1
|
Marongiu F, Cheri S, Laconi E. Clones of aging: When better fitness can be dangerous. Eur J Cell Biol 2023; 102:151340. [PMID: 37423036 DOI: 10.1016/j.ejcb.2023.151340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023] Open
Abstract
The biological and clinical significance of aberrant clonal expansions in aged tissues is being intensely discussed. Evidence is accruing that these clones often result from the normal dynamics of cell turnover in our tissues. The aged tissue microenvironment is prone to favour the emergence of specific clones with higher fitness partly because of an overall decline in cell intrinsic regenerative potential of surrounding counterparts. Thus, expanding clones in aged tissues need not to be mechanistically associated with the development of cancer, albeit this is a possibility. We suggest that growth pattern is a critical phenotypic attribute that impacts on the fate of such clonal proliferations. The acquisition of a better proliferative fitness, coupled with a defect in tissue pattern formation, could represent a dangerous mix setting the stage for their evolution towards neoplasia.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Samuele Cheri
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|
2
|
Sollazzo M, Paglia S, Di Giacomo S, Grifoni D. Apoptosis inhibition restrains primary malignant traits in different Drosophila cancer models. Front Cell Dev Biol 2023; 10:1043630. [PMID: 36704198 PMCID: PMC9871239 DOI: 10.3389/fcell.2022.1043630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Tumor cells exploit multiple mechanisms to evade apoptosis, hence the strategies aimed at reactivating cell death in cancer. However, recent studies are revealing that dying cells play remarkable pro-oncogenic roles. Among the mechanisms promoting cell death, cell competition, elicited by disparities in MYC activity in confronting cells, plays the primary role of assuring tissue robustness during development from Drosophila to mammals: cells with high MYC levels (winners) overproliferate while killing suboptimal neighbors (losers), whose death is essential to process completion. This mechanism is coopted by tumor cells in cancer initiation, where host cells succumb to high-MYC-expressing precancerous neighbors. Also in this case, inhibition of cell death restrains aberrant cell competition and rescues tissue structure. Inhibition of apoptosis may thus emerge as a good strategy to counteract cancer progression in competitive contexts; of note, we recently found a positive correlation between cell death amount at the tumor/stroma interface and MYC levels in human cancers. Here we used Drosophila to investigate the functional role of competition-dependent apoptosis in advanced cancers, observing dramatic changes in mass dimensions and composition following a boost in cell competition, rescued by apoptosis inhibition. This suggests the role of competition-dependent apoptosis be not confined to the early stages of tumorigenesis. We also show that apoptosis inhibition, beside restricting cancer mass, is sufficient to rescue tissue architecture and counteract cell migration in various cancer contexts, suggesting that a strong activation of the apoptotic pathways intensifies cancer burden by affecting distinct phenotypic traits at different stages of the disease.
Collapse
Affiliation(s)
- Manuela Sollazzo
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simona Paglia
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simone Di Giacomo
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniela Grifoni
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy,CanceЯEvolutionLab, Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,*Correspondence: Daniela Grifoni,
| |
Collapse
|
3
|
Hartmann L, Bundschuh L, Zsótér N, Essler M, Bundschuh RA. Tumor heterogeneity for differentiation between liver tumors and normal liver tissue in 18F-FDG PET/CT. Nuklearmedizin 2021; 60:25-32. [PMID: 33142334 DOI: 10.1055/a-1270-5568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Malignancies show higher spatial heterogeneity than normal tissue. We investigated, if textural parameters from FDG PET describing the heterogeneity function as tool to differentiate between tumor and normal liver tissue. METHODS FDG PET/CT scans of 80 patients with liver metastases and 80 patients with results negative upper abdominal organs were analyzed. Metastases and normal liver tissue were analyzed drawing up to three VOIs with a diameter of 25 mm in healthy liver tissue of the tumoral affected and results negative liver, whilst up to 3 metastases per patient were delineated. Within these VOIs 30 different textural parameters were calculated as well as SUV. The parameters were compared in terms of intra-patient and inter-patient variability (2-sided t test). ROC analysis was performed to analyze predictive power and cut-off values. RESULTS 28 textural parameters differentiated healthy and pathological tissue (p < 0.05) with high sensitivity and specificity. SUV showed ability to differentiate but with a lower significance. 15 textural parameters as well as SUV showed a significant variation between healthy tissues out of tumour infested and negative livers. Mean intra- and inter-patient variability of metastases were found comparable or lower for 6 of the textural features than the ones of SUV. They also showed good values of mean intra- and inter-patient variability of VOIs drawn in liver tissue of patients with metastases and of results negative ones. CONCLUSION Heterogeneity parameters assessed in FDG PET are promising to classify tissue and differentiate malignant lesions usable for more personalized treatment planning, therapy response evaluation and precise delineation of tumors for target volume determination as part of radiation therapy planning.
Collapse
Affiliation(s)
- Lynn Hartmann
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Bonn, Germany
| | - Lena Bundschuh
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Bonn, Germany
| | | | - Markus Essler
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Bonn, Germany
| | | |
Collapse
|
4
|
Araldi RP, Sant’Ana TA, Módolo DG, de Melo TC, Spadacci-Morena DD, de Cassia Stocco R, Cerutti JM, de Souza EB. The human papillomavirus (HPV)-related cancer biology: An overview. Biomed Pharmacother 2018; 106:1537-1556. [DOI: 10.1016/j.biopha.2018.06.149] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
|
5
|
Kim CG, Lee H, Gupta N, Ramachandran S, Kaushik I, Srivastava S, Kim SH, Srivastava SK. Role of Forkhead Box Class O proteins in cancer progression and metastasis. Semin Cancer Biol 2018; 50:142-151. [PMID: 28774834 PMCID: PMC5794649 DOI: 10.1016/j.semcancer.2017.07.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 01/10/2023]
Abstract
It is now widely accepted that several gene alterations including transcription factors are critically involved in cancer progression and metastasis. Forkhead Box Class O proteins (FoxOs) including FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX and FoxO6 transcription factors are known to play key roles in proliferation, apoptosis, metastasis, cell metabolism, aging and cancer biology through their phosphorylation, ubiquitination, acetylation and methylation. Though FoxOs are proved to be mainly regulated by upstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt signaling pathway, the role of FoxOs in cancer progression and metastasis still remains unclear so far. Thus, with previous experimental evidences, the present review discussed the role of FoxOs in association with metastasis related molecules including cannabinoid receptor 1 (CNR1), Cdc25A/Cdk2, Src, serum and glucocorticoid inducible kinases (SGKs), CXCR4, E-cadherin, annexin A8 (ANXA8), Zinc finger E-box-binding homeobox 2 (ZEB2), human epidermal growth factor receptor 2 (HER2) and mRNAs such as miR-182, miR-135b, miR-499-5p, miR-1274a, miR-150, miR-34b/c and miR-622, subsequently analyzed the molecular mechanism of some natural compounds targeting FoxOs and finally suggested future research directions in cancer progression and metastasis.
Collapse
Affiliation(s)
- Chang Geun Kim
- Cancer Molecular Target Herbal Research Center, College of Korean Medicine, Kyunghee University, Seoul, Republic of Korea
| | - Hyemin Lee
- Cancer Molecular Target Herbal Research Center, College of Korean Medicine, Kyunghee University, Seoul, Republic of Korea
| | - Nehal Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sharavan Ramachandran
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Itishree Kaushik
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Center, College of Korean Medicine, Kyunghee University, Seoul, Republic of Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
6
|
Al-Hashimi F, J. Diaz-Cano S. Multi-target analysis of neoplasms for the evaluation of tumor progression: stochastic approach of biologic processes. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Di Giacomo S, Sollazzo M, Paglia S, Grifoni D. MYC, Cell Competition, and Cell Death in Cancer: The Inseparable Triad. Genes (Basel) 2017; 8:genes8040120. [PMID: 28420161 PMCID: PMC5406867 DOI: 10.3390/genes8040120] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 01/07/2023] Open
Abstract
Deregulation of MYC family proteins in cancer is associated with a global reprogramming of gene expression, ultimately promoting glycolytic pathways, cell growth, and proliferation. It is well known that MYC upregulation triggers cell-autonomous apoptosis in normal tissues, while frankly malignant cells develop resistance to apoptotic stimuli, partly resulting from MYC addiction. As well as inducing cell-autonomous apoptosis, MYC upregulation is able to trigger non cell-autonomous apoptotic death through an evolutionarily conserved mechanism known as “cell competition”. With regard to this intimate and dual relationship between MYC and cell death, recent evidence obtained in Drosophila models of cancer has revealed that, in early tumourigenesis, MYC upregulation guides the clonal expansion of mutant cells, while the surrounding tissue undergoes non-cell autonomous death. Apoptosis inhibition in this context was shown to restrain tumour growth and to restore a wild-type phenotype. This suggests that cell-autonomous and non cell-autonomous apoptosis dependent on MYC upregulation may shape tumour growth in different ways, soliciting the need to reconsider the role of cell death in cancer in the light of this new level of complexity. Here we review recent literature about MYC and cell competition obtained in Drosophila, with a particular emphasis on the relevance of cell death to cell competition and, more generally, to cancer. Possible implications of these findings for the understanding of mammalian cancers are also discussed.
Collapse
Affiliation(s)
- Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Simona Paglia
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
8
|
Liggett LA, DeGregori J. Changing mutational and adaptive landscapes and the genesis of cancer. Biochim Biophys Acta Rev Cancer 2017; 1867:84-94. [PMID: 28167050 DOI: 10.1016/j.bbcan.2017.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/27/2017] [Accepted: 01/28/2017] [Indexed: 12/31/2022]
Abstract
By the time the process of oncogenesis has produced an advanced cancer, tumor cells have undergone extensive evolution. The cellular phenotypes resulting from this evolution have been well studied, and include accelerated growth rates, apoptosis resistance, immortality, invasiveness, and immune evasion. Yet with all of our current knowledge of tumor biology, the details of early oncogenesis have been difficult to observe and understand. Where different oncogenic mutations may work together to enhance the survival of a tumor cell, in isolation they are often pro-apoptotic, pro-differentiative or pro-senescent, and therefore often, somewhat paradoxically, disadvantageous to a cell. It is also becoming clear that somatic mutations, including those in known oncogenic drivers, are common in tissues starting at a young age. These observations raise the question: how do we largely avoid cancer for most of our lives? Here we propose that evolutionary forces can help explain this paradox. As humans and other organisms age or experience external insults such as radiation or smoking, the structure and function of tissues progressively degrade, resulting in altered stem cell niche microenvironments. As tissue integrity declines, it becomes less capable of supporting and maintaining resident stem cells. These stem cells then find themselves in a microenvironment to which they are poorly adapted, providing a competitive advantage to those cells that can restore their functionality and fitness through mutations or epigenetic changes. The resulting oncogenic clonal expansions then increase the odds of further cancer progression. Understanding how the causes of cancer, such as aging or smoking, affect tissue microenvironments to control the impact of mutations on somatic cell fitness can help reconcile the discrepancy between marked mutation accumulation starting early in life and the somatic evolution that leads to cancer at advanced ages or following carcinogenic insults. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
Collapse
Affiliation(s)
- L Alexander Liggett
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, United States; Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO 80045, United States; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States; Department of Medicine, Section of Hematology, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
9
|
Miller WB, Torday JS. A systematic approach to cancer: evolution beyond selection. Clin Transl Med 2017; 6:2. [PMID: 28050778 PMCID: PMC5209328 DOI: 10.1186/s40169-016-0131-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer is typically scrutinized as a pathological process characterized by chromosomal aberrations and clonal expansion subject to stochastic Darwinian selection within adaptive cellular ecosystems. Cognition based evolution is suggested as an alternative approach to cancer development and progression in which neoplastic cells of differing karyotypes and cellular lineages are assessed as self-referential agencies with purposive participation within tissue microenvironments. As distinct self-aware entities, neoplastic cells occupy unique participant/observer status within tissue ecologies. In consequence, neoplastic proliferation by clonal lineages is enhanced by the advantaged utilization of ecological resources through flexible re-connection with progenitor evolutionary stages.
Collapse
Affiliation(s)
| | - John S Torday
- Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| |
Collapse
|
10
|
Jiang C, Starr S, Chen F, Wu J. Low-fidelity alternative DNA repair carcinogenesis theory may interpret many cancer features and anticancer strategies. Future Oncol 2016; 12:1897-910. [PMID: 27166654 DOI: 10.2217/fon-2016-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have proposed that the low-fidelity compensatory backup alternative DNA repair pathways drive multistep carcinogenesis. Here, we apply it to interpret the clinical features of cancer, such as mutator phenotype, tissue specificity, age specificity, diverse types of cancers originated from the same type of tissue, cancer susceptibility of patients with DNA repair-defective syndromes, development of cancer only for a selected number of individuals among those that share the same genetic defect, invasion and metastasis. Clinically, the theory predicts that to improve the efficacy of molecular targeted or synthetic lethal therapy, it may be crucial to inhibit the low-fidelity compensatory alternative DNA repair either directly or by blocking the signal transducers of the sustained microenvironmental stress.
Collapse
Affiliation(s)
- Chuo Jiang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China.,Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China
| | - Shane Starr
- Department of Pathology & Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, USA and currently Flint Medical Laboratory, 3490 Calkins Road, Flint, MI 48532, USA
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Jiaxi Wu
- Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China.,Department of Pathology & Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, USA and currently Flint Medical Laboratory, 3490 Calkins Road, Flint, MI 48532, USA
| |
Collapse
|
11
|
Diaz-Cano SJ. Pathological bases for a robust application of cancer molecular classification. Int J Mol Sci 2015; 16:8655-75. [PMID: 25898411 PMCID: PMC4425102 DOI: 10.3390/ijms16048655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022] Open
Abstract
Any robust classification system depends on its purpose and must refer to accepted standards, its strength relying on predictive values and a careful consideration of known factors that can affect its reliability. In this context, a molecular classification of human cancer must refer to the current gold standard (histological classification) and try to improve it with key prognosticators for metastatic potential, staging and grading. Although organ-specific examples have been published based on proteomics, transcriptomics and genomics evaluations, the most popular approach uses gene expression analysis as a direct correlate of cellular differentiation, which represents the key feature of the histological classification. RNA is a labile molecule that varies significantly according with the preservation protocol, its transcription reflect the adaptation of the tumor cells to the microenvironment, it can be passed through mechanisms of intercellular transference of genetic information (exosomes), and it is exposed to epigenetic modifications. More robust classifications should be based on stable molecules, at the genetic level represented by DNA to improve reliability, and its analysis must deal with the concept of intratumoral heterogeneity, which is at the origin of tumor progression and is the byproduct of the selection process during the clonal expansion and progression of neoplasms. The simultaneous analysis of multiple DNA targets and next generation sequencing offer the best practical approach for an analytical genomic classification of tumors.
Collapse
Affiliation(s)
- Salvador J Diaz-Cano
- King's Health Partners, Cancer Studies, King's College Hospital-Viapath, Denmark Hill, London SE5-9RS, UK.
| |
Collapse
|
12
|
Wu J, Starr S. Low-fidelity compensatory backup alternative DNA repair pathways may unify current carcinogenesis theories. Future Oncol 2015; 10:1239-53. [PMID: 24947263 DOI: 10.2217/fon.13.272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The somatic mutation carcinogenesis theory has dominated for decades. The alternative theory, tissue organization field theory, argues that the development of cancer is determined by the surrounding microenvironment. However, neither theory can explain all features of cancer. As cancers share the features of uncontrolled proliferation and genomic instability, they are likely to have the same pathogenesis. It has been found that various DNA repair pathways within a cell crosstalk with one another, forming a DNA repair network. When one DNA repair pathways is defective, the others may work as compensatory backups. The latter pathways are explored for synthetic lethal anticancer therapy. In this article, we extend the concept of compensatory alternative DNA repair to unify the theories. We propose that the microenvironmental stress can activate low-fidelity compensatory alternative DNA repair, causing mutations. If the mutation occurs to a DNA repair gene, this secondarily mutated gene can lead to even more mutated genes, including those related to other DNA repair pathways, eventually destabilizing the genome. Therefore, the low-fidelity compensatory alternative DNA repair may mediate microenvironment-dependent carcinogenesis. The proposal seems consistent with the view of evolution: the environmental stress causes mutations to adapt to the changing environment.
Collapse
Affiliation(s)
- Jiaxi Wu
- Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China
| | | |
Collapse
|
13
|
Abstract
Arsenic is carcinogenic in human beings, and environmental exposure to arsenic is a public health issue that affects large populations worldwide. Thus, studies are needed to determine the mode of action of arsenic and prevent harmful effects arising from arsenic intake. The present study assessed the influence of sodium arsenite (As(3+)) on potentially carcinogenic processes that are either pre-existing or concomitant with chronic intake of water containing As(3+). Experiments using SenCar mice were designed to evaluate the effect of chronic administration of As(3+) (2, 20, or 200 mg of As(3+)/L) in drinking water that overlapped to varying degrees with a 2-stage carcinogenesis protocol carried out over 9 months. The results showed a time-dependent pattern. During early stages of carcinogenesis (6-12 weeks), animals exposed to As(3+) and the carcinogenesis protocol showed increased numbers of tumors compared to control animals. During late carcinogenesis (16-30 weeks), the number of tumors stabilized to below control values, but the tumors showed increased malignancy. These findings indicate that the outcomes of the 2-stage skin carcinogenesis protocol are modified by the presence of arsenite in drinking water, which increases the rate of carcinoma development.
Collapse
Affiliation(s)
- Mónica A Palmieri
- Biodiversity and Experimental Biology Department, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Beatriz L Molinari
- Argentine National Atomic Energy Commission (CNEA), Buenos Aires, Argentina Argentine National Scientific and Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Grifoni D, Bellosta P. Drosophila Myc: A master regulator of cellular performance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:570-81. [PMID: 25010747 DOI: 10.1016/j.bbagrm.2014.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 11/25/2022]
Abstract
The identification of the Drosophila homolog of the human MYC oncogene has fostered a series of studies aimed to address its functions in development and cancer biology. Due to its essential roles in many fundamental biological processes it is hard to imagine a molecular mechanism in which MYC function is not required. For this reason, the easily manipulated Drosophila system has greatly helped in the dissection of the genetic and molecular pathways that regulate and are regulated by MYC function. In this review, we focus on studies of MYC in the fruitfly with particular emphasis on metabolism and cell competition, highlighting the contributions of this model system in the last decade to our understanding of MYC's complex biological nature. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Daniela Grifoni
- Department of "Farmacia e Biotecnologie", University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Paola Bellosta
- Department of "Bioscienze", University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
15
|
Brunotto M, Zarate AM, Bono A, Barra JL, Berra S. Risk genes in head and neck cancer: a systematic review and meta-analysis of last 5 years. Oral Oncol 2013; 50:178-88. [PMID: 24370206 DOI: 10.1016/j.oraloncology.2013.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 02/03/2023]
Abstract
The aim of this work was to identify risk genes related to the development and progression of squamous cell carcinoma head and neck (SCCHN) and do a meta-analysis of available estimates. Eligible gene/polymorphism studies were identified by electronic searches. Individual participant data of 8540 patients with HNC and 9844 controls from 19 genetic studies were analyzed, yielding adjusted (tobacco, gender, age and alcohol) odds ratios (OR) and 95% confidence intervals (CIs) comparing cases with controls. A meta-analysis was done on the studies that applied fixed and random models. People have an increase of polymorphism expression related to inflammation (NFKB1-294-ATTG, TNFα308-A2A2/A2A1, and TNFβ252- B2B2/B2B1) or carcinogenic metabolism (GSTM1 null, and CYP1A1 m1/m1), representative of malignancy development. Furthermore, the increased expression of genes associated with the stabilization and repair of the cellular (OGG1-Asp267Asn, Ser279Gly Ile253Phe, 1578A>T, 1582C>T Ala399Glu (1542C>A) 1582insG 1543_1544delCT), and genes associated with the regulation of proliferation, apoptosis or tumor survival (miRNA499-CT/CC, CRYABC802G-CG/GG) are considered as risk factors. In this scheme, only the polymorphisms of ADH7A92G-GG and DEC1606-T/C genes are protective against malignancy transformation. The TP53, GSTM1 and CYPA1genes have been evaluated in more than one study and analyzed for homogeneity in each genotype. The meta-analysis showed no significant association between different allelic variants of Arg72Pro rs1042522 and SCCHN risk. In a model of tumorigenesis, an increased risk of SCCHN is associated with DNA repair and DNA stabilization genes. In addition, the polymorphisms involved in inflammation and carcinogenic metabolism processes represent an increased risk of SCCHN.
Collapse
Affiliation(s)
- M Brunotto
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Argentina.
| | - A M Zarate
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Argentina
| | - A Bono
- Departamento de Patología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Argentina
| | - J L Barra
- CIQUIBIC, UNC-CONICET, Departamento de Química Biológica, Facultad Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - S Berra
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
16
|
DeGregori J. Challenging the axiom: does the occurrence of oncogenic mutations truly limit cancer development with age? Oncogene 2013; 32:1869-75. [PMID: 22751134 PMCID: PMC3670419 DOI: 10.1038/onc.2012.281] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/30/2012] [Indexed: 12/15/2022]
Abstract
A widely accepted paradigm in cancer research holds that the development of cancers is rate limited by the occurrence of oncogenic mutations. In particular, the exponential rise in the incidence of most cancers with age is thought to reflect the time required for cells to accumulate the multiple oncogenic mutations needed to confer the cancer phenotype. Here I will argue against the axiom that the occurrence of oncogenic mutations limits cancer incidence with age, based on several observations, including that the rate of mutation accumulation is maximal during ontogeny, oncogenic mutations are frequently detected in normal tissues, the evolution of complex multicellularity was not accompanied by reductions in mutation rates, and that many oncogenic mutations have been shown to impair stem cell activity. Moreover, although evidence that has been used to support the current paradigm includes increased cancer incidence in individuals with inherited DNA repair deficiencies or exposed to mutagens, the pleotropic effects of these contexts could enhance tumorigenesis at multiple levels. I will further argue that age-dependent alteration of selection for oncogenic mutations provides a more plausible explanation for increased cancer incidence in the elderly. Although oncogenic mutations are clearly required for cancer evolution, together these observations counter the common view that age dependence of cancers is largely explained by the time required to accumulate sufficient oncogenic mutations.
Collapse
Affiliation(s)
- J DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
17
|
Man YG, Stojadinovic A, Mason J, Avital I, Bilchik A, Bruecher B, Protic M, Nissan A, Izadjoo M, Zhang X, Jewett A. Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J Cancer 2013; 4:84-95. [PMID: 23386907 PMCID: PMC3564249 DOI: 10.7150/jca.5482] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022] Open
Abstract
It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.
Collapse
Affiliation(s)
- Yan-gao Man
- 1. Diagnostic and Translational Research Center, Henry Jackson Foundation, Gaithersburg, MD, USA
- 2. College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Alexander Stojadinovic
- 3. Surgical Oncology, Walter Reed National Military Medical Center, and Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jeffrey Mason
- 4. Veterans Affair Medical Center, Washington, DC, USA
| | - Itzhak Avital
- 5. Bon Secours National Cancer Institute (BSNCI), Richmond VA, USA
| | - Anton Bilchik
- 6. John Wayne Cancer Institute; California Oncology Research Institute; and, David Geffen School of Medicine, University of California, Los Angeles, USA
| | | | - Mladjan Protic
- 8. Clinic of Abdominal, Endocrine, and Transplantation Surgery, Clinical Center of Vojvodina, University of Novi Sad - Medical Faculty, Novi Sad, Serbia
| | - Aviram Nissan
- 9. The Surgical Oncology Laboratory, Department of Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Mina Izadjoo
- 1. Diagnostic and Translational Research Center, Henry Jackson Foundation, Gaithersburg, MD, USA
| | - Xichen Zhang
- 2. College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Anahid Jewett
- 10. Division of Oral Biology and Medicine, Jonsson Comprehensive Cancer Center, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
18
|
Marongiu F, Doratiotto S, Sini M, Serra MP, Laconi E. Cancer as a disease of tissue pattern formation. ACTA ACUST UNITED AC 2012; 47:175-207. [DOI: 10.1016/j.proghi.2012.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2012] [Indexed: 12/21/2022]
|
19
|
Petrova E, López-Gay JM, Rhiner C, Moreno E. Flower-deficient mice have reduced susceptibility to skin papilloma formation. Dis Model Mech 2012; 5:553-61. [PMID: 22362363 PMCID: PMC3380718 DOI: 10.1242/dmm.008623] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Skin papillomas arise as a result of clonal expansion of mutant cells. It has been proposed that the expansion of pretumoral cell clones is propelled not only by the increased proliferation capacity of mutant cells, but also by active cell selection. Previous studies in Drosophila describe a clonal selection process mediated by the Flower (Fwe) protein, whereby cells that express certain Fwe isoforms are recognized and forced to undergo apoptosis. It was further shown that knock down of fwe expression in Drosophila can prevent the clonal expansion of dMyc-overexpressing pretumoral cells. Here, we study the function of the single predicted mouse homolog of Drosophila Fwe, referred to as mFwe, by clonal overexpression of mFwe isoforms in Drosophila and by analyzing mFwe knock-out mice. We show that clonal overexpression of certain mFwe isoforms in Drosophila also triggers non-autonomous cell death, suggesting that Fwe function is evolutionarily conserved. Although mFwe-deficient mice display a normal phenotype, they develop a significantly lower number of skin papillomas upon exposure to DMBA/TPA two-stage skin carcinogenesis than do treated wild-type and mFwe heterozygous mice. Furthermore, mFwe expression is higher in papillomas and the papilloma-surrounding skin of treated wild-type mice compared with the skin of untreated wild-type mice. Thus, we propose that skin papilloma cells take advantage of mFwe activity to facilitate their clonal expansion.
Collapse
Affiliation(s)
- Evgeniya Petrova
- Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, Madrid, 28034, Spain
| | | | | | | |
Collapse
|
20
|
Diaz-Cano SJ. Tumor heterogeneity: mechanisms and bases for a reliable application of molecular marker design. Int J Mol Sci 2012; 13:1951-2011. [PMID: 22408433 PMCID: PMC3292002 DOI: 10.3390/ijms13021951] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/23/2012] [Accepted: 02/01/2012] [Indexed: 12/22/2022] Open
Abstract
Tumor heterogeneity is a confusing finding in the assessment of neoplasms, potentially resulting in inaccurate diagnostic, prognostic and predictive tests. This tumor heterogeneity is not always a random and unpredictable phenomenon, whose knowledge helps designing better tests. The biologic reasons for this intratumoral heterogeneity would then be important to understand both the natural history of neoplasms and the selection of test samples for reliable analysis. The main factors contributing to intratumoral heterogeneity inducing gene abnormalities or modifying its expression include: the gradient ischemic level within neoplasms, the action of tumor microenvironment (bidirectional interaction between tumor cells and stroma), mechanisms of intercellular transference of genetic information (exosomes), and differential mechanisms of sequence-independent modifications of genetic material and proteins. The intratumoral heterogeneity is at the origin of tumor progression and it is also the byproduct of the selection process during progression. Any analysis of heterogeneity mechanisms must be integrated within the process of segregation of genetic changes in tumor cells during the clonal expansion and progression of neoplasms. The evaluation of these mechanisms must also consider the redundancy and pleiotropism of molecular pathways, for which appropriate surrogate markers would support the presence or not of heterogeneous genetics and the main mechanisms responsible. This knowledge would constitute a solid scientific background for future therapeutic planning.
Collapse
Affiliation(s)
- Salvador J. Diaz-Cano
- Department Histopathology, King’s College Hospital and King’s Health Partners, Denmark Hill, London SE5 9RS, UK; E-Mail: ; Tel.: +44-20-3299-3041; Fax: +44-20-3299-3670
| |
Collapse
|
21
|
Monti Hughes A, Pozzi ECC, Heber EM, Thorp S, Miller M, Itoiz ME, Aromando RF, Molinari AJ, Garabalino MA, Nigg DW, Trivillin VA, Schwint AE. Boron Neutron Capture Therapy (BNCT) in an oral precancer model: therapeutic benefits and potential toxicity of a double application of BNCT with a six-week interval. Oral Oncol 2011; 47:1017-22. [PMID: 21840244 DOI: 10.1016/j.oraloncology.2011.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 11/19/2022]
Abstract
Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10+BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB-10+BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10+BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.
Collapse
|
22
|
Abstract
The law of natural selection can be used to understand cancer development at the level of species as well as at the level of cells and tissues. Through this perspective, I seek to explain: (i) Why the lack of sufficient selective pressure to prevent cancers in old age helps explain the exponential increase in cancer incidence in the elderly. (ii) Why the evolution of long-lived animals necessitated the acquisition of potent tumor suppressive mechanisms. (iii) How the requirement to prevent inappropriate somatic cell expansion and cancer has constrained developmental and tissue architectural modalities. (iv) How the evolution of well-adapted stem cells with complex niche requirements has conferred resistance to oncogenic mutations, as phenotype-altering genetic change is almost always disadvantageous within a well-adapted cell population. (v) How the impairment of stem cell fitness, as occurs in old age, can promote selection for adaptive mutations and cancer initiation. (vi) Why differential maintenance of stem cell fitness may explain how different vertebrate species with enormous differences in life span and body size similarly avoid cancer through reproductive years.
Collapse
Affiliation(s)
- James DeGregori
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
23
|
Salsman VS, Chow KKH, Shaffer DR, Kadikoy H, Li XN, Gerken C, Perlaky L, Metelitsa LS, Gao X, Bhattacharjee M, Hirschi K, Heslop HE, Gottschalk S, Ahmed N. Crosstalk between medulloblastoma cells and endothelium triggers a strong chemotactic signal recruiting T lymphocytes to the tumor microenvironment. PLoS One 2011; 6:e20267. [PMID: 21647415 PMCID: PMC3103535 DOI: 10.1371/journal.pone.0020267] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/16/2011] [Indexed: 12/22/2022] Open
Abstract
Cancer cells can live and grow if they succeed in creating a favorable niche that often includes elements from the immune system. While T lymphocytes play an important role in the host response to tumor growth, the mechanism of their trafficking to the tumor remains poorly understood. We show here that T lymphocytes consistently infiltrate the primary brain cancer, medulloblastoma. We demonstrate, both in vitro and in vivo, that these T lymphocytes are attracted to tumor deposits only after the tumor cells have interacted with tumor vascular endothelium. Macrophage Migration Inhibitory Factor (MIF)" is the key chemokine molecule secreted by tumor cells which induces the tumor vascular endothelial cells to secrete the potent T lymphocyte attractant "Regulated upon Activation, Normal T-cell Expressed, and Secreted (RANTES)." This in turn creates a chemotactic gradient for RANTES-receptor bearing T lymphocytes. Manipulation of this pathway could have important therapeutic implications.
Collapse
Affiliation(s)
- Vita S. Salsman
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kevin K. H. Chow
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Donald R. Shaffer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Huseyin Kadikoy
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiao-Nan Li
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Claudia Gerken
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Laszlo Perlaky
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Leonid S. Metelitsa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiuhua Gao
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Meena Bhattacharjee
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Karen Hirschi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Helen E. Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nabil Ahmed
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Wang C, Tai Y, Lisanti MP, Liao DJ. c-Myc induction of programmed cell death may contribute to carcinogenesis: a perspective inspired by several concepts of chemical carcinogenesis. Cancer Biol Ther 2011; 11:615-26. [PMID: 21278493 DOI: 10.4161/cbt.11.7.14688] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The c-Myc protein, encoded by c-myc gene, in its wild-type form can induce tumors with a high frequency and can induce massive programmed cell death (PCD) in most transgenic mouse models, with greater efficiency than other oncogenes. Evidence also indicates that c-Myc can cause proliferative inhibition, i.e. mitoinhibition. The c-Myc-induced PCD and mitoinhibition, which may be attributable to its inhibition of cyclin D1 and induction of p53, may impose a pressure of compensatory proliferation, i.e. regeneration, onto the initiated cells (cancer progenitor cells) that occur sporadically and are resistant to the mitoinhibition. The initiated cells can thus proliferate robustly and progress to a malignancy. This hypothetical thinking, i.e. the concurrent PCD and mitoinhibition induced by c-Myc can promote carcinogenesis, predicts that an optimal balance is achieved between cell death and ensuing regeneration during oncogenic transformation by c-Myc, which can better promote carcinogenesis. In this perspective, we summarize accumulating evidence and challenge the current model that oncoprotein induces carcinogenesis by promoting cellular proliferation and/or inhibiting PCD. Inspired by c-myc oncogene, we surmise that many tumor-suppressive or growth-inhibitory genes may also be able to promote carcinogenesis in a similar way, i.e. by inducing PCD and/or mitoinhibition of normal cells to create a need for compensatory proliferation that drives a robust replication of initiating cells.
Collapse
Affiliation(s)
- Chenguang Wang
- Department of Stem Cell and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
25
|
Shiao SL, Coussens LM. The tumor-immune microenvironment and response to radiation therapy. J Mammary Gland Biol Neoplasia 2010; 15:411-21. [PMID: 21161342 PMCID: PMC3011087 DOI: 10.1007/s10911-010-9194-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/03/2010] [Indexed: 01/01/2023] Open
Abstract
Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancer, including breast cancer. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells infiltrating tumors. This review focuses on tumor-associated immune cell responses following RT and discusses how immune responses may be modified to enhance durability and efficacy of RT.
Collapse
Affiliation(s)
- Stephen L. Shiao
- Department of Radiation Oncology, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
| | - Lisa M. Coussens
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Ave, HSW450C, San Francisco, CA 94143 USA
| |
Collapse
|
26
|
Fleenor CJ, Marusyk A, DeGregori J. Ionizing radiation and hematopoietic malignancies: altering the adaptive landscape. Cell Cycle 2010; 9:3005-11. [PMID: 20676038 DOI: 10.4161/cc.9.15.12311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Somatic evolution, which underlies tumor progression, is driven by two essential components: (1) diversification of phenotypes through heritable mutations and epigenetic changes and (2) selection for mutant clones which possess higher fitness. Exposure to ionizing radiation (IR ) is highly associated with increased risk of carcinogenesis. This link is traditionally attributed to causation of oncogenic mutations through the mutagenic effects of irradiation. On the other hand, potential effects of irradiation on altering fitness and increasing selection for mutant clones are frequently ignored. Recent studies bring the effects of irradiation on fitness and selection into focus, demonstrating that IR exposure results in stable reductions in the fitness of hematopoietic stem and progenitor cell populations. These reductions of fitness are associated with alteration of the adaptive landscape, increasing the selective advantages conferred by certain oncogenic mutations. Therefore, the link between irradiation and carcinogenesis might be more complex than traditionally appreciated: while mutagenic effects of irradiation should increase the probability of occurrence of oncogenic mutations, IR can also work as a tumor promoter, increasing the selective expansion of clones bearing mutations which become advantageous in the irradiation-altered environment, such as activated mutations in Notch1 or disrupting mutations in p53.
Collapse
Affiliation(s)
- Courtney J Fleenor
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | | | | |
Collapse
|
27
|
Warrington NM, Gianino SM, Jackson E, Goldhoff P, Garbow JR, Piwnica-Worms D, Gutmann DH, Rubin JB. Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res 2010; 70:5717-27. [PMID: 20551058 PMCID: PMC2905483 DOI: 10.1158/0008-5472.can-09-3769] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current models of oncogenesis incorporate the contributions of chronic inflammation and aging to the patterns of tumor formation. These oncogenic pathways, involving leukocytes and fibroblasts, are not readily applicable to brain tumors (glioma), and other mechanisms must account for microenvironmental influences on central nervous system tumorigenesis. Previous studies from our laboratories have used neurofibromatosis-1 (NF1) genetically engineered mouse (GEM) models to understand the spatial restriction of glioma formation to the optic pathway of young children. Based on our initial findings, we hypothesize that brain region-specific differences in cAMP levels account for the pattern of NF1 gliomagenesis. To provide evidence that low levels of cAMP promote glioma formation in NF1, we generated foci of decreased cAMP in brain regions where gliomas rarely form in children with NF1. Focal cAMP reduction was achieved by forced expression of phosphodiesterase 4A1 (PDE4A1) in the cortex of Nf1 GEM strains. Ectopic PDE4A1 expression produced hypercellular lesions with features of human NF1-associated glioma. Conversely, pharmacologic elevation of cAMP with the PDE4 inhibitor rolipram dramatically inhibited optic glioma growth and tumor size in Nf1 GEM in vivo. Together, these results indicate that low levels of cAMP in a susceptible Nf1 mouse strain are sufficient to promote gliomagenesis, and justify the implementation of cAMP-based stroma-targeted therapies for glioma.
Collapse
Affiliation(s)
- Nicole M. Warrington
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Scott M. Gianino
- Department of Neurology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Erin Jackson
- Department of Molecular Imaging Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Patricia Goldhoff
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Joel R. Garbow
- Department of Mallinckrodt Institute of Radiology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - David Piwnica-Worms
- Department of Molecular Imaging Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
- Department of Mallinckrodt Institute of Radiology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
- Department of Developmental Biology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - David H. Gutmann
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
- Department of Neurology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Joshua B. Rubin
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
- Department of Neurology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| |
Collapse
|
28
|
Abstract
At least five coherent models of carcinogenesis have been proposed in the history of cancer research in the last century. Model 1 is mainly centered around mutations, and its main focus is on the chemical environment, radiation and viruses. Model 2 has to do mainly with genome instability and it focuses on familiality. Model 3 is based on non-genotoxic mechanisms, and clonal expansion and epigenetics are its main features. We propose a fourth model, which can encompass the previous three, based on the concept of a 'Darwinian' cell selection (we clarify that the term Darwinian needs to be used cautiously, being a short cut for 'somatic cellular selection'). Finally, a fifth model has recently become popular, based on the concept of 'tissue organization'. We describe examples of the five models and how they have been formalized mathematically. The five models largely overlap, both scientifically and historically, but for the sake of clarity, it is useful to treat them separately. We also argue that the five models can be included into a simpler scheme, i.e. two types of models: (i) biological changes in the epithelium alone lead to malignancy and (ii) changes in stroma/extracellular matrix are necessary (along with changes in epithelium) for malignancy. Our description, though simplified, looks realistic, it is able to capture the historical sequence of carcinogenesis theories in the last century and can serve as a frame to make research hypotheses more explicit.
Collapse
Affiliation(s)
- Paolo Vineis
- Department of Epidemiology and Public Health, MRC/HPA Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | | | | |
Collapse
|
29
|
Marusyk A, Porter CC, Zaberezhnyy V, DeGregori J. Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol 2010; 8:e1000324. [PMID: 20208998 PMCID: PMC2830447 DOI: 10.1371/journal.pbio.1000324] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 01/28/2010] [Indexed: 12/22/2022] Open
Abstract
While disruption of p53 is selectively neutral within non-stressed hematopoiesis, it confers a strong selective advantage upon irradiation, leading to expansion of p53 mutant clones and lymphoma development. Identification and characterization of mutations that drive cancer evolution constitute a major focus of cancer research. Consequently, dominant paradigms attribute the tumorigenic effects of carcinogens in general and ionizing radiation in particular to their direct mutagenic action on genetic loci encoding oncogenes and tumor suppressor genes. However, the effects of irradiation are not limited to genetic loci that encode oncogenes and tumor suppressors, as irradiation induces a multitude of other changes both in the cells and their microenvironment which could potentially affect the selective effects of some oncogenic mutations. P53 is a key tumor suppressor, the loss of which can provide resistance to multiple genotoxic stimuli, including irradiation. Given that p53 null animals develop T-cell lymphomas with high penetrance and that irradiation dramatically accelerates lymphoma development in p53 heterozygous mice, we hypothesized that increased selection for p53-deficient cells contributes to the causal link between irradiation and induction of lymphoid malignancies. We sought to determine whether ionizing irradiation selects for p53-deficient hematopoietic progenitors in vivo using mouse models. We found that p53 disruption does not provide a clear selective advantage within an unstressed hematopoietic system or in previously irradiated BM allowed to recover from irradiation. In contrast, upon irradiation p53 disruption confers a dramatic selective advantage, leading to long-term expansion of p53-deficient clones and to increased lymphoma development. Selection for cells with disrupted p53 appears to be attributable to several factors: protection from acute irradiation-induced ablation of progenitor cells, prevention of irradiation-induced loss of clonogenic capacity for stem and progenitor cells, improved long-term maintenance of progenitor cell fitness, and the disabling/elimination of competing p53 wild-type progenitors. These studies indicate that the carcinogenic effect of ionizing irradiation can in part be explained by increased selection for cells with p53 disruption, which protects progenitor cells both from immediate elimination and from long-term reductions in fitness following irradiation. Cancer progression can be understood through the framework of Darwinian evolution, which involves two major factors: genetic mutation and selection. Random mutations are thought to result in the initiation and phenotypic diversification of tumors, and environmental influences mediate selection for those mutations that increase tumor cell fitness. Since oncogenic mutations are necessary for the development of spontaneous malignancies and since experimental introduction of these mutations often leads to transformation and cancers, the causation of cancers by carcinogens is traditionally attributed to their induction of new mutations that are oncogenic. We instead asked whether selection for oncogenic mutations is affected by ionizing irradiation, an archetypal mutagenic carcinogen, by examining the selective effects of inactivation of the critical tumor suppressor gene p53. While disruption of p53 is selectively neutral in populations of unstressed hematopoietic progenitors, it provides a strong selective advantage upon irradiation. This selection of p53-deficient clones is attributable to protection from irradiation-induced cell death and loss of cellular fitness. Importantly, the selective expansion of irradiated cells bearing p53 disruption is blocked in the presence of non-irradiated wild-type competitors, indicating that the disabling of competing wild-type cells by irradiation is critical for selection of p53-deficient cells. Our results argue that induction of cancers by irradiation involves selection for mutations that confer radioresistance, and suggest that greater focus on how carcinogenic contexts impact on selection is warranted in understanding, preventing and treating cancers.
Collapse
Affiliation(s)
- Andriy Marusyk
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Program in Molecular Biology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Christopher C. Porter
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Program in Molecular Biology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
30
|
Chemical Carcinogenesis and Mutagenesis. Clin Toxicol (Phila) 2010. [DOI: 10.3109/9781420092264-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1805:105-17. [PMID: 19931353 PMCID: PMC2814927 DOI: 10.1016/j.bbcan.2009.11.002] [Citation(s) in RCA: 857] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/05/2009] [Accepted: 11/10/2009] [Indexed: 12/14/2022]
Abstract
With rare exceptions, spontaneous tumors originate from a single cell. Yet, at the time of clinical diagnosis, the majority of human tumors display startling heterogeneity in many morphological and physiological features, such as expression of cell surface receptors, proliferative and angiogenic potential. To a substantial extent, this heterogeneity might be attributed to morphological and epigenetic plasticity, but there is also strong evidence for the co-existence of genetically divergent tumor cell clones within tumors. In this perspective, we summarize the sources of intra-tumor phenotypic heterogeneity with emphasis on genetic heterogeneity. We review experimental evidence for the existence of both intra-tumor clonal heterogeneity as well as frequent evolutionary divergence between primary tumors and metastatic outgrowths. Furthermore, we discuss potential biological and clinical implications of intra-tumor clonal heterogeneity.
Collapse
Affiliation(s)
- Andriy Marusyk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
32
|
Heber EM, Hughes AM, Pozzi EC, Itoiz ME, Aromando RF, Molinari AJ, Garabalino MA, Nigg DW, Trivillin VA, Schwint AE. Development of a model of tissue with potentially malignant disorders (PMD) in the hamster cheek pouch to explore the long-term potential therapeutic and/or toxic effects of different therapeutic modalities. Arch Oral Biol 2010; 55:46-51. [DOI: 10.1016/j.archoralbio.2009.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/28/2009] [Accepted: 10/26/2009] [Indexed: 11/25/2022]
|
33
|
Marusyk A, Casás-Selves M, Henry CJ, Zaberezhnyy V, Klawitter J, Christians U, DeGregori J. Irradiation alters selection for oncogenic mutations in hematopoietic progenitors. Cancer Res 2009; 69:7262-9. [PMID: 19738065 DOI: 10.1158/0008-5472.can-09-0604] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure to ionizing radiation and other DNA-damaging carcinogens is strongly associated with induction of malignancies. Prevailing paradigms attribute this association to the induction of oncogenic mutations, as the incidence of oncogenic events is thought to limit initiation and progression of cancers. On the other hand, random mutagenic and genotoxic effects of irradiation are likely to alter progenitor cell populations and the microenvironment, thus altering the selective effects of oncogenic mutations. Using competitive bone marrow transplantation experiments in mice, we show that ionizing irradiation leads to a persistent decline in the numbers and fitness of hematopoietic stem cells, in part resulting from persistent induction of reactive oxygen species. Previous irradiation dramatically alters the selective effects of some oncogenic mutations, substantially inhibiting clonal expansion and leukemogenesis driven by Bcr-Abl or activated N-Ras oncogenes but enhancing the selection for and leukemogenesis driven by the activated Notch1 mutant ICN. Irradiation-dependent selection for ICN expression occurs in a hematopoietic stem cell-enriched pool, which should facilitate the accumulation of additional oncogenic events at a committed T-progenitor stage critical for formation of T-lymphocytic leukemia stem cells. Enhancement of ICN-driven selection and leukemogenesis by previous irradiation is in part non-cell autonomous, as partial restoration of normal hematopoiesis can reverse these effects of irradiation. These studies show that irradiation substantially alters the adaptive landscape in hematopoietic progenitors and suggest that the causal link between irradiation and carcinogenesis might involve increased selection for particular oncogenic mutations.
Collapse
Affiliation(s)
- Andriy Marusyk
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Ejaz S, Adil M, Oh MH, Anjum SMM, Ashraf M, Lim CW. Detrimental effects of cigarette smoke constituents on physiological development of extraocular and intraocular structures. Food Chem Toxicol 2009; 47:1972-9. [PMID: 19454301 DOI: 10.1016/j.fct.2009.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 04/15/2009] [Accepted: 05/11/2009] [Indexed: 12/13/2022]
Abstract
No investigation has yet been accomplished to screen the detrimental effects of cigarette smoke condensate (CSC) and total particular matter solution (TPMS) on embryonic development of extraocular and intraocular structures. In this report, chicken embryo assay was utilized to undermine diverse ocular pathologies produced by exposure of CSC and TPM. Extraocular anomalies triggered after exposure of CSC and TPMS include degeneration of optic chiasma, medial rectus muscle, and inflammatory lesions in forebrain. Histological investigations of CSC and TPMS-treated embryos also exposed delayed differentiation of photoreceptor layer, degeneration of retinal ganglion and nerve cell layer. In addition, corneal thickness, deterioration and complete loss of hyaloid vasculature were observed. Extraocular and intraocular regions of TPMS-treated embryos also revealed widespread hemorrhages in the entire cephalic, optic disc, ganglion cell layer and vitreous humor area. The findings of our experiment demonstrate, for the first time, that exposure to CSC and TPMS is hazardous for developing embryos and it has potential detrimental effects on several underlying events of ocular development. Moreover, it was also intriguing that toxicity profile of TMP was much more higher than CSC with more profound detrimental effects on ocular development.
Collapse
Affiliation(s)
- Sohail Ejaz
- Department of Clinical Neurosciences, R3 Stroke Unit, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW To provide an updated summary of dietary mutagens and their potential role in the etiology of cancer and atherosclerosis. RECENT FINDINGS Compelling evidence supports an accumulation of somatic mutations during carcinogenesis, leading to the activation of oncogenes or inactivation of tumor suppressor genes or both. There is also suggestive evidence that mutation provides an early event in atherosclerosis. Genome-wide association studies (GWAS) identify genes associated with familial cancers and atherosclerosis, but genes involved in sporadic events are less well characterized. Many dietary components are mutagenic, including natural dietary components, mutagens generated during cooking and processing of food or through contamination. Molecular epidemiology associates specific mutagens with specific types of cancer. Although chromosome mutations may provide a risk biomarker for atherosclerosis, they are not necessarily causal. SUMMARY Association studies, supported by molecular epidemiology, provide evidence that certain dietary mutagens, including aflatoxin B1, aristolochic acid and benzo[a]pyrene, are causal in some human cancers. Similar studies have correlated the level of oxidative DNA damage, DNA adducts and clastogenesis in arterial smooth muscle cells with atherogenic risk factors described through traditional epidemiology. However, establishing whether or not dietary mutagens lead to mutations that are causal in atherosclerosis remains a challenge for the newer genomic technologies.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Faculty of Medical and Health Sciences, Discipline of Nutrition, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
36
|
Monti Hughes A, Heber EM, Pozzi E, Nigg DW, Calzetta O, Blaumann H, Longhino J, Nievas SI, Aromando RF, Itoiz ME, Trivillin VA, Schwint AE. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: an experimental study that supports a potential new application of BNCT. Appl Radiat Isot 2009; 67:S313-7. [PMID: 19376711 DOI: 10.1016/j.apradiso.2009.03.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na(2)(10)B(10)H(10)) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.
Collapse
Affiliation(s)
- A Monti Hughes
- Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Laconi E, Sonnenschein C. Cancer development at tissue level. Semin Cancer Biol 2008; 18:303-4. [PMID: 18448356 DOI: 10.1016/j.semcancer.2008.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 11/29/2022]
|