1
|
Menon V, García-Ruiz A, Neveu S, Cartmel B, Ferrucci LM, Palmatier M, Ko C, Tsai KY, Nakamura M, Kim SR, Girardi M, Kornacker K, Brash DE. Pervasive Induction of Regulatory Mutation Microclones in Sun-exposed Skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612526. [PMID: 39345638 PMCID: PMC11429607 DOI: 10.1101/2024.09.12.612526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Carcinogen-induced mutations are thought near-random, with rare cancer-driver mutations underlying clonal expansion. Using high-fidelity Duplex Sequencing to reach a mutation frequency sensitivity of 4×10 -9 per nt, we report that sun exposure creates pervasive mutations at sites with ∼100-fold UV-sensitivity in RNA-processing gene promoters - cyclobutane pyrimidine dimer (CPD) hyperhotspots - and these mutations have a mini-driver clonal expansion phenotype. Numerically, human skin harbored 10-fold more genuine mutations than previously reported, with neonatal skin containing 90,000 per cell; UV signature mutations increased 8,000-fold in sun-exposed skin, averaging 3×10 -5 per nt. Clonal expansion by neutral drift or passenger formation was nil. Tumor suppressor gene hotspots reached variant allele frequency 0.1-10% via 30-3,000 fold clonal expansion, in occasional biopsies. CPD hyperhotspots reached those frequencies in every biopsy, with modest clonal expansion. In vitro, tumor hotspot mutations arose occasionally over weeks of chronic low-dose exposure, whereas CPD hyperhotspot mutations arose in days at 1000-fold higher frequencies, growing exponentially. UV targeted mini-drivers in every skin cell.
Collapse
|
2
|
Parsons BL. Clonal expansion of cancer driver gene mutants investigated using advanced sequencing technologies. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108514. [PMID: 39369952 DOI: 10.1016/j.mrrev.2024.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Advanced sequencing technologies (ASTs) have revolutionized the quantitation of cancer driver mutations (CDMs) as rare events, which has utility in clinical oncology, cancer research, and cancer risk assessment. This review focuses on studies that have used ASTs to characterize clonal expansion (CE) of cells carrying CDMs and to explicate the selective pressures that shape CE. Importantly, high-sensitivity ASTs have made possible the characterization of mutant clones and CE in histologically normal tissue samples, providing the means to investigate nascent tumor development. Some ASTs can identify mutant clones in a spatially defined context; others enable integration of mutant data with analyses of gene expression, thereby elaborating immune, inflammatory, metabolic, and/or stromal microenvironmental impacts on CE. As a whole, these studies make it clear that a startlingly large fraction of cells in histologically normal tissues carry CDMs, CDMs may confer a context-specific selective advantage leading to CE, and only a small fraction of cells carrying CDMs eventually result in neoplasia. These observations were integrated with available literature regarding the mechanisms underlying clonal selection to interpret how measurements of CDMs and CE can be interpreted as biomarkers of cancer risk. Given the stochastic nature of carcinogenesis, the potential functional latency of driver mutations, the complexity of potential mutational and microenvironmental interactions, and involvement of other types of genetic and epigenetic changes, it is concluded that CDM-based measurements should be viewed as probabilistic rather than deterministic biomarkers. Increasing inter-sample variability in CDM levels (as a consequence of CE) may be interpretable as a shift away from normal tissue homeostasis and an indication of increased future cancer risk, a process that may reflect normal aging or carcinogen exposure. Consequently, analyses of variability in levels of CDMs have the potential to bolster existing approaches for carcinogenicity testing.
Collapse
Affiliation(s)
- Barbara L Parsons
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson AR 72079, USA.
| |
Collapse
|
3
|
Menon V, Brash DE. Next-generation sequencing methodologies to detect low-frequency mutations: "Catch me if you can". MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108471. [PMID: 37716438 PMCID: PMC10843083 DOI: 10.1016/j.mrrev.2023.108471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Mutations, the irreversible changes in an organism's DNA sequence, are present in tissues at a variant allele frequency (VAF) ranging from ∼10-8 per bp for a founder mutation to ∼10-3 for a histologically normal tissue sample containing several independent clones - compared to 1%- 50% for a heterozygous tumor mutation or a polymorphism. The rarity of these events poses a challenge for accurate clinical diagnosis and prognosis, toxicology, and discovering new disease etiologies. Standard Next-Generation Sequencing (NGS) technologies report VAFs as low as 0.5% per nt, but reliably observing rarer precursor events requires additional sophistication to measure ultralow-frequency mutations. We detail the challenge; define terms used to characterize the results, which vary between laboratories and sometimes conflict between biologists and bioinformaticists; and describe recent innovations to improve standard NGS methodologies including: single-strand consensus sequence methods such as Safe-SeqS and SiMSen-Seq; tandem-strand consensus sequence methods such as o2n-Seq and SMM-Seq; and ultrasensitive parent-strand consensus sequence methods such as DuplexSeq, PacBio HiFi, SinoDuplex, OPUSeq, EcoSeq, BotSeqS, Hawk-Seq, NanoSeq, SaferSeq, and CODEC. Practical applications are also noted. Several methods quantify VAF down to 10-5 at a nt and mutation frequency (MF) in a target region down to 10-7 per nt. By expanding to > 1 Mb of sites never observed twice, thus forgoing VAF, other methods quantify MF < 10-9 per nt or < 15 errors per haploid genome. Clonal expansion cannot be directly distinguished from independent mutations by sequencing, so it is essential for a paper to report whether its MF counted only different mutations - the minimum independent-mutation frequency MFminI - or all mutations observed including recurrences - the larger maximum independent-mutation frequency MFmaxI which may reflect clonal expansion. Ultrasensitive methods reveal that, without their use, even mutations with VAF 0.5-1% are usually spurious.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA.
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA.
| |
Collapse
|
4
|
N Chin C, Subhawong T, Grosso J, Wortman JR, McIntosh LJ, Tai R, Braschi-Amirfarzan M, Castillo P, Alessandrino F. Teaching cancer imaging in the era of precision medicine: Looking at the big picture. Eur J Radiol Open 2022; 9:100414. [PMID: 35309874 PMCID: PMC8927915 DOI: 10.1016/j.ejro.2022.100414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of imaging in cancer diagnosis and treatment has evolved at the same rapid pace as cancer management. Over the last twenty years, with the advancement of technology, oncology has become a multidisciplinary field that allows for researchers and clinicians not only to create individualized treatment options for cancer patients, but also to evaluate patients’ response to therapy with increasing precision. Familiarity with these concepts is a requisite for current and future radiologists, as cancer imaging studies represent a significant and growing component of any radiology practice, from tertiary cancer centers to community hospitals. In this review we provide the framework to teach cancer imaging in the era of genomic oncology. After reading this article, readers should be able to illustrate the basics cancer genomics, modern cancer genomics, to summarize the types of systemic oncologic therapies available, their patterns of response and their adverse events, to discuss the role of imaging in oncologic clinical trials and the role of tumor response criteria and to display the future directions of oncologic imaging.
Collapse
Affiliation(s)
- Christopher N Chin
- Department of Surgery, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Ty Subhawong
- Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - James Grosso
- Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Jeremy R Wortman
- Department of Radiology, Lahey Health Medical Center, Beth Israel Lahey Health, Tufts University school of Medicine, Boston, MA, USA
| | - Lacey J McIntosh
- Department of Radiology, University of Massachusetts Chan Medical School, Memorial Health Care, Worcester, MA, USA
| | - Ryan Tai
- Department of Radiology, University of Massachusetts Chan Medical School, Memorial Health Care, Worcester, MA, USA
| | - Marta Braschi-Amirfarzan
- Department of Radiology, Lahey Health Medical Center, Beth Israel Lahey Health, Tufts University school of Medicine, Boston, MA, USA
| | - Patricia Castillo
- Department of Radiology, Leonard M. Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
5
|
A Revised Stem Cell Theory for the Pathogenesis of Endometriosis. J Pers Med 2022; 12:jpm12020216. [PMID: 35207704 PMCID: PMC8875896 DOI: 10.3390/jpm12020216] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
During the past decade, a stem cell-based hypothesis has emerged (among many others) to explain the pathogenesis of endometriosis. The initial hypothesis proposed that endometriosis arose from a single or a few specific cells with stem cell properties, including self-renewal and multi-lineage cell differentiation. The origins of the endometriosis-initiating stem cells were thought to be the bone marrow, uterine endometrium, and other tissues. Based on the implantation or metastatic theory in combination with the initial stem cell theory, one or a few multipotent stem/progenitor cells present in the eutopic endometrium or bone marrow translocate to ectopic sites via fallopian tubes during menstruation, vasculolymphatic routes, or through direct migration and invasion. Subsequently, they give rise to endometriotic lesions followed by differentiation into various cell components of endometriosis, including glandular and stromal cells. Recent somatic mutation analyses of deep infiltrating endometriosis, endometrioma, and eutopic normal endometrium using next-generation sequencing techniques have redefined the stem cell theory. It is now proposed that stem/progenitor cells of at least two different origins—epithelium and stroma—sequentially, differentially, but coordinately contribute to the genesis of endometriosis. The dual stem cell theory on how two (or more) stem/progenitor cells differentially and coordinately participate in the establishment of endometriotic lesions remains to be elucidated. Furthermore, the stem/progenitor cells involved in this theory also remain to be identified. Given that the origin of endometriosis is eutopic endometrium, the candidate cells for endometriotic epithelium-initiating cells are likely to be endometrial epithelial cells positive for either N-cadherin or SSEA-1 or both. The candidate cells for endometriotic stroma-initiating cells may be endometrial mesenchymal stem cells positive for SUSD2. Endometrial side population cells are also a possible candidate because they contain unipotent or multipotent cells capable of behaving as endometrial epithelial and stromal stem/progenitor cells.
Collapse
|
6
|
Xiong K, Shea D, Rhoades J, Blewett T, Liu R, Bae J, Nguyen E, Makrigiorgos GM, Golub TR, Adalsteinsson V. Duplex-Repair enables highly accurate sequencing, despite DNA damage. Nucleic Acids Res 2021; 50:e1. [PMID: 34591958 PMCID: PMC8755016 DOI: 10.1093/nar/gkab855] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022] Open
Abstract
Accurate DNA sequencing is crucial in biomedicine. Underlying the most accurate methods is the assumption that a mutation is true if altered bases are present on both strands of the DNA duplex. We now show that this assumption can be wrong. We establish that current methods to prepare DNA for sequencing, via ‘End Repair/dA-Tailing,’ may substantially resynthesize strands, leading amplifiable lesions or alterations on one strand to become indiscernible from true mutations on both strands. Indeed, we discovered that 7–17% and 32–57% of interior ‘duplex base pairs’ from cell-free DNA and formalin-fixed tumor biopsies, respectively, could be resynthesized in vitro and potentially introduce false mutations. To address this, we present Duplex-Repair, and show that it limits interior duplex base pair resynthesis by 8- to 464-fold, rescues the impact of induced DNA damage, and affords up to 8.9-fold more accurate duplex sequencing. Our study uncovers a major Achilles’ heel in sequencing and offers a solution to restore high accuracy.
Collapse
Affiliation(s)
| | | | | | - Timothy Blewett
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruolin Liu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jin H Bae
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Erica Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - G Mike Makrigiorgos
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
7
|
Salk JJ, Kennedy SR. Next-Generation Genotoxicology: Using Modern Sequencing Technologies to Assess Somatic Mutagenesis and Cancer Risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:135-151. [PMID: 31595553 PMCID: PMC7003768 DOI: 10.1002/em.22342] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 05/09/2023]
Abstract
Mutations have a profound effect on human health, particularly through an increased risk of carcinogenesis and genetic disease. The strong correlation between mutagenesis and carcinogenesis has been a driving force behind genotoxicity research for more than 50 years. The stochastic and infrequent nature of mutagenesis makes it challenging to observe and to study. Indeed, decades have been spent developing increasingly sophisticated assays and methods to study these low-frequency genetic errors, in hopes of better predicting which chemicals may be carcinogens, understanding their mode of action, and informing guidelines to prevent undue human exposure. While effective, widely used genetic selection-based technologies have a number of limitations that have hampered major advancements in the field of genotoxicity. Emerging new tools, in the form of enhanced next-generation sequencing platforms and methods, are changing this paradigm. In this review, we discuss rapidly evolving sequencing tools and technologies, such as error-corrected sequencing and single cell analysis, which we anticipate will fundamentally reshape the field. In addition, we consider a variety emerging applications for these new technologies, including the detection of DNA adducts, inference of mutational processes based on genomic site and local sequence contexts, and evaluation of genome engineering fidelity, as well as other cutting-edge challenges for the next 50 years of environmental and molecular mutagenesis research. Environ. Mol. Mutagen. 61:135-151, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Jesse J. Salk
- Department of Medicine, Division of Medical OncologyUniversity of Washington School of MedicineSeattleWashington
- TwinStrand BiosciencesSeattleWashington
| | - Scott R. Kennedy
- Department of PathologyUniversity of WashingtonSeattleWashington
| |
Collapse
|
8
|
Espinosa-Medina I, Garcia-Marques J, Cepko C, Lee T. High-throughput dense reconstruction of cell lineages. Open Biol 2019; 9:190229. [PMID: 31822210 PMCID: PMC6936253 DOI: 10.1098/rsob.190229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
The first meeting exclusively dedicated to the 'High-throughput dense reconstruction of cell lineages' took place at Janelia Research Campus (Howard Hughes Medical Institute) from 14 to 18 April 2019. Organized by Tzumin Lee, Connie Cepko, Jorge Garcia-Marques and Isabel Espinosa-Medina, this meeting echoed the recent eruption of new tools that allow the reconstruction of lineages based on the phylogenetic analysis of DNA mutations induced during development. Combined with single-cell RNA sequencing, these tools promise to solve the lineage of complex model organisms at single-cell resolution. Here, we compile the conference consensus on the technological and computational challenges emerging from the use of the new strategies, as well as potential solutions.
Collapse
Affiliation(s)
- Isabel Espinosa-Medina
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Jorge Garcia-Marques
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Connie Cepko
- Department of Genetics and Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
9
|
Parsons BL. Multiclonal tumor origin: Evidence and implications. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:1-18. [PMID: 30115427 DOI: 10.1016/j.mrrev.2018.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/11/2018] [Accepted: 05/05/2018] [Indexed: 12/31/2022]
Abstract
An accurate understanding of the clonal origins of tumors is critical for designing effective strategies to treat or prevent cancer and for guiding the field of cancer risk assessment. The intent of this review is to summarize evidence of multiclonal tumor origin and, thereby, contest the commonly held assumption of monoclonal tumor origin. This review describes relevant studies of X chromosome inactivation, analyses of tumor heterogeneity using other markers, single cell sequencing, and lineage tracing studies in aggregation chimeras and engineered rodent models. Methods for investigating tumor clonality have an inherent bias against detecting multiclonality. Despite this, multiclonality has been observed within all tumor stages and within 53 different types of tumors. For myeloid tumors, monoclonal tumor origin may be the predominant path to cancer and a monoclonal tumor origin cannot be ruled out for a fraction of other cancer types. Nevertheless, a large body of evidence supports the conclusion that most cancers are multiclonal in origin. Cooperation between different cell types and between clones of cells carrying different genetic and/or epigenetic lesions is discussed, along with how polyclonal tumor origin can be integrated with current perspectives on the genesis of tumors. In order to develop biologically sound and useful approaches to cancer risk assessment and precision medicine, mathematical models of carcinogenesis are needed, which incorporate multiclonal tumor origin and the contributions of spontaneous mutations in conjunction with the selective advantages conferred by particular mutations and combinations of mutations. Adherence to the idea that a growth must develop from a single progenitor cell to be considered neoplastic has outlived its usefulness. Moving forward, explicit examination of tumor clonality, using advanced tools, like lineage tracing models, will provide a strong foundation for future advances in clinical oncology and better training for the next generation of oncologists and pathologists.
Collapse
Affiliation(s)
- Barbara L Parsons
- US Food and Drug Administration, National Center for Toxicological Research, Division of Genetic and Molecular Toxicology, 3900 NCTR Rd., Jefferson, AR 72079, United States.
| |
Collapse
|
10
|
Baker KT, Salk JJ, Brentnall TA, Risques RA. Precancer in ulcerative colitis: the role of the field effect and its clinical implications. Carcinogenesis 2018; 39:11-20. [PMID: 29087436 PMCID: PMC6248676 DOI: 10.1093/carcin/bgx117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/22/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Cumulative evidence indicates that a significant proportion of cancer evolution may occur before the development of histological abnormalities. While recent improvements in DNA sequencing technology have begun to reveal the presence of these early preneoplastic clones, the concept of 'premalignant field' was already introduced by Slaughter more than half a century ago. Also referred to as 'field effect', 'field defect' or 'field cancerization', these terms describe the phenomenon by which molecular alterations develop in normal-appearing tissue and expand to form premalignant patches with the potential to progress to dysplasia and cancer. Field effects have been well-characterized in ulcerative colitis, an inflammatory bowel disease that increases the risk of colorectal cancer. The study of the molecular alterations that define these fields is informative of mechanisms of tumor initiation and progression and has provided potential targets for early cancer detection. Herein, we summarize the current knowledge about the molecular alterations that comprise the field effect in ulcerative colitis and the clinical utility of these fields for cancer screening and prevention.
Collapse
Affiliation(s)
- Kathryn T Baker
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jesse J Salk
- Division of Hematology and Oncology, Department of Medicine, University of
Washington, Seattle, WA, USA
- TwinStrand Biosciences Seattle, WA, USA
| | - Teresa A Brentnall
- Division of Gasteroenterology, Department of Medicine, University of
Washington, Seattle, WA, USA
| | - Rosa Ana Risques
- To whom correspondence should be addressed. Tel: +206-616-4976; Fax:
+206-543-1140;
| |
Collapse
|
11
|
Modernizing Human Cancer Risk Assessment of Therapeutics. Trends Pharmacol Sci 2017; 39:232-247. [PMID: 29242029 DOI: 10.1016/j.tips.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
Cancer risk assessment of therapeutics is plagued by poor translatability of rodent models of carcinogenesis. In order to overcome this fundamental limitation, new approaches are needed that enable us to evaluate cancer risk directly in humans and human-based cellular models. Our enhanced understanding of the mechanisms of carcinogenesis and the influence of human genome sequence variation on cancer risk motivates us to re-evaluate how we assess the carcinogenic risk of therapeutics. This review will highlight new opportunities for applying this knowledge to the development of a battery of human-based in vitro models and biomarkers for assessing cancer risk of novel therapeutics.
Collapse
|
12
|
Abstract
Rapid advances in high-throughput sequencing and a growing realization of the importance of evolutionary theory to cancer genomics have led to a proliferation of phylogenetic studies of tumour progression. These studies have yielded not only new insights but also a plethora of experimental approaches, sometimes reaching conflicting or poorly supported conclusions. Here, we consider this body of work in light of the key computational principles underpinning phylogenetic inference, with the goal of providing practical guidance on the design and analysis of scientifically rigorous tumour phylogeny studies. We survey the range of methods and tools available to the researcher, their key applications, and the various unsolved problems, closing with a perspective on the prospects and broader implications of this field.
Collapse
Affiliation(s)
- Russell Schwartz
- Department of Biological Sciences and Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, USA
| | - Alejandro A Schäffer
- Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Liu D, Xiong H, Ellis AE, Northrup NC, Dobbin KK, Shin DM, Zhao S. Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level. PLoS Genet 2015; 11:e1005277. [PMID: 26030765 PMCID: PMC4452692 DOI: 10.1371/journal.pgen.1005277] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/14/2015] [Indexed: 01/15/2023] Open
Abstract
Spontaneous canine head and neck squamous cell carcinoma (HNSCC) represents an excellent model of human HNSCC but is greatly understudied. To better understand and utilize this valuable resource, we performed a pilot study that represents its first genome-wide characterization by investigating 12 canine HNSCC cases, of which 9 are oral, via high density array comparative genomic hybridization and RNA-seq. The analyses reveal that these canine cancers recapitulate many molecular features of human HNSCC. These include analogous genomic copy number abnormality landscapes and sequence mutation patterns, recurrent alteration of known HNSCC genes and pathways (e.g., cell cycle, PI3K/AKT signaling), and comparably extensive heterogeneity. Amplification or overexpression of protein kinase genes, matrix metalloproteinase genes, and epithelial-mesenchymal transition genes TWIST1 and SNAI1 are also prominent in these canine tumors. This pilot study, along with a rapidly growing body of literature on canine cancer, reemphasizes the potential value of spontaneous canine cancers in HNSCC basic and translational research.
Collapse
Affiliation(s)
- Deli Liu
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Huan Xiong
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Angela E. Ellis
- College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Nicole C. Northrup
- College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Kevin K. Dobbin
- Department of Biostatistics, University of Georgia, Athens, Georgia, United States of America
| | - Dong M. Shin
- Winship Cancer Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Gleber-Netto FO, Braakhuis BJM, Triantafyllou A, Takes RP, Kelner N, Rodrigo JP, Strojan P, Vander Poorten V, Rapidis AD, Rinaldo A, Brakenhoff RH, Ferlito A, Kowalski LP. Molecular events in relapsed oral squamous cell carcinoma: Recurrence vs. secondary primary tumor. Oral Oncol 2015; 51:738-44. [PMID: 25987307 DOI: 10.1016/j.oraloncology.2015.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 01/01/2023]
Abstract
Relapses have a great impact on both the morbidity and mortality rates of oral squamous cell carcinoma (OSCC) patients. Current classification criteria are imprecise and need improvements. Recent advances in understanding of OSCC relapses on a molecular level provide new possibilities to better classify true recurrences and second primary tumors. This review discusses the limitations of the current OSCC relapse classification method and presents possible alternatives to improve this classification based on molecular techniques. Moreover, these molecular techniques add to the further understanding of these lesions and may provide tools for clinical management.
Collapse
Affiliation(s)
- Frederico O Gleber-Netto
- Laboratory of Medical Genomics, International Research Center, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Boudewijn J M Braakhuis
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Asterios Triantafyllou
- Oral and Maxillofacial Pathology, School of Dentistry, University of Liverpool and Cellular Pathology, University Hospital Aintree, Liverpool, UK
| | - Robert P Takes
- Department of Otolaryngology-Head and Neck Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Natalie Kelner
- Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | - Vincent Vander Poorten
- Otorhinolaryngology-Head and Neck Surgery, Department of Oncology, Section Head and Neck Oncology, University Hospitals KU Leuven, Leuven, Belgium
| | - Alexander D Rapidis
- Department of Head and Neck Surgery, Greek Anticancer Institute, Saint Savvas Hospital, Athens, Greece
| | | | - Ruud H Brakenhoff
- Department of Otolaryngology-Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group
| | - Luiz P Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center and National Institute of Science and Technology on Oncogenomics (INCITO), São Paulo, Brazil
| |
Collapse
|
15
|
|
16
|
Renault IZ, Golgher D. Molecular genetics of glioblastomas: defining subtypes and understanding the biology. Neuroimaging Clin N Am 2014; 25:97-103. [PMID: 25476515 DOI: 10.1016/j.nic.2014.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Despite comprehensive therapy, which includes surgery, radiotherapy, and chemotherapy, the prognosis of glioblastoma multiforme is very poor. Diagnosed individuals present an average of 12 to 18 months of life. This article provides an overview of the molecular genetics of these tumors. Despite the overwhelming amount of data available, so far little has been translated into real benefits for the patient. Because this is such a complex topic, the goal is to point out the main alterations in the biological pathways that lead to tumor formation, and how this can contribute to the development of better therapies and clinical care.
Collapse
Affiliation(s)
| | - Denise Golgher
- Symbiosis-Biotechnology Consultancy, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Hypermutable DNA chronicles the evolution of human colon cancer. Proc Natl Acad Sci U S A 2014; 111:E1889-98. [PMID: 24753616 DOI: 10.1073/pnas.1400179111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intratumor genetic heterogeneity reflects the evolutionary history of a cancer and is thought to influence treatment outcomes. Here we report that a simple PCR-based assay interrogating somatic variation in hypermutable polyguanine (poly-G) repeats can provide a rapid and reliable assessment of mitotic history and clonal architecture in human cancer. We use poly-G repeat genotyping to study the evolution of colon carcinoma. In a cohort of 22 patients, we detect poly-G variants in 91% of tumors. Patient age is positively correlated with somatic mutation frequency, suggesting that some poly-G variants accumulate before the onset of carcinogenesis during normal division in colonic stem cells. Poorly differentiated tumors have fewer mutations than well-differentiated tumors, possibly indicating a shorter mitotic history of the founder cell in these cancers. We generate poly-G mutation profiles of spatially separated samples from primary carcinomas and matched metastases to build well-supported phylogenetic trees that illuminate individual patients' path of metastatic progression. Our results show varying degrees of intratumor heterogeneity among patients. Finally, we show that poly-G mutations can be found in other cancers than colon carcinoma. Our approach can generate reliable maps of intratumor heterogeneity in large numbers of patients with minimal time and cost expenditure.
Collapse
|
18
|
Clonal expansions and short telomeres are associated with neoplasia in early-onset, but not late-onset, ulcerative colitis. Inflamm Bowel Dis 2013; 19:2593-602. [PMID: 24097228 PMCID: PMC3885330 DOI: 10.1097/mib.0b013e3182a87640] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Patients with ulcerative colitis (UC) are at risk of developing colorectal cancer. We have previously reported that cancer progression is associated with the presence of clonal expansions and shorter telomeres in nondysplastic mucosa. We sought to validate these findings in an independent case-control study. METHODS This study included 33 patients with UC: 14 progressors (patients with high-grade dysplasia or cancer) and 19 nonprogressors. For each patient, a mean of 5 nondysplastic biopsies from proximal, mid, and distal colon were assessed for clonal expansions, as determined by clonal length altering mutations in polyguanine tracts, and telomere length, as measured by quantitative PCR. Both parameters were compared with individual clinicopathological characteristics. RESULTS Clonal expansions and shorter telomeres were more frequent in nondysplastic biopsies from UC progressors than nonprogressors, but only for patients with early-onset of UC (diagnosis at younger than 50 years of age). Late-onset progressor patients had very few or no clonal expansions and longer telomeres. A few nonprogressors exhibited clonal expansions, which were associated with older age and shorter telomeres. In progressors, clonal expansions were associated with proximity to dysplasia. The mean percentage of clonally expanded mutations distinguished early-onset progressors from nonprogressors with 100% sensitivity and 80% specificity. CONCLUSIONS Early-onset progressors develop cancer in a field of clonally expanded epithelium with shorter telomeres. The detection of these clones in a few random nondysplastic colon biopsies is a promising cancer biomarker in early-onset UC. Curiously, patients with late-onset UC seem to develop cancer without the involvement of such fields.
Collapse
|
19
|
Gentilini F, Mantovani V, Turba ME. The use of COLD-PCR, DHPLC and GeneScanning for the highly sensitive detection of c-KIT somatic mutations in canine mast cell tumours. Vet Comp Oncol 2013; 13:218-28. [PMID: 23654224 DOI: 10.1111/vco.12039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/17/2013] [Accepted: 04/01/2013] [Indexed: 12/17/2022]
Abstract
The conventional polymerase chain reaction (PCR)/sequencing methods may be poorly suited for the detection of somatic mutations in canine mast cell tumour (MCT) samples owing to limited sensitivity. This study was aimed at establishing novel and more sensitive methods, assessing their limit of detection and comparing their sensitivity with conventional methods.Two different 'driver' somatic mutations of c-KIT, together with the wild-type counterparts, were cloned in plasmids to prepare standard samples with known concentrations of mutated alleles in a background of wild-type alleles; the plasmids standards were assayed using either conventional or novel, highly sensitive technique. Conventional PCR/sequencing showed a sensitivity of 50-20%. Conversely, all the novel methods obtained higher sensitivities allowed reaching as low as 2.5-1.2% of the mutated DNA.The study demonstrates that early conventional methods could likely have underestimated the prevalence of KIT mutations of MCTs, therefore affecting the assessment of their relevance in prognosis and tyrosine kinase inhibitor (TKI) treatment effectiveness.
Collapse
Affiliation(s)
- F Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - V Mantovani
- Center for Applied Biomedical Research, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - M E Turba
- Genefast Srl, Genefast Lab, Bazzano, Bologna, Italy
| |
Collapse
|
20
|
Baker AM, Graham TA, Wright NA. Pre-tumour clones, periodic selection and clonal interference in the origin and progression of gastrointestinal cancer: potential for biomarker development. J Pathol 2013; 229:502-14. [PMID: 23288692 DOI: 10.1002/path.4157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/18/2022]
Abstract
Classically, the risk of cancer progression in premalignant conditions of the gastrointestinal tract is assessed by examining the degree of histological dysplasia. However, there are many putative pro-cancer genetic changes that have occurred in histologically normal tissue well before the onset of dysplasia. Here we summarize the evidence for such pre-tumour clones and the existing technology that can be used to locate these clones and characterize them at the genetic level. We also discuss the mechanisms by which pre-tumour clones may spread through large areas of normal tissue, and highlight emerging theories on how multiple clones compete and interact within the gastrointestinal mucosa. It is important to gain an understanding of these processes, as it is envisaged that certain pre-tumour changes may be powerful predictive markers, with the potential to identify patients at high risk of developing cancer at a much earlier stage.
Collapse
Affiliation(s)
- Ann-Marie Baker
- Centre for Tumour Biology, Barts and the London School of Medicine and Dentistry, London, UK.
| | | | | |
Collapse
|
21
|
Sabattini S, Frizzon MG, Gentilini F, Turba ME, Capitani O, Bettini G. Prognostic Significance of Kit Receptor Tyrosine Kinase Dysregulations in Feline Cutaneous Mast Cell Tumors. Vet Pathol 2013; 50:797-805. [DOI: 10.1177/0300985813476064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Feline cutaneous mast cell tumors (FeCMCTs) are characterized by variable biological behavior. Development of multiple nodules and potential visceral involvement, along with inconsistency of conventional prognostic aids, justify uncertainty in differentiating benign from malignant forms. c-Kit proto-oncogene activating mutations have been reported in feline mast cell tumors (MCTs), but their prognostic relevance was not investigated. This study was performed on FeCMCTs with variable clinical outcome to assess whether Kit cytoplasmic immunohistochemical labeling can be regarded as indicative of c-Kit mutations and to evaluate the relationship between Kit dysregulation and survival. Twenty-four cats diagnosed with a primary cutaneous MCT were enrolled. Kit immunohistochemical pattern and c-Kit (exons 8, 9, 11) mutational status were assessed in 34 tumor samples. Risk factors affecting survival were a number of mitoses greater than 5 per 10 HPFs ( P = .017) and cytoplasmic Kit labeling ( P = .045). Increased mitotic activity was associated with Kit cytoplasmic expression ( P = .01). c-Kit encoding mutations were present in 19 (56%) tumors (exon 8, 19%; exon 9, 71%; exon 11, 10%), however, they were not significantly related to protein expression and they had no influence on prognosis. Additionally, in 6 of 9 (67%) cats, multiple nodules from the same cat had different mutational statuses. Mutations in the fifth immunoglobulin-like domain of Kit occur frequently in FeCMCT, but they are variably associated with aberrant protein expression and do not appear to be strictly correlated with biological behavior. These findings need to be confirmed in larger series, and exploration of further genomic regions of c-Kit is warranted.
Collapse
Affiliation(s)
- S. Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | | | - F. Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | | | - O. Capitani
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - G. Bettini
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| |
Collapse
|
22
|
Foschini MP, Morandi L, Leonardi E, Flamminio F, Ishikawa Y, Masetti R, Eusebi V. Genetic clonal mapping of in situ and invasive ductal carcinoma indicates the field cancerization phenomenon in the breast. Hum Pathol 2013; 44:1310-9. [PMID: 23337025 DOI: 10.1016/j.humpath.2012.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/19/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
Nearly 80% of well-differentiated in situ duct carcinomas (g1 DCIS) have been shown to be multicentric (multilobar) lesions, while most in situ poorly differentiated duct carcinomas (g3 DCIS) were unifocal (unilobar) lesions. Here we present a clonality study of 15 cases of DCIS, all showing multiple foci. Twelve of these cases were associated with an invasive duct carcinoma. Fifteen cases of female breast cancer patients all showing multiple DCIS foci (5 g1 DCIS, 5 g2 DCIS, 5 g3 DCIS) were randomly selected and histologically studied using large histological sections. Care was taken to laser-microdissect DCIS foci that were most distantly located from one another in the same large section, and pertinent cells were genetically studied. Invasive duct carcinoma and ipsilateral lymph node metastases and/or contralateral lesions, whenever present, were additionally microdissected. DNA of neoplastic cells was purified, and the mtDNA D-loop region was sequenced. Genetic distance of different foci from the same case was visualized by phylogenetic analyses using the neighbor-joining method. Patients ranged in age from 36 to 87 years (mean 65.1). All 9 cases of widely spread DCIS were not clonal. Four of 6 cases that showed multiple adjacent foci were clonally related on mtDNA analysis. In the present series, 11/15 DCIS appeared as multiple synchronous primary breast tumors, genetically not related to one another. The present data enhance the view that breast can also show the field cancerization phenomenon, paralleling what has already been proposed in other organs.
Collapse
Affiliation(s)
- Maria P Foschini
- Department of Biomedical and Neuromuscular Sciences, "M. Malpighi" Anatomic Pathology Section, University of Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Analysis of gene alterations of mitochondrial DNA D-loop regions to determine breast cancer clonality. Br J Cancer 2012; 107:2016-23. [PMID: 23169290 PMCID: PMC3516690 DOI: 10.1038/bjc.2012.505] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: It has been a challenge to determine breast cancer clonality accurately. The aim of the present study was to assess methods using formalin-fixed paraffin-embedded (FFPE) tissue to differentiate new primary tumours from true recurrences that are associated with poorer prognoses and often require more aggressive treatment. Methods: We investigated the novel method of analysing gene alterations of mitochondrial DNA D-loop region (GAMDDL) and compared it with the conventional method of analysing the X-chromosome-linked human androgen receptor (HUMARA). The FFPE sections of primary and secondary breast cancers, the non-neoplastic mammary gland, and lymph nodes were examined. Results: Informative rates for HUMARA, GAMDDL, and combined analyses were 42.1%, 76.9%, and 89.5%, respectively. All of the 10 contralateral breast cancers were determined to be non-clonal. In contrast, 3 out of 8 (37.5%) of the ipsilateral secondary tumours shared a clonal origin with the primary tumour and were classified as true recurrences, whereas 4 out of 8 (50%) were classified as new primary tumours. Conclusion: GAMDDL analysis represents a novel and useful molecular method for examining the precise cell lineages of primary and secondary tumours, and was more accurate than HUMARA in determining clonality.
Collapse
|
24
|
Iacobuzio-Donahue CA. Genetic evolution of pancreatic cancer: lessons learnt from the pancreatic cancer genome sequencing project. Gut 2012; 61:1085-94. [PMID: 21749982 PMCID: PMC3356493 DOI: 10.1136/gut.2010.236026] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is a disease caused by the accumulation of genetic alterations in specific genes. Elucidation of the human genome sequence, in conjunction with technical advances in the ability to perform whole exome sequencing, have provided new insight into the mutational spectra characteristic of this lethal tumour type. Most recently, exomic sequencing has been used to clarify the clonal evolution of pancreatic cancer as well as provide time estimates of pancreatic carcinogenesis, indicating that a long window of opportunity may exist for early detection of this disease while in the curative stage. Moving forward, these mutational analyses indicate potential targets for personalised diagnostic and therapeutic intervention as well as the optimal timing for intervention based on the natural history of pancreatic carcinogenesis and progression.
Collapse
|
25
|
Wright NA. Stem cell identification-in vivo
lineage analysis versus in vitro
isolation and clonal expansion. J Pathol 2012; 227:255-66. [DOI: 10.1002/path.4018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/19/2022]
|
26
|
Ellsworth EM, Palma JF, Spence WC, Bleicher JM, Smith DM, Finkelstein SD. Mutational profiling of sporadic versus toxin-associated brain cancer formation: Initial findings using loss of heterozygosity profiling. Int J Hyg Environ Health 2012; 215:427-33. [DOI: 10.1016/j.ijheh.2011.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/22/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
|
27
|
Fox EJ, Loeb LA. Lethal mutagenesis: targeting the mutator phenotype in cancer. Semin Cancer Biol 2010; 20:353-9. [PMID: 20934515 DOI: 10.1016/j.semcancer.2010.10.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 10/01/2010] [Indexed: 12/31/2022]
Abstract
The evolution of cancer and RNA viruses share many similarities. Both exploit high levels of genotypic diversity to enable extensive phenotypic plasticity and thereby facilitate rapid adaptation. In order to accumulate large numbers of mutations, we have proposed that cancers express a mutator phenotype. Similar to cancer cells, many viral populations, by replicating their genomes with low fidelity, carry a substantial mutational load. As high levels of mutation are potentially deleterious, the viral mutation frequency is thresholded at a level below which viral populations equilibrate in a traditional mutation-selection balance, and above which the population is no longer viable, i.e., the population undergoes an error catastrophe. Because their mutation frequencies are fine-tuned just below this error threshold, viral populations are susceptible to further increases in mutational load and, recently this phenomenon has been exploited therapeutically by a concept that has been termed lethal mutagenesis. Here we review the application of lethal mutagenesis to the treatment of HIV and discuss how lethal mutagenesis may represent a novel therapeutic approach for the treatment of solid cancers.
Collapse
Affiliation(s)
- Edward J Fox
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|