
19
|
Nezos A, Pissimisis N, Lembessis P, Sourla A, Dimopoulos P, Dimopoulos T, Tzelepis K, Koutsilieris M. Detection of circulating tumor cells in bladder cancer patients. Cancer Treat Rev 2008; 35:272-9. [PMID: 19103472 DOI: 10.1016/j.ctrv.2008.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 11/06/2008] [Accepted: 11/10/2008] [Indexed: 12/31/2022]
Abstract
The methods employed for the detection of circulating bladder cancer cells (CBCs) and their use as a molecular staging tool in clinical settings are thoroughly reviewed. CBC isolation and enrichment methods are discussed according to their advantages and pitfalls along with the clinical data of PCR-based techniques used for CBC detection. In addition, we review the specificity of molecular markers that have been proposed so far for CBC identification, and we comment on the controversial clinical data, proposing laboratory approaches which may improve the clinical significance of CBC detection in bladder cancer.
Collapse
Affiliation(s)
- Adrianos Nezos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi 115 27, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sirintrapun SJ, Parwani AV. Molecular Pathology of the Genitourinary Tract: Prostate and Bladder. Surg Pathol Clin 2008; 1:211-36. [PMID: 26837907 DOI: 10.1016/j.path.2008.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The knowledge of cellular mechanisms in tumors of the prostate and bladder has grown exponentially. Molecular technologies have led to the discovery of TMPRSS2 in prostate cancer and the molecular pathways distinguishing low- and high-grade urothelial neoplasms. UroVysion with fluorescence in situ hybridization is already commonplace as an adjunct to cytologic diagnosis of urothelial neoplasms. This trend portends the future in which classification and diagnosis of tumors of the prostate and bladder through morphologic analysis will be supplemented by molecular information correlating with prognosis and targeted therapy. This article outlines tumor molecular pathology of the prostate and bladder encompassing current genomic, epigenomic, and proteonomic findings.
Collapse
Affiliation(s)
- S Joseph Sirintrapun
- Pathology Informatics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anil V Parwani
- Department of Pathology, University of Pittsburgh Medical Center Shadyside Hospital, Room WG 07, 5230 Centre Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
21
|
Patriarca C, Colombo P, Pio Taronna A, Wesseling J, Franchi G, Guddo F, Naspro R, Macchi RM, Giunta P, Di Pasquale M, Parente M, Arizzi C, Roncalli M, Campo B. Cell Discohesion and Multifocality of Carcinoma In situ of the Bladder: New Insight From the Adhesion Molecule Profile (e-Cadherin, Ep-CAM, and MUC1). Int J Surg Pathol 2008; 17:99-106. [DOI: 10.1177/1066896908326918] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Urothelial cell carcinoma in situ (CIS) of the bladder is a superficially diffusive and highly discohesive disease. The authors analyzed the expression of some adhesion molecules (e-cadherin and Ep-CAM) and MUC1 in 32 unifocal and multifocal bladder urothelial cell CIS in an attempt to clarify this discohesion. E-cadherin was strongly expressed, in more than 75% of the cases. The presence of methylation of the CDH1 e-cadherin promoter gene was also investigated, but methylation was found in only one case. Ep-CAM was present in all the cases with a heterogeneous staining pattern. Similarly, MUC1/episialin was variously present in 94% of the cases without a polarized staining pattern and was expressed more strongly in cases with multifocal disease. Because loss of MUC1 polarization leads to interference with cell—cell adhesion mechanisms mediated by cadherins, these findings help explain why bladder urothelial cell CIS often shows a discohesive morphology and multifocality despite a strongly expressed adhesion molecule profile. Finally, Ep-CAM expression might provide some support for future target therapy trials.
Collapse
Affiliation(s)
- Carlo Patriarca
- Department of Pathology, Azienda Ospedaliera di Melegnano, Milan,
| | - Piergiuseppe Colombo
- Department of Pathology, University of Milan Medical School, ICH Humanitas Rozzano, Milan
| | - Angelo Pio Taronna
- Department of Experimental Medicine, University of Ferrara Medical School, Ferrara
| | - Jelle Wesseling
- Department of Pathology, Netherlands Cancer Institute, NKI, Amsterdam, Netherlands
| | - Giada Franchi
- Department of Pathology, University of Milan Medical School, ICH Humanitas Rozzano, Milan
| | | | - Richard Naspro
- Department of Urology, ICH Humanitas-Cliniche Gavazzeni, Bergamo Italy
| | | | - Paolo Giunta
- Department of Pathology, Azienda Ospedaliera di Melegnano, Milan
| | | | - Michele Parente
- Department of Pathology, Azienda Ospedaliera di Melegnano, Milan
| | - Carmelo Arizzi
- Department of Pathology, Azienda Ospedaliera di Melegnano, Milan
| | - Massimo Roncalli
- Department of Pathology, University of Milan Medical School, ICH Humanitas Rozzano, Milan
| | - Biagio Campo
- Department of Urology, Azienda Ospedaliera di Melegnano, Milan
| |
Collapse
|
22
|
Abstract
Bladder cancer, arising from the transitional cells of the mucosal urothelium, may present as a noninvasive, papillary tumor protruding from the mucosal surface, or as a solid, nonpapillary tumor that invades the bladder wall and has a high propensity for metastasis. The nonpapillary tumors originate from in situ dysplasia. The most common environmental risk for bladder cancer is active smoking; occupational exposure to arsenic or other carcinogens is also a risk factor. A possible familial component to bladder cancer has been described. Conventional models of carcinogenesis suppose the existence of successive mutation events within a specific cell clone, enabling its eventual escape from regulation of cell division and maintenance of genomic integrity. Important new information has emerged from whole-organ mapping of the mucosal genome in bladders resected for invasive cancer (Majewski et al, Lab Invest; published online 5 May 2008). Mapping of genetic hits across the entire mucosa demonstrates genetic alterations in six chromosomal regions, not only in mucosal regions of evident dysplasia, but also in morphologically normal mucosa. These clonally expanded regions cover vast expanses of the bladder surface, as a 'first wave' of pre-neoplasia. Target genes in these regions are termed 'forerunner genes' (FR genes), based on the concept that these genes enable the initial clonal expansion of in situ urothelial neoplasia. Extensive further analysis of human populations with urothelial cancer implicates genetic polymorphisms in one of these genes, P2RY5, as being present in a familial cluster of cancers of multiple organs, and as imparting risk for development of bladder cancer in active smokers. P2RY5 is a gene encoded within intron 17 of RB1, a prototypic tumor suppressor gene whose expression is lost at a later stage of bladder carcinogenesis. Alterations of the FR gene status provide a novel opportunity to screen individuals at risk for the earliest stage of bladder pre-neoplasia and represent attractive targets for therapeutic and chemopreventive interventions. These findings support the hypothesis that bladder carcinogenesis is initiated by clonal expansion of genetically altered but histologically normal cells that cover broad expanses of the mucosa. Effort must now be given to identifying the biological function of these novel FR genes.
Collapse
|
23
|
Lindgren D, Gudjonsson S, Jee KJ, Liedberg F, Aits S, Andersson A, Chebil G, Borg A, Knuutila S, Fioretos T, Månsson W, Höglund M. Recurrent and multiple bladder tumors show conserved expression profiles. BMC Cancer 2008; 8:183. [PMID: 18590527 PMCID: PMC2483988 DOI: 10.1186/1471-2407-8-183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 06/30/2008] [Indexed: 11/10/2022] Open
Abstract
Background Urothelial carcinomas originate from the epithelial cells of the inner lining of the bladder and may appear as single or as multiple synchronous tumors. Patients with urothelial carcinomas frequently show recurrences after treatment making follow-up necessary. The leading hypothesis explaining the origin of meta- and synchronous tumors assumes a monoclonal origin. However, the genetic relationship among consecutive tumors has been shown to be complex in as much as the genetic evolution does not adhere to the chronological appearance of the metachronous tumors. Consequently, genetically less evolved tumors may appear chronologically later than genetically related but more evolved tumors. Methods Forty-nine meta- or synchronous urothelial tumors from 22 patients were analyzed using expression profiling, conventional CGH, LOH, and mutation analyses. Results We show by CGH that partial chromosomal losses in the initial tumors may not be present in the recurring tumors, by LOH that different haplotypes may be lost and that detected regions of LOH may be smaller in recurring tumors, and that mutations present in the initial tumor may not be present in the recurring ones. In contrast we show that despite apparent genomic differences, the recurrent and multiple bladder tumors from the same patients display remarkably similar expression profiles. Conclusion Our findings show that even though the vast majority of the analyzed meta- and synchronous tumors from the same patients are not likely to have originated directly from the preceding tumor they still show remarkably similar expressions profiles. The presented data suggests that an expression profile is established early in tumor development and that this profile is stable and maintained in recurring tumors.
Collapse
Affiliation(s)
- David Lindgren
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Cell competition is a type of short-range cell-cell interaction described in Drosophila melanogaster, in which cells expressing different levels of a particular protein are able to discriminate between their relative levels of that protein in such a way that one of the cells disappears from the tissue (the loser), whereas the other (the winner) not only survives but also proliferates to fill the space left by the disappearing cells. Some tumour-promoting mutations are able to induce cell competition in D. melanogaster, but could cell competition become a target for therapeutic intervention, or early detection, in human cancer?
Collapse
Affiliation(s)
- Eduardo Moreno
- Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro, 3, E-28029 Madrid, Spain.
| |
Collapse
|