1
|
Wang H, Song X, Shen H, Liu W, Wang Y, Zhang M, Yang T, Mou Y, Ren C, Song X. Cancer neuroscience in head and neck: interactions, modulation, and therapeutic strategies. Mol Cancer 2025; 24:101. [PMID: 40165230 PMCID: PMC11956203 DOI: 10.1186/s12943-025-02299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Head and neck cancer (HNC) is an aggressive malignancy with significant effects on the innervation. Not only is it at the top of the cancer spectrum with a dismal prognosis, but it also imposes considerable stress on patients and society owing to frequent neurological symptoms. With progress in cancer neuroscience, the interactions between HNC and the nervous system, as well as the underlying mechanisms, have become increasingly clear. Compelling evidence suggests communication of information between cancer and nerve cells and devastation of the neurological system with tumor growth. However, the thorough grasp of HNC in cancer neuroscience has been severely constrained by the intricacy of HNC and fragmented research. This review comprehensively organizes and summarizes the latest research on the crosstalk between HNC and the nervous system. It aims to clarify various aspects of the neurological system in HNC, including the physiology, progression, and treatment of cancer. Furthermore, the opportunities and challenges of cancer neuroscience in HNC are discussed, which offers fresh perspectives on the neurological aspects of HNC diagnosis and management.
Collapse
Affiliation(s)
- Hanrui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Hui Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Wanchen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Mingjun Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ting Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, No.20, East Road, Zhifu District, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| |
Collapse
|
2
|
Wang YH, Yang X, Liu CC, Wang X, Yu KD. Unraveling the peripheral nervous System's role in tumor: A Double-edged Sword. Cancer Lett 2025; 611:217451. [PMID: 39793755 DOI: 10.1016/j.canlet.2025.217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The peripheral nervous system (PNS) includes all nerves outside the brain and spinal cord, comprising various cells like neurons and glial cells, such as schwann and satellite cells. The PNS is increasingly recognized for its bidirectional interactions with tumors, exhibiting both pro- and anti-tumor effects. Our review delves into the complex mechanisms underlying these interactions, highlighting recent findings that challenge the conventional understanding of PNS's role in tumorigenesis. We emphasize the contradictory results in the literature and propose novel perspectives on how these discrepancies can be resolved. By focusing on the PNS's influence on tumor initiation, progression, and microenvironment remodeling, we provide a comprehensive analysis that goes beyond the structural description of the PNS. Our review suggests that a deeper comprehension of the PNS-tumor crosstalk is pivotal for developing targeted anticancer strategies. We conclude by emphasizing the need for future research to unravel the intricate dynamics of the PNS in cancer, which may lead to innovative diagnostic tools and therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, PR China
| | - Cui-Cui Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
3
|
Tripathy S, Singh S, Banerjee M, Modi DR, Prakash A. Coagulation proteases and neurotransmitters in pathogenicity of glioblastoma multiforme. Int J Neurosci 2024; 134:398-408. [PMID: 35896309 DOI: 10.1080/00207454.2022.2107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
Glioblastoma is an aggressive type of cancer that begins in cells called astrocytes that support nerve cells that can occur in the brain or spinal cord. It can form in the brain or spinal cord. Despite the variety of modern therapies against GBM, it is still a deadly disease. Patients usually have a median survival of approximately 14 to 15 months from the diagnosis. Glioblastoma is also known as glioblastoma multiforme. The pathogenesis contributing to the proliferation and metastasis of cancer involves aberrations of multiple signalling pathways through multiple genetic mutations and altered gene expression. The coagulant factors like thrombin and tissue factor play a noteworthy role in cancer invasion. They are produced in the microenvironment of glioma through activation of protease-activated receptors (PARs) which are activated by coagulation proteases. PARs are members of family G-protein-coupled receptors (GPCRs) that are activated by coagulation proteases. These components play a key role in tumour cell angiogenesis, migration, invasion, and interactions with host vascular cells. Further, the release of neurotransmitters is also found to regulate malignancy in gliomas. Exploration of the interplay between malignant neural circuitry with the normal conditions is also decisive in finding effective therapies for these apparently invasive tumours. The present review discusses the molecular classification of gliomas, activation of PARs by coagulation protease, and its role in metastasis of gliomas. Further, the differential involvement of neurotransmitters in the pathogenesis of gliomas has also been discussed. Targeting these molecules may present a potential therapeutic approach for the treatment of gliomas.
Collapse
Affiliation(s)
- Sukanya Tripathy
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sanjay Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Monisha Banerjee
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Dinesh Raj Modi
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
4
|
Blasko F, Horvathova L. The relationship between the tumor and its innervation: historical, methodical, morphological, and functional assessments - A minireview. Endocr Regul 2024; 58:68-82. [PMID: 38563296 DOI: 10.2478/enr-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The acceptance of the tumor as a non-isolated structure within the organism has opened a space for the study of a wide spectrum of potential direct and indirect interactions, not only between the tumor tissue and its vicinity, but also between the tumor and its macroenvironment, including the nervous system. Although several lines of evidence have implicated the nervous system in tumor growth and progression, for many years, researchers believed that tumors lacked innervation and the notion of indirect neuro-neoplastic interactions via other systems (e.g., immune, or endocrine) predominated. The original idea that tumors are supplied not only by blood and lymphatic vessels, but also autonomic and sensory nerves that may influence cancer progression, is not a recent phenomenon. Although in the past, mainly due to the insufficiently sensitive methodological approaches, opinions regarding the presence of nerves in tumors were inconsistent. However, data from the last decade have shown that tumors are able to stimulate the formation of their own innervation by processes called neo-neurogenesis and neo-axonogenesis. It has also been shown that tumor infiltrating nerves are not a passive, but active components of the tumor microenvironment and their presence in the tumor tissue is associated with an aggressive tumor phenotype and correlates with poor prognosis. The aim of the present review was to 1) summarize the available knowledge regarding the course of tumor innervation, 2) present the potential mechanisms and pathways for the possible induction of new nerve fibers into the tumor microenvironment, and 3) highlight the functional significance/consequences of the nerves infiltrating the tumors.
Collapse
Affiliation(s)
- Filip Blasko
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Garramona FT, Cunha TF, Vieira JS, Borges G, Santos G, de Castro G, Ugrinowitsch C, Brum PC. Increased sympathetic nervous system impairs prognosis in lung cancer patients: a scoping review of clinical studies. Lung Cancer Manag 2023; 12:LMT63. [PMID: 38239811 PMCID: PMC10794895 DOI: 10.2217/lmt-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/16/2023] [Indexed: 01/22/2024] Open
Abstract
Aim To summarize current knowledge, gaps, quality of the evidence and show main results related to the role of the autonomic nervous system in lung cancer. Methods Studies were identified through electronic databases (PubMed, Scopus, Embase and Cochrane Library) in October 2023, and a descriptive analysis was performed. Twenty-four studies were included, and most were observational. Results Our data indicated an increased expression of β-2-adrenergic receptors in lung cancer, which was associated with poor prognosis. However, the use of β-blockers as an add-on to standard treatment promoted enhanced overall survival, recurrence-free survival and reduced metastasis occurrence. Conclusion Although the results herein seem promising, future research using high-quality prospective clinical trials is required to draw directions to guide clinical interventions.
Collapse
Affiliation(s)
- Fabrício T Garramona
- University of Sorocaba, Sao Paulo, 18023-000, Brazil
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Telma F Cunha
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
- Paulista University, Sao Paulo, 01533-000, Brazil
| | - Janaína S Vieira
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Gabriela Borges
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Gabriela Santos
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Gilberto de Castro
- Cancer Institute of the State of Sao Paulo (ICESP), Clinical Hospital of Medical College - University of Sao Paulo, Sao Paulo, 01246-000, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| | - Patrícia C Brum
- School of Physical Education & Sport, University of Sao Paulo, Sao Paulo, 05508-30, Brazil
| |
Collapse
|
6
|
Li J, Che M, Zhang B, Zhao K, Wan C, Yang K. The association between the neuroendocrine system and the tumor immune microenvironment: Emerging directions for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189007. [PMID: 37907132 DOI: 10.1016/j.bbcan.2023.189007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
This review summarizes emerging evidence that the neuroendocrine system is involved in the regulation of the tumor immune microenvironment (TIME) to influence cancer progression. The basis of the interaction between the neuroendocrine system and cancer is usually achieved by the infiltration of nerve fibers into the tumor tissue, which is called neurogenesis; the migration of cancer cells toward nerve fibers, which is called perineural invasion (PNI), and the neurotransmitters. In addition to the traditional role of neurotransmitters in neural communications, neurotransmitters are increasingly recognized as mediators of crosstalk between the nervous system, cancer cells, and the immune system. Recent studies have revealed that not only nerve fibers but also cancer cells and immune cells within the TIME can secrete neurotransmitters, exerting influence on both neurons and themselves. Furthermore, immune cells infiltrating the tumor environment have been found to express a wide array of neurotransmitter receptors. Hence, targeting these neurotransmitter receptors may promote the activity of immune cells in the tumor microenvironment and exert anti-tumor immunity. Herein, we discuss the crosstalk between the neuroendocrine system and tumor-infiltrating immune cells, which may provide feasible cancer immunotherapy options.
Collapse
Affiliation(s)
- Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengjie Che
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kewei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Baraldi JH, Martyn GV, Shurin GV, Shurin MR. Tumor Innervation: History, Methodologies, and Significance. Cancers (Basel) 2022; 14:1979. [PMID: 35454883 PMCID: PMC9029781 DOI: 10.3390/cancers14081979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
The role of the nervous system in cancer development and progression has been under experimental and clinical investigation since nineteenth-century observations in solid tumor anatomy and histology. For the first half of the twentieth century, methodological limitations and opaque mechanistic concepts resulted in ambiguous evidence of tumor innervation. Differential spatial distribution of viable or disintegrated nerve tissue colocalized with neoplastic tissue led investigators to conclude that solid tumors either are or are not innervated. Subsequent work in electrophysiology, immunohistochemistry, pathway enrichment analysis, neuroimmunology, and neuroimmunooncology have bolstered the conclusion that solid tumors are innervated. Regulatory mechanisms for cancer-related neurogenesis, as well as specific operational definitions of perineural invasion and axonogenesis, have helped to explain the consensus observation of nerves at the periphery of the tumor signifying a functional role of nerves, neurons, neurites, and glia in tumor development.
Collapse
Affiliation(s)
- James H. Baraldi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - German V. Martyn
- Biomedical Studies Program, Chatham University, Pittsburgh, PA 15232, USA;
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Michael R. Shurin
- Department of Pathology and Immunology, Division of Clinical Immunopathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Shi Y, Luo J, Wang X, Zhang Y, Zhu H, Su D, Yu W, Tian J. Emerging Trends on the Correlation Between Neurotransmitters and Tumor Progression in the Last 20 Years: A Bibliometric Analysis via CiteSpace. Front Oncol 2022; 12:800499. [PMID: 35280754 PMCID: PMC8907850 DOI: 10.3389/fonc.2022.800499] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 01/15/2023] Open
Abstract
Background Bibliometric analysis is used to gain a systematic understanding of developments in the correlation between neurotransmitters and tumor progression in research hotspots over the past 20 years. Methods Relevant publications from the Web of Science Core Collection (WoSCC) were downloaded on August 1, 2021. Acquired data were then analyzed using the Online Analysis Platform of Literature Metrology (http://biblimetric.com) and the CiteSpace software to analyze and predict trends and hot spots in this field. Results A total of 1310 publications on neurotransmitters and tumor progression were identified, and 1285 qualified records were included in the final analysis. The country leading the research was the United States of America. The University of Buenos Aires featured the highest number of publications among all institutions. Co-citation cluster labels revealed the characteristics of 10 main clusters: beta-adrenergic receptors (β-AR), glutamate, neurotransmitters, serotonin, drd2, histamine, glycine, interleukin-2, neurokinin receptor-1, and nicotinic acetylcholine receptors (AchRs). Keywords and references burst detection indicated that apart from β-AR, dopamine receptor and cancer types like gastric cancer and glioblastoma are the newly emerging research hotspots. Conclusions This study analyzed 1285 publications and 39677 references covering the topic of neurotransmitters and tumor progression and showed that while β-AR has always been a hot topic in this field, dopamine receptor is an emerging target for this research field, and gastric cancer and glioblastoma are the top two tumors that have garnered increasing attention and have become the focal point of recent studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Eukaryotic initiation factor 2 signaling behind neural invasion linked with lymphatic and vascular invasion in pancreatic cancer. Sci Rep 2021; 11:21197. [PMID: 34707166 PMCID: PMC8551178 DOI: 10.1038/s41598-021-00727-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Perineural invasion (PNI) is a typical poor prognostic factor in pancreatic ductal adenocarcinoma (PDAC). The mechanisms linking PNI to poor prognosis remain unclear. This study aimed to clarify what changes occurred alongside PNI in PDAC. A 128-patient cohort undergoing surgery for early-stage PDAC was evaluated. Subdivided into two groups, according to pathological state, a pancreatic nerve invasion (ne) score of less than three (from none to moderate invasion) was designated as the low-grade ne group. The high-grade (marked invasion) ne group (74 cases, 57.8%) showed a higher incidence of lymphatic metastasis (P = 0.002), a higher incidence of early recurrence (P = 0.004), decreased RFS (P < 0.001), and decreased DSS (P < 0.001). The severity of lymphatic (r = 0.440, P = 0.042) and venous (r = 0.610, P = 0.002) invasions was positively correlated with the ne score. Tumors having abundant stroma often displayed severe ne. Proteomics identified eukaryotic initiation factor 2 (EIF2) signaling as the most significantly enriched pathway in high-grade ne PDAC. Additionally, EIF2 signaling-related ribosome proteins decreased according to severity. Results showed that PNI is linked with lymphatic and vascular invasion in early-stage PDAC. Furthermore, the dysregulation of proteostasis and ribosome biogenesis can yield a difference in PNI severity.
Collapse
|
10
|
Liang Y, Li H, Gan Y, Tu H. Shedding Light on the Role of Neurotransmitters in the Microenvironment of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:688953. [PMID: 34395421 PMCID: PMC8363299 DOI: 10.3389/fcell.2021.688953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of less than 8%. The fate of PC is determined not only by the malignant behavior of the cancer cells, but also by the surrounding tumor microenvironment (TME), consisting of various cellular (cancer cells, immune cells, stromal cells, endothelial cells, and neurons) and non-cellular (cytokines, neurotransmitters, and extracellular matrix) components. The pancreatic TME has the unique characteristic of exhibiting increased neural density and altered microenvironmental concentration of neurotransmitters. The neurotransmitters, produced by both neuron and non-neuronal cells, can directly regulate the biological behavior of PC cells via binding to their corresponding receptors on tumor cells and activating the intracellular downstream signals. On the other hand, the neurotransmitters can also communicate with other cellular components such as the immune cells in the TME to promote cancer growth. In this review, we will summarize the pleiotropic effects of neurotransmitters on the initiation and progression of PC, and particularly discuss the emerging mechanisms of how neurotransmitters influence the innate and adaptive immune responses in the TME in an autocrine or paracrine manner. A better understanding of the interplay between neurotransmitters and the immune cells in the TME might facilitate the development of new effective therapies for PC.
Collapse
Affiliation(s)
| | | | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Dlamini Z, Mathabe K, Padayachy L, Marima R, Evangelou G, Syrigos KN, Bianchi A, Lolas G, Hull R. Many Voices in a Choir: Tumor-Induced Neurogenesis and Neuronal Driven Alternative Splicing Sound Like Suspects in Tumor Growth and Dissemination. Cancers (Basel) 2021; 13:cancers13092138. [PMID: 33946706 PMCID: PMC8125307 DOI: 10.3390/cancers13092138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Significant progress has recently been made in understanding the role of the neuronal system in cancer biology, in many solid tumors such as prostate, breast, pancreatic, gastric and brain cancers. Solid tumors and the nervous system appear to influence each other’s development both directly and indirectly. A recurring element in such interactions is constituted by nerve-related substances such as neurotransmitters and neurotrophins, to which the first part of the current review is devoted. The second part of the review focuses on the potential role played by alternative splicing in cancer progression associated with neural signaling. Alternative splicing is the process where pre-mRNA is cut and re-ligated in different ways to give rise to multiple protein isoforms whose expression profile is often cancer specific. Alternative splicing is known to take place in the mRNA of genes that code for proteins involved in neuronal development and the creation of new nerve fibers. The change in alternative splicing patterns that occur as tumors develop and progress may make these splice variants potential targets for the development of drug treatments. They may also serve as diagnostic or prognostic biomarkers. Abstract During development, as tissues expand and grow, they require circulatory, lymphatic, and nervous system expansion for proper function and support. Similarly, as tumors arise and develop, they also require the expansion of these systems to support them. While the contribution of blood and lymphatic systems to the development and progression of cancer is well known and is targeted with anticancer drugs, the contribution of the nervous system is less well studied and understood. Recent studies have shown that the interaction between neurons and a tumor are bilateral and promote metastasis on one hand, and the formation of new nerve structures (neoneurogenesis) on the other. Substances such as neurotransmitters and neurotrophins being the main actors in such interplay, it seems reasonable to expect that alternative splicing and the different populations of protein isoforms can affect tumor-derived neurogenesis. Here, we report the different, documented ways in which neurons contribute to the development and progression of cancer and investigate what is currently known regarding cancer-neuronal interaction in several specific cancer types. Furthermore, we discuss the incidence of alternative splicing that have been identified as playing a role in tumor-induced neoneurogenesis, cancer development and progression. Several examples of changes in alternative splicing that give rise to different isoforms in nerve tissue that support cancer progression, growth and development have also been investigated. Finally, we discuss the potential of our knowledge in alternative splicing to improve tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Correspondence:
| | - Kgomotso Mathabe
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Department of Urology, University of Pretoria, Pretoria 0084, South Africa
| | - Llewellyn Padayachy
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- Department of Neurosurgery, University of Pretoria, Pretoria 0084, South Africa
| | - Rahaba Marima
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
| | - George Evangelou
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | - Konstantinos N. Syrigos
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | | | - Georgios Lolas
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
- 3rd Department of Medicine, National & Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.); (K.N.S.)
| | - Rodney Hull
- SAMRC Precision Prevention and Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa; (K.M.); (L.P.); (R.M.); (G.L.); (R.H.)
| |
Collapse
|
12
|
Mehedințeanu AM, Sfredel V, Stovicek PO, Schenker M, Târtea GC, Istrătoaie O, Ciurea AM, Vere CC. Assessment of Epinephrine and Norepinephrine in Gastric Carcinoma. Int J Mol Sci 2021; 22:ijms22042042. [PMID: 33670813 PMCID: PMC7922341 DOI: 10.3390/ijms22042042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
The aim of our study was to assess the sympathetic nervous system’s involvement in the evolution of gastric carcinoma in patients by analyzing the mediators of this system (epinephrine and norepinephrine), as well as by analyzing the histological expression of the norepinephrine transporter (NET). We conducted an observational study including 91 patients diagnosed with gastric carcinoma and an additional 200 patients without cancer between November 2017 and October 2018. We set the primary endpoint as mortality from any cause in the first two years after enrolment in the study. The patients were monitored by a 24-h Holter electrocardiogram (ECG) to assess sympathetic or parasympathetic predominance. Blood was also collected from the patients to measure plasma free metanephrine (Meta) and normetanephrine (N-Meta), and tumor histological samples were collected for the analysis of NET expression. All of this was performed prior to the application of any antineoplastic therapy. Each patient was monitored for two years. We found higher heart rates in patients with gastric carcinoma than those without cancer. Regarding Meta and N-Meta, elevated levels were recorded in the patients with gastric carcinoma, correlating with the degree of tumor differentiation and other negative prognostic factors such as tumor invasion, lymph node metastasis, and distant metastases. Elevated Meta and N-Meta was also associated with a poor survival rate. All these data suggest that the predominance of the sympathetic nervous system’s activity predicts increased gastric carcinoma severity.
Collapse
Affiliation(s)
- Alina Maria Mehedințeanu
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.M.); (M.S.); (A.-M.C.)
| | - Veronica Sfredel
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Puiu Olivian Stovicek
- Department of Pharmacology, Faculty of Nursing, Târgu Jiu Subsidiary, Titu Maiorescu University, 04317 Bucharest, Romania;
| | - Michael Schenker
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.M.); (M.S.); (A.-M.C.)
| | - Georgică Costinel Târtea
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Correspondence: (G.C.T.); (O.I.)
| | - Octavian Istrătoaie
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (G.C.T.); (O.I.)
| | - Ana-Maria Ciurea
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.M.); (M.S.); (A.-M.C.)
| | - Cristin Constantin Vere
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
13
|
Chen L, Lin J, Chen LZ, Chen Y, Wang XJ, Guo ZQ, Yu JM. Perineural Invasion and Postoperative Complications are Independent Predictors of Early Recurrence and Survival Following Curative Resection of Gastric Cancer. Cancer Manag Res 2020; 12:7601-7610. [PMID: 32904660 PMCID: PMC7457383 DOI: 10.2147/cmar.s264582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose To investigate the clinicopathological and prognostic factors related to early gastric cancer recurrence after curative resection. Patients and Methods Between October 2006 and August 2018, a total of 149 patients with recurrence of gastric cancer/adenocarcinoma of the esophagogastric junction after curative resection were enrolled from our treatment group. A retrospective clinical analysis was performed on these patients with gastric cancer recurrence after curative resection. Results Among the 149 patients, 99 (66.4%) had only one recurrence pattern, and 50 (33.6%) had multiple recurrence patterns. The median recurrence-free survival (RFS) was 18.2 months (95% CI 15.0–21.4). Ninety-four patients (63.1%) experienced early recurrence (recurrence within 24 months after curative resection), and 55 patients (36.9%) experienced late recurrence (recurrence beyond 24 months after curative resection). The univariate analysis showed that perineural invasion (P=0.002), depth of invasion (P=0.026), postoperative chemotherapy (P=0.036) and postoperative complications (P=0.004) were significant factors associated with early recurrence after curative resection for gastric cancer. Perineural invasion (P=0.003), postoperative chemotherapy (P=0.036) and postoperative complications (P=0.042) were independent factors associated with early recurrence after curative resection in the multivariate analysis. The survival analysis showed that perineural invasion (P=0.011) and postoperative complications (P=0.007) were independent prognostic factors. The median survival time of early recurrence patients was significantly shorter than that of late recurrence patients (25.4 vs 62.9 months, P<0.001). Conclusion Perineural invasion, postoperative chemotherapy and postoperative complications were independent factors associated with early recurrence after curative resection. Patients with early recurrence after curative resection had poorer survival.
Collapse
Affiliation(s)
- Ling Chen
- Department of Abdominal Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Jing Lin
- Department of Abdominal Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Li-Zhu Chen
- Department of Abdominal Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Yu Chen
- Department of Abdominal Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Xiao-Jie Wang
- Department of Abdominal Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Zeng-Qing Guo
- Department of Abdominal Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Jia-Mi Yu
- Department of Abdominal Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| |
Collapse
|
14
|
McCallum GA, Shiralkar J, Suciu D, Covarrubias G, Yu JS, Karathanasis E, Durand DM. Chronic neural activity recorded within breast tumors. Sci Rep 2020; 10:14824. [PMID: 32908180 PMCID: PMC7481786 DOI: 10.1038/s41598-020-71670-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Nerve fibers are known to reside within malignant tumors and the greater the neuronal density the worse prognosis for the patient. Recent discoveries using tumor bearing animal models have eluded to the autonomic nervous system having a direct effect on tumor growth and metastasis. We report the first direct and chronic in vivo measurements of neural activity within tumors. Using a triple-negative mammary cancer mouse model and chronic neural interface techniques, we have recorded neural activity directly within the tumor mass while the tumor grows and metastasizes. The results indicate that there is a strong connection between the autonomic nervous system and the tumor and could help uncover the mechanisms of tumor growth and metastasis.
Collapse
Affiliation(s)
- Grant A McCallum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Jay Shiralkar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Diana Suciu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Gil Covarrubias
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer S Yu
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Dominique M Durand
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
15
|
Sejda A, Sigorski D, Gulczyński J, Wesołowski W, Kitlińska J, Iżycka-Świeszewska E. Complexity of Neural Component of Tumor Microenvironment in Prostate Cancer. Pathobiology 2020; 87:87-99. [PMID: 32045912 DOI: 10.1159/000505437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 11/19/2022] Open
Abstract
The tumor microenvironment (TME) plays an essential role in the development and progression of neoplasms. TME consists of the extracellular matrix and numerous specialized cells interacting with cancer cells by paracrine and autocrine mechanisms. Tumor axonogenesis and neoneurogenesis constitute a developing area of investigation. Prostate cancer (PC) is one of the most common malignancies in men worldwide. During the past years, more and more studies have shown that mechanisms leading to the development of PC are not confined only to the epithelial cancer cell, but also involve the tumor stroma. Different nerve types and neurotransmitters present within the TME are thought to be important factors in PC biology. Moreover, perineural invasion, which is a common way of PC spreading, in parallel creates the neural niche for malignant cells. Cancer neurobiology seems to have become a new discipline to explore the contribution of neoplastic cell interactions with the nervous system and the neural TME component, also to search for potential therapeutic targets in malignant tumors such as PC.
Collapse
Affiliation(s)
- Aleksandra Sejda
- Department of Pathomorphology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland,
| | - Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Jacek Gulczyński
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Joanna Kitlińska
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
16
|
Hodo TW, de Aquino MTP, Shimamoto A, Shanker A. Critical Neurotransmitters in the Neuroimmune Network. Front Immunol 2020; 11:1869. [PMID: 32973771 PMCID: PMC7472989 DOI: 10.3389/fimmu.2020.01869] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells rely on cell-cell communication to specify and fine-tune their responses. They express an extensive network of cell communication modes, including a vast repertoire of cell surface and transmembrane receptors and ligands, membrane vesicles, junctions, ligand and voltage-gated ion channels, and transporters. During a crosstalk between the nervous system and the immune system these modes of cellular communication and the downstream signal transduction events are influenced by neurotransmitters present in the local tissue environments in an autocrine or paracrine fashion. Neurotransmitters thus influence innate and adaptive immune responses. In addition, immune cells send signals to the brain through cytokines, and are present in the brain to influence neural responses. Altered communication between the nervous and immune systems is emerging as a common feature in neurodegenerative and immunopathological diseases. Here, we present the mechanistic frameworks of immunostimulatory and immunosuppressive effects critical neurotransmitters - dopamine (3,4-dihydroxyphenethylamine), serotonin (5-hydroxytryptamine), substance P (trifluoroacetate salt powder), and L-glutamate - exert on lymphocytes and non-lymphoid immune cells. Furthermore, we discuss the possible roles neurotransmitter-driven neuroimmune networks play in the pathogenesis of neurodegenerative disorders, autoimmune diseases, cancer, and outline potential clinical implications of balancing neuroimmune crosstalk by therapeutic modulation.
Collapse
Affiliation(s)
- Thomas Wesley Hodo
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Maria Teresa Prudente de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
17
|
Jiang SH, Hu LP, Wang X, Li J, Zhang ZG. Neurotransmitters: emerging targets in cancer. Oncogene 2019; 39:503-515. [PMID: 31527667 DOI: 10.1038/s41388-019-1006-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Neurotransmitters are conventionally viewed as nerve-secreted substances that mediate the stimulatory or inhibitory neuronal functions through binding to their respective receptors. In the past decades, many novel discoveries come to light elucidating the regulatory roles of neurotransmitters in the physiological and pathological functions of tissues and organs. Notably, emerging data suggest that cancer cells take advantage of the neurotransmitters-initiated signaling pathway to activate uncontrolled proliferation and dissemination. In addition, neurotransmitters can affect immune cells and endothelial cells in the tumor microenvironment to promote tumor progression. Therefore, a better understanding of the mechanisms underlying neurotransmitter function in tumorigenesis, angiogenesis, and inflammation is expected to enable the development of the next generation of antitumor therapies. Here, we summarize the recent important studies on the different neurotransmitters, their respective receptors, target cells, as well as pro/antitumor activity of specific neurotransmitter/receptor axis in cancers and provide perspectives and insights regarding the rationales and strategies of targeting neurotransmitter system to cancer treatment.
Collapse
Affiliation(s)
- Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, PR China.
| |
Collapse
|
18
|
Demidov V, Matveev LA, Demidova O, Matveyev AL, Zaitsev VY, Flueraru C, Vitkin IA. Analysis of low-scattering regions in optical coherence tomography: applications to neurography and lymphangiography. BIOMEDICAL OPTICS EXPRESS 2019; 10:4207-4219. [PMID: 31453005 PMCID: PMC6701530 DOI: 10.1364/boe.10.004207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 05/19/2023]
Abstract
Analysis of semi-transparent low scattering biological structures in optical coherence tomography (OCT) has been actively pursued in the context of lymphatic imaging, with most approaches relying on the relative absence of signal as a means of detection. Here we present an alternate methodology based on spatial speckle statistics, utilizing the similarity of a distribution of given voxel intensities to the power distribution function of pure noise, to visualize the low-scattering biological structures of interest. In a human tumor xenograft murine model, we show that these correspond to lymphatic vessels and nerves; extensive histopathologic validation studies are reported to unequivocally establish this correspondence. The emerging possibility of OCT lymphangiography and neurography is novel and potentially impactful (especially the latter), although further methodology refinement is needed to distinguish between the visualized lymphatics and nerves.
Collapse
Affiliation(s)
- Valentin Demidov
- Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, M5G 1L7, Canada
| | - Lev A. Matveev
- Institute of Applied Physics Russian Academy of Sciences, 46 Ulyanov Street, Nizhniy Novgorod, 603950, Russia
| | - Olga Demidova
- Department of Arts and Science, Seneca College, 1750 Finch Avenue East, Toronto, M2J 2X5, Canada
| | - Alexander L. Matveyev
- Institute of Applied Physics Russian Academy of Sciences, 46 Ulyanov Street, Nizhniy Novgorod, 603950, Russia
| | - Vladimir Y. Zaitsev
- Institute of Applied Physics Russian Academy of Sciences, 46 Ulyanov Street, Nizhniy Novgorod, 603950, Russia
| | - Costel Flueraru
- National Research Council Canada, Information Communication Technology, 1200 Montreal Rd, Ottawa, K1A0R6, Canada
| | - I. Alex Vitkin
- Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, M5G 1L7, Canada
- University Health Network, Princess Margaret Cancer Centre, 610 University Ave, Toronto, M5G 2C1, Canada
- University of Toronto, Department of Radiation Oncology, 150 College St, Toronto, M5S 3E2, Canada
| |
Collapse
|
19
|
Zhu Y, Zhang GN, Shi Y, Cui L, Leng XF, Huang JM. Perineural invasion in cervical cancer: pay attention to the indications of nerve-sparing radical hysterectomy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:203. [PMID: 31205921 DOI: 10.21037/atm.2019.04.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Perineural invasion (PNI) in early-stage cervical cancer, is associated with multiple high-risk factors and represents a poor outcome in the patients. For nerve-sparing radical hysterectomy (NSRH) to become a standard and widely used treatment for cervical cancer, we need to define its oncological safety, and to establish standardized surgical procedures and indications of NSRH. Here, we review the definition and mechanisms, and clinical significance of PNI in cervical cancer, and discuss the indications of NSRH. PNI should be regarded as one of the main pathological features of cervical cancer and a factor affecting prognosis. A deeper understanding of PNI in cervical cancer, hopefully, will provide clear indications of NSRH.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Gynecologic Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.,Department of Ultrasound, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Guo-Nan Zhang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yu Shi
- Department of Gynecologic Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Ling Cui
- Department of Gynecologic Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xue-Feng Leng
- Department of Thoracic Surgery, the Affiliated Hospital of Chengdu University, Chengdu 610000, China
| | - Jian-Ming Huang
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| |
Collapse
|
20
|
Madeo M, Colbert PL, Vermeer DW, Lucido CT, Cain JT, Vichaya EG, Grossberg AJ, Muirhead D, Rickel AP, Hong Z, Zhao J, Weimer JM, Spanos WC, Lee JH, Dantzer R, Vermeer PD. Cancer exosomes induce tumor innervation. Nat Commun 2018; 9:4284. [PMID: 30327461 PMCID: PMC6191452 DOI: 10.1038/s41467-018-06640-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Patients with densely innervated tumors suffer with increased metastasis and decreased survival as compared to those with less innervated tumors. We hypothesize that in some tumors, nerves are acquired by a tumor-induced process, called axonogenesis. Here, we use PC12 cells as an in vitro neuronal model, human tumor samples and murine in vivo models to test this hypothesis. When appropriately stimulated, PC12 cells extend processes, called neurites. We show that patient tumors release vesicles, called exosomes, which induce PC12 neurite outgrowth. Using a cancer mouse model, we show that tumors compromised in exosome release are less innervated than controls. Moreover, in vivo pharmacological blockade of exosome release similarly attenuates tumor innervation. We characterize these nerves as sensory in nature and demonstrate that axonogenesis is potentiated by the exosome-packaged axonal guidance molecule, EphrinB1. These findings indicate that tumor released exosomes induce tumor innervation and exosomes containing EphrinB1 potentiate this activity.
Collapse
Affiliation(s)
- Marianna Madeo
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Paul L Colbert
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Daniel W Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Christopher T Lucido
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Elisabeth G Vichaya
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Aaron J Grossberg
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
- Department of Radiation Medicine, Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 SW Moody Ave KR-CEDR, Portland, OR, 97201, USA
| | - DesiRae Muirhead
- Sanford Health Pathology Clinic, Sanford Health, 1305 West 18th St, Sioux Falls, SD, 57105, USA
| | - Alex P Rickel
- Biomedical Engineering Program, University of South Dakota, 4800 North Career Ave, Sioux Falls, SD, 57107, USA
| | - Zhongkui Hong
- Biomedical Engineering Program, University of South Dakota, 4800 North Career Ave, Sioux Falls, SD, 57107, USA
| | - Jing Zhao
- Population Health Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
| | - William C Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA
- Sanford Ears, Nose and Throat, 1310 West 22nd St, Sioux Falls, SD, 57105, USA
| | - John H Lee
- NantKwest, 9920 Jefferson Blvd, Culver City, CA, 90232, USA
| | - Robert Dantzer
- Department of Symptom Research, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Paola D Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th St north, Sioux Falls, SD, 57104, USA.
| |
Collapse
|
21
|
Muthuswamy R, Okada NJ, Jenkins FJ, McGuire K, McAuliffe PF, Zeh HJ, Bartlett DL, Wallace C, Watkins S, Henning JD, Bovbjerg DH, Kalinski P. Epinephrine promotes COX-2-dependent immune suppression in myeloid cells and cancer tissues. Brain Behav Immun 2017; 62:78-86. [PMID: 28212885 DOI: 10.1016/j.bbi.2017.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/14/2017] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
Activation of the sympathetic nervous system (e.g., due to stress) has been implicated in cancer progression and recurrence, but its cancer-promoting effects have been variable between different studies. Here, we report that although catecholamines, mediators of systemic sympathetic activity, display only weak immunosuppressive impact on their own, their combination with inflammatory signals leads to the induction of COX-2 and multiple COX-2-dependent suppressive factors in human myeloid cells and cancer tissues. Human macrophages exposed to epinephrine and TNFα, or macrophages generated in 6day cultures in the presence of epinephrine, expressed high levels of COX-2, IDO and IL-10, and strongly suppressed both the proliferation and IFNγ production of CD8+ T cells. These suppressive effects of epinephrine were counteracted by celecoxib, a selective inhibitor of COX-2 activity, which inhibited the induction of immunosuppressive factors (including the elevated expression of COX-2 itself) and the ability of epinephrine-exposed macrophages to suppress CD8+ T cell responses. The activation of the COX-2/PGE2 system and COX-2-dependent suppressive events were also observed in ex vivo human breast and colon cancer explant cultures and were similarly counteracted by celecoxib. Our preliminary data also indicate elevated COX-2 expression in mammary tumors of chronic stress-exposed mice. The current demonstration of the interplay between inflammation and the induction of immunosuppressive factors by catecholamines suggest a contextual impact of stress, helping to explain variable results of epidemiologic studies of the link between sympathetic activity and cancer progression, and implicating COX-2 blockade as a potential means to mitigate stress-related immune suppression.
Collapse
Affiliation(s)
| | - Nana J Okada
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Frank J Jenkins
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Kandace McGuire
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Priscilla F McAuliffe
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Callen Wallace
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jill D Henning
- Department of Psychiatry, Psychology and Behavioral & Community Health Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Biology, University of Pittsburgh at Johnstown, Johnstown, PA 15904, USA
| | - Dana H Bovbjerg
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Department of Psychiatry, Psychology and Behavioral & Community Health Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
22
|
Sun CY, Chu ZB, Huang J, Chen L, Xu J, Xu AS, Li JY, Hu Y. siRNA-mediated inhibition of endogenous brain‑derived neurotrophic factor gene modulates the biological behavior of HeLa cells. Oncol Rep 2017; 37:2751-2760. [PMID: 28405685 DOI: 10.3892/or.2017.5569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 11/06/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is expressed in a number of neural and non-neuronal tumors. The present study investigated the effect of endogenous BDNF on the biological behavior of cervix cancer cells using small interfering RNA (siRNA). HeLa, a cervix cancer cell line with high expression of BDNF, was used as a living model to screen out the effective sequences of short hairpin RNA of the BDNF gene, and the effects of RNA interference on proliferation, apoptosis, migration and invasion of these cells were evaluated. Among the 4 siRNAs examined, siRNA1 caused a 99% reduction in the relative BDNF mRNA level, while a 58% decrease in the relative BDNF protein level (p<0.01) was noted, and thus this siRNA was selected as the most efficient for use in the present study. In subsequent experiments, MTT assay revealed that BDNF silencing caused marked inhibition of HeLa cell proliferation while Hoechst 33258 staining assay demonstrated apoptosis-related changes in cell morphology. Downregulation of BDNF expression induced cell cycle arrest in the G1 phase as shown by flow cytometry. As indicated by Transwell migration and invasion assays, downregulation of BDNF expression suppressed the migratory and invasive capabilities of the HeLa cells. Together, our data revealed that BDNF modulates the proliferation, apoptosis, migratory and invasive capabilities of HeLa cells. BDNF siRNA may represent a novel therapy or drug target for preventing the tumorigenesis of cervical cancer.
Collapse
Affiliation(s)
- Chun-Yan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zhang-Bo Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jing Huang
- Department of Hematology, Hongkong University-Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Lei Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jian Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ao-Shuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jun-Ying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
23
|
Fernández-Nogueira P, Bragado P, Almendro V, Ametller E, Rios J, Choudhury S, Mancino M, Gascón P. Differential expression of neurogenes among breast cancer subtypes identifies high risk patients. Oncotarget 2017; 7:5313-26. [PMID: 26673618 PMCID: PMC4868688 DOI: 10.18632/oncotarget.6543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/22/2015] [Indexed: 12/12/2022] Open
Abstract
The nervous system is now recognized to be a relevant component of the tumor microenvironment. Receptors for neuropeptides and neurotransmitters have been identified in breast cancer. However, very little is known about the role of neurogenes in regulating breast cancer progression. Our purpose was to identify neurogenes associated with breast cancer tumorigenesis with a potential to be used as biomarker and/or targets for treatment. We used three databases of human genes: GeneGo, GeneCards and Eugenes to generate a list of 1266 relevant neurogenes. Then we used bioinformatics tools to interrogate two published breast cancer databases SAGE and MicMa (n=96) and generated a list of 7 neurogenes that are differentially express among breast cancer subtypes. The clinical potential was further investigated using the GOBO database (n=1881). We identified 6 neurogenes that are differentially expressed among breast cancer subtypes and whose expression correlates with prognosis. Histamine receptor1 (HRH1), neuropilin2 (NRP2), ephrin-B1 (EFNB1), neural growth factor receptor (NGFR) and amyloid precursor protein (APP) were differentially overexpressed in basal and HER2-enriched tumor samples and syntaxin 1A (STX1A) was overexpressed in HER2-enriched and luminal B tumors. Analysis of HRH1, NRP2, and STX1A expression using the GOBO database showed that their expression significantly correlated with a shorter overall survival (p < 0.0001) and distant metastasis-free survival (p < 0.0001). In contrast, elevated co-expression of NGFR, EFNB1 and APP was associated with longer overall (p < 0.0001) and metastasis-free survival (p < 0.0001). We propose that HRH1, NRP2, and STX1A can be used as prognostic biomarkers and therapeutic targets for basal and HER2-enriched breast cancer subtypes.
Collapse
Affiliation(s)
- Patricia Fernández-Nogueira
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Paloma Bragado
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Vanessa Almendro
- Division of Medical Oncology, Department of Medicine, Harvard Medical School, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Elisabet Ametller
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer Barcelona, Barcelona, Spain
| | - Jose Rios
- Medical Statistics Core Facility, IDIBAPS, (Hospital Clinic) Barcelona, Barcelona, Spain.,Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sibgat Choudhury
- Division of Medical Oncology, Department of Medicine, Harvard Medical School, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Mario Mancino
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer Barcelona, Barcelona, Spain
| | - Pedro Gascón
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer Barcelona, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
|
25
|
Colucci R, Moretti S. The role of stress and beta-adrenergic system in melanoma: current knowledge and possible therapeutic options. J Cancer Res Clin Oncol 2016; 142:1021-9. [PMID: 26597413 DOI: 10.1007/s00432-015-2078-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE The aim of the present review was to discuss recent findings on the role of beta-adrenergic system in melanoma, in order to provide information on the biological responses elicited by its activation and its potential application for melanoma treatment. METHODS A literature search was performed, and evidences regarding the involvement of stress and beta-adrenergic system in cancer and melanoma were found and discussed. RESULTS Our search pointed out that beta-adrenergic system is a key regulator of important biological processes involved in the onset and progression of some solid tumors. In the last decade, functional beta-adrenoceptors have been also identified on melanoma cells, as well as on their microenvironment cells. Similarly to other common cancers too, the activation of such adrenoceptors by catecholamines, usually released under stress conditions, has been found to trigger pro-tumorigenic pathways contributing to cell proliferation and motility, immune system regulation, apoptosis, epithelial-mesenchymal transition, invasion and neoangiogenesis. CONCLUSIONS The biological evidences we found clarify and sustain the clinical evidences reporting the involvement of chronic stress in melanoma onset and progression. In such scenario, it is conceivable that a therapeutic approach targeting beta-adrenergic system could constitute a novel and promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Roberta Colucci
- Section of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Ospedale Piero Palagi, Viale Michelangelo 41, 50125, Florence, Italy.
| | - Silvia Moretti
- Section of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Ospedale Piero Palagi, Viale Michelangelo 41, 50125, Florence, Italy
| |
Collapse
|
26
|
Zhao Y. The Oncogenic Functions of Nicotinic Acetylcholine Receptors. JOURNAL OF ONCOLOGY 2016; 2016:9650481. [PMID: 26981122 PMCID: PMC4769750 DOI: 10.1155/2016/9650481] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/05/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhao
- Center of Cell biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| |
Collapse
|
27
|
Tumour-induced neoneurogenesis and perineural tumour growth: a mathematical approach. Sci Rep 2016; 6:20684. [PMID: 26861829 PMCID: PMC4748234 DOI: 10.1038/srep20684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/31/2015] [Indexed: 12/21/2022] Open
Abstract
It is well-known that tumours induce the formation of a lymphatic and a blood vasculature around themselves. A similar but far less studied process occurs in relation to the nervous system and is referred to as neoneurogenesis. The relationship between tumour progression and the nervous system is still poorly understood and is likely to involve a multitude of factors. It is therefore relevant to study tumour-nerve interactions through mathematical modelling: this may reveal the most significant factors of the plethora of interacting elements regulating neoneurogenesis. The present work is a first attempt to model the neurobiological aspect of cancer development through a system of differential equations. The model confirms the experimental observations that a tumour is able to promote nerve formation/elongation around itself, and that high levels of nerve growth factor and axon guidance molecules are recorded in the presence of a tumour. Our results also reflect the observation that high stress levels (represented by higher norepinephrine release by sympathetic nerves) contribute to tumour development and spread, indicating a mutually beneficial relationship between tumour cells and neurons. The model predictions suggest novel therapeutic strategies, aimed at blocking the stress effects on tumour growth and dissemination.
Collapse
|
28
|
Dong J, Feng F, Xu G, Zhang H, Hong L, Yang J. Elevated SP/NK-1R in esophageal carcinoma promotes esophageal carcinoma cell proliferation and migration. Gene 2015; 560:205-10. [PMID: 25659767 DOI: 10.1016/j.gene.2015.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) remains one of the most lethal malignant tumors, and currently there is no effective ways to manage the late stage disease. Therefore clarifying the mechanisms underlying the development of ESCC is of great importance to develop novel therapeutic agents. The present study focuses on the interaction between neurotransmitter substance P (SP) together with its receptor NK-1R and ESCC progression. METHODS The distribution of SP positive nerve fibers and expression of NK-1R were detected in ESCC tissue using immunohistochemistry. The effects of SP stimulation and blocking on the growth and migration of ESCC cells were measured by in vitro and in vivo assay. RESULTS A higher density of SP positive nerve fibers and elevated NK-1R expression on ESCC cells were observed. More importantly, the SP positive fiber density was correlated with tumor size and lymph node metastasis. SP promoted ESCC cell proliferation and migration by modulation of intracellular calcium levels. CONCLUSION NK-1R activation by SP stimulation promotes growth and migration of ESCC cells.
Collapse
Affiliation(s)
- Jiaqiang Dong
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University of China, Xi'an 710032, Shaanxi Province, China
| | - Fan Feng
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University of China, Xi'an 710032, Shaanxi Province, China
| | - Guanghui Xu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University of China, Xi'an 710032, Shaanxi Province, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University of China, Xi'an 710032, Shaanxi Province, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University of China, Xi'an 710032, Shaanxi Province, China
| | - Jianjun Yang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University of China, Xi'an 710032, Shaanxi Province, China.
| |
Collapse
|
29
|
Fink DM, Connor AL, Kelley PM, Steele MM, Hollingsworth MA, Tempero RM. Nerve growth factor regulates neurolymphatic remodeling during corneal inflammation and resolution. PLoS One 2014; 9:e112737. [PMID: 25383879 PMCID: PMC4226611 DOI: 10.1371/journal.pone.0112737] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
The cellular and physiologic mechanisms that regulate the resolution of inflammation remain poorly defined despite their widespread importance in improving inflammatory disease outcomes. We studied the resolution of two cardinal signs of inflammation–pain and swelling–by investigating molecular mechanisms that regulate neural and lymphatic vessel remodeling during the resolution of corneal inflammation. A mouse model of corneal inflammation and wound recovery was developed to study this process in vivo. Administration of nerve growth factor (NGF) increased pain sensation and inhibited neural remodeling and lymphatic vessel regression processes during wound recovery. A complementary in vivo approach, the corneal micropocket assay, revealed that NGF-laden pellets stimulated lymphangiogenesis and increased protein levels of VEGF-C. Adult human dermal lymphatic endothelial cells did not express canonical NGF receptors TrkA and p75NTR or activate downstream MAPK- or Akt-pathway effectors in the presence of NGF, although NGF treatment increased their migratory and tubulogenesis capacities in vitro. Blockade of the VEGF-R2/R3 signaling pathway ablated NGF-mediated lymphangiogenesis in vivo. These findings suggest a hierarchical relationship with NGF functioning upstream of the VEGF family members, particularly VEGF-C, to stimulate lymphangiogenesis. Taken together, these studies show that NGF stimulates lymphangiogenesis and that NGF may act as a pathogenic factor that negatively regulates the normal neural and lymphatic vascular remodeling events that accompany wound recovery.
Collapse
Affiliation(s)
- Darci M. Fink
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, United States of America
| | - Alicia L. Connor
- Boys Town National Research Hospital, Department of Genetics, 555 North 30 Street, Omaha, Nebraska 68131, United States of America
| | - Philip M. Kelley
- Boys Town National Research Hospital, Department of Genetics, 555 North 30 Street, Omaha, Nebraska 68131, United States of America
| | - Maria M. Steele
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, United States of America
| | - Michael A. Hollingsworth
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer and Allied Diseases, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, United States of America
| | - Richard M. Tempero
- Boys Town National Research Hospital, Department of Genetics, 555 North 30 Street, Omaha, Nebraska 68131, United States of America
- Boys Town National Research Hospital, Department of Otolaryngology, 555 North 30 Street, Omaha, Nebraska 68131, United States of America
- * E-mail:
| |
Collapse
|
30
|
Yu EH, Lui MT, Tu HF, Wu CH, Lo WL, Yang CC, Chang KW, Kao SY. Oral carcinoma with perineural invasion has higher nerve growth factor expression and worse prognosis. Oral Dis 2013; 20:268-74. [PMID: 23556997 DOI: 10.1111/odi.12101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 03/03/2013] [Accepted: 03/03/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND This study elucidated the association between histopathological factors and the prognosis of oral carcinoma. As the histopathological factors were determined from the surgical specimen and this can only be used for the choices of postoperative regimens, this study also investigated the linkage between prognostic factors and the expression of key molecules to examine the feasibility of markers as predictors. METHODS Clinicopathological factors of 101 oral carcinomas were cross-analyzed with disease-free survival. The expression of nerve growth factor (NGF) and its receptor, tyrosine kinase A receptor, was assayed with immunohistochemistry. RESULTS Nodal metastasis was the most crucial clinical predictor for disease-free survival. Perineural invasion (PNI) was an independent histopathological predictor for both nodal metastasis (P = 0.004) and disease-free survival (P = 0.019). Patients with advanced tumor and PNI exhibited the high hazard for tumor progression and poor disease-free survival. NGF immunoreactivity in tumors was correlated with PNI (P = 0.005) and neck lymph node metastasis (P = 0.036). CONCLUSION Perineural invasion is the indicator of worst prognosis. As NGF immunoreactivity was found to be associated with PNI and nodal metastasis, the NGF immunoreactivity of oral carcinoma revealed by diagnostic biopsy suggests that alternative therapeutic approaches might be appropriate.
Collapse
Affiliation(s)
- E H Yu
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, National Yang-Ming University Hospital, Yi-Lan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Li S, Sun Y, Gao D. Role of the nervous system in cancer metastasis. Oncol Lett 2013; 5:1101-1111. [PMID: 23599747 PMCID: PMC3629128 DOI: 10.3892/ol.2013.1168] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/17/2012] [Indexed: 12/17/2022] Open
Abstract
The notion that tumors lack innervation was proposed several years ago. However, nerve fibers are irregulatedly found in some tumor tissues. Their terminals interaction with cancer cells are considered to be neuro-neoplastic synapses. Moreover, neural-related factors, which are important players in the development and activity of the nervous system, have been found in cancer cells. Thus, they establish a direct connection between the nervous system and tumor cells. They modulate the process of metastasis, including degradation of base membranes, cancer cell invasion, migration, extravasation and colonization. Peripheral nerve invasion provides another pathway for the spread of cancer cells when blood and lymphatic metastases are absent, which is based on the interactions between the microenvironments of nerve fibers and tumor cells. The nervous system also modulates angiogenesis, the tumor microenvironment, bone marrow, immune functions and inflammatory pathways to influence metastases. Denervation of the tumor has been reported to enhance cancer metastasis. Stress, social isolation and other emotional factors may increase distant metastasis through releasing hormones from the brain, the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Disruption of circadian rhythms will also promote cancer metastasis through direct and indirect actions of the nervous system. Therefore, the nervous system plays an important role in cancer metastasis.
Collapse
Affiliation(s)
- Sha Li
- Department of Radiation Oncology, Lanzhou General Hospital of PLA, Lanzhou, Gansu 730050
| | | | | |
Collapse
|
32
|
Demir IE, Friess H, Ceyhan GO. Nerve-cancer interactions in the stromal biology of pancreatic cancer. Front Physiol 2012; 3:97. [PMID: 22529816 PMCID: PMC3327893 DOI: 10.3389/fphys.2012.00097] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/28/2012] [Indexed: 12/21/2022] Open
Abstract
Interaction of cancer cells with diverse cell types in the tumor stroma is today recognized to have a fate-determining role for the progression and outcome of human cancers. Despite the well-described interactions of cancer cells with several stromal components, i.e., inflammatory cells, cancer-associated fibroblasts, endothelial cells, and pericytes, the investigation of their peculiar relationship with neural cells is still at its first footsteps. Pancreatic cancer (PCa) with its abundant stroma represents one of the best-studied examples of a malignant tumor with a mutually trophic interaction between cancer cells and the intratumoral nerves embedded in the desmoplastic stroma. Nerves in PCa are a rich source of neurotrophic factors like nerve growth factor (NGF), glial-cell-derived neurotrophic factor (GDNF), artemin; of neuronal chemokines like fractalkine; and of autonomic neurotransmitters like norepinephrine which can all enhance the invasiveness of PCa cells via matrix-metalloproteinase (MMP) upregulation, trigger neural invasion (NI), and activate pro-survival signaling pathways. Similarly, PCa cells themselves provide intrapancreatic nerves with abundant trophic agents which entail a remarkable neuroplasticity, leading to emergence of more routes for NI and cancer spread, to augmented local neuro-surveillance, neural sensitization, and neuropathic pain. The strong correlation of NI with PCa-associated desmoplasia suggests the potential presence of a triangular relationship between nerves, PCa cells, and other stromal partners like myofibroblasts and pancreatic stellate cells which generate tumor desmoplasia. Hence, although not a classical hallmark of human cancers, nerve-cancer interactions can be considered as an indispensable sub-class of cancer-stroma interactions in PCa. The present article provides an overview of the so far known nerve-cancer interactions in PCa and illustrates their ominous role in the stromal biology of human PCa.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | | | | |
Collapse
|
33
|
Patani N, Jiang WG, Mokbel K. Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer. Cancer Cell Int 2011; 11:23. [PMID: 21767406 PMCID: PMC3156720 DOI: 10.1186/1475-2867-11-23] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/18/2011] [Indexed: 12/19/2022] Open
Abstract
Introduction Brain-derived neurotrophic factor (BDNF) has established physiological roles in the development and function of the vertebrate nervous system. BDNF has also been implicated in several human malignancies, including breast cancer (BC). However, the precise biological role of BDNF and its utility as a novel biomarker have yet to be determined. The objective of this study was to determine the mRNA and protein expression of BDNF in a cohort of women with BC. Expression levels were compared with normal background tissues and evaluated against established pathological parameters and clinical outcome over a 10 year follow-up period. Methods BC tissues (n = 127) and normal tissues (n = 33) underwent RNA extraction and reverse transcription, BDNF transcript levels were determined using real-time quantitative PCR. BDNF protein expression in mammary tissues was assessed with standard immuno-histochemical methodology. Expression levels were analyzed against tumour size, grade, nodal involvement, TNM stage, Nottingham Prognostic Index (NPI) and clinical outcome over a 10 year follow-up period. Results Immuno-histochemical staining revealed substantially greater BDNF expression within neoplastic cells, compared to normal mammary epithelial cells. Significantly higher mRNA transcript levels were found in the BC specimens compared to background tissues (p = 0.007). The expression of BDNF mRNA was demonstrated to increase with increasing NPI; NPI-1 vs. NPI-2 (p = 0.009). Increased BDNF transcript levels were found to be significantly associated with nodal positivity (p = 0.047). Compared to patients who remained disease free, higher BDNF expression was significantly associated with local recurrence (LR) (p = 0.0014), death from BC (p = 0.018) and poor prognosis overall (p = 0.013). After a median follow up of 10 years, higher BDNF expression levels were significantly associated with reduced overall survival (OS) (106 vs. 136 months, p = 0.006). BDNF emerged as an independent prognostic variable in multivariate analysis for disease free survival (DFS) (p = 0.026) and approached significance for OS (p = 0.055). Conclusion BDNF expression was found to be significantly higher in BC specimens compared to normal tissue. Higher transcript levels were significantly associated with unfavourable pathological parameters including nodal positivity and increasing NPI; and adverse clinical outcomes including LR, death from BC, poor prognosis, reduced DFS and OS. BDNF offers utility as a prognostic marker and potential for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Neill Patani
- Department of Breast Surgery, The London Breast Institute, The Princess Grace Hospital, 42-52 Nottingham Place, W1U-5NY, London, England, UK.
| | | | | |
Collapse
|
34
|
Li ZJ, Cho CH. Neurotransmitters, more than meets the eye--neurotransmitters and their perspectives in cancer development and therapy. Eur J Pharmacol 2011; 667:17-22. [PMID: 21664902 DOI: 10.1016/j.ejphar.2011.05.077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/11/2011] [Accepted: 05/22/2011] [Indexed: 12/18/2022]
Abstract
The neurotransmitter/receptor system has been shown to modulate various aspects of tumor development including cell proliferation, angiogenesis, invasion, migration and metastasis. It has been found that tumor tissues can not only synthesize and release a wide range of neurotransmitters but also produce different biological effects via respective receptors. These tissues are also innervated by nerve fibers but the biological significance is unknown. Nevertheless neurotransmitters can produce either stimulatory or inhibitory effect in normal and tumor tissues. These effects are dependent on the types of tissues and the kinds of neurotransmitter as well as the subtypes of corresponding receptors being involved. These findings clearly extend the conventional role of neurotransmitters in nervous system to the actions in oncogenesis. In this regard, intervention or stimulation of these neuronal pathways in different cancer diseases would have significant clinical implications in cancer treatments. Here, we summarize the influences of various well-characterized neurotransmitters and their receptors on tumor growth and further discuss the respective possible strategies and perspectives for cancer therapy in the future.
Collapse
Affiliation(s)
- Zhi Jie Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | | |
Collapse
|
35
|
PC-3 prostate carcinoma cells release signal substances that influence the migratory activity of cells in the tumor's microenvironment. Cell Commun Signal 2010; 8:17. [PMID: 20626867 PMCID: PMC2912317 DOI: 10.1186/1478-811x-8-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 07/13/2010] [Indexed: 11/23/2022] Open
Abstract
Background Tumor cells interact with the cells of the microenvironment not only by cell-cell-contacts but also by the release of signal substances. These substances are known to induce tumor vascularization, especially under hypoxic conditions, but are also supposed to provoke other processes such as tumor innervation and inflammatory conditions. Inflammation is mediated by two organ systems, the neuroendocrine system and the immune system. Therefore, we investigated the influence of substances released by PC-3 human prostate carcinoma cells on SH-SY5Y neuroblastoma cells as well as neutrophil granulocytes and cytotoxic T lymphocytes, especially with regard to their migratory activity. Results PC-3 cells express several cytokines and growth factors including vascular endothelial growth factors, fibroblast growth factors, interleukins and neurotrophic factors. SH-SY5Y cells are impaired in their migratory activity by PC-3 cell culture supernatant, but orientate chemotactically towards the source. Neutrophil granulocytes increase their locomotory activity only in response to cell culture supernantant of hypoxic but not of normoxic PC-3 cells. In contrast, cytotoxic T lymphocytes do not change their migratory activity in response to either culture supernatant, but increase their cytotoxicity, whereas supernatant of normoxic PC-3 cells leads to a stronger increase than that of hypoxic PC-3 cells. Conclusions PC-3 cells release several signal substances that influence the behavior of the cells in the tumor's microenvironment, whereas no clear pattern towards proinflammatory or immunosuppressive conditions can be seen.
Collapse
|
36
|
|
37
|
Bergh A. Characterization and functional role of the stroma compartment in prostate tumors. Future Oncol 2010; 5:1231-5. [PMID: 19852737 DOI: 10.2217/fon.09.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Evaluation of: Dakhova O, Ozen M, Creighton CJ et al.: Global gene expression analysis of reactive stroma in prostate cancer. Clin. Cancer Res. 15, 3979–3989 (2009). Prostate tumors are composed of many cell types, yet the biological significances of the different nonepithelial cells have been largely overlooked. According to recent studies, however, the stroma, which constitutes a substantial part of the tumor volume, plays an important role during the initiation, progression, metastasis and metastatic growth of prostate cancers. To explore this further, Dakhova and co-workers compared gene expression in laser microdissected normal peripheral zone stroma with stroma in peripheral zone cancers (only those with reactive stroma grade 3). A total of 544 genes were upregulated and 606 genes downregulated in tumor stroma. The cancer stroma showed signs of formation of nerves, increased number of stem cells, and responses to DNA damage. Further studies are needed to explore the functional consequences of this, particularly the role of nerves. If these stroma changes can be used as prognostic markers, as targets for therapy, and if similar changes occur in metastases also need to be explored.
Collapse
Affiliation(s)
- Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, S-90187 Umea, Sweden.
| |
Collapse
|
38
|
Abstract
Nicotinic acetylcholine receptors (nAChRs) are the central regulators of stimulatory and inhibitory neurotransmitters that control the synthesis and release of growth, angiogenic and neurotrophic factors in cancer cells, the cancer microenvironment and distant organs. Data discussed in this Review suggests that smoking and possibly other environmental and lifestyle factors increase the function of nAChRs that stimulate cancer cells and reduce the function of nAChRs that inhibit cancer cells. This novel paradigm necessitates the development of marker-guided cancer intervention strategies that aim to restore the balance between nAChR-mediated stimulatory and inhibitory neurotransmitters and their downstream effectors.
Collapse
Affiliation(s)
- Hildegard M Schuller
- Experimental Oncology Laboratory, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
39
|
Strell C, Entschladen F. Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal 2008; 6:10. [PMID: 19055814 PMCID: PMC2627905 DOI: 10.1186/1478-811x-6-10] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/04/2008] [Indexed: 12/15/2022] Open
Abstract
The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium. Thus, metastasis formation is indirectly susceptible to localization signals that are literally specific for the immune system. We herein compare the extravasation of leukocytes and tumor cells with regard to the involved receptors and the localization signals that direct the cells to certain organs and sites of the body.
Collapse
Affiliation(s)
- Carina Strell
- Institute of Immunology, Witten/Herdecke University, Stockumer Str, 10, 58448 Witten, Germany.
| | | |
Collapse
|