1
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
2
|
Contessoto VG, Cheng RR, Onuchic JN. Uncovering the statistical physics of 3D chromosomal organization using data-driven modeling. Curr Opin Struct Biol 2022; 75:102418. [PMID: 35839701 DOI: 10.1016/j.sbi.2022.102418] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
In recent years, much effort has been devoted to understanding the three-dimensional (3D) organization of the genome and how genomic structure mediates nuclear function. The development of experimental techniques that combine DNA proximity ligation with high-throughput sequencing, such as Hi-C, have substantially improved our knowledge about chromatin organization. Numerous experimental advancements, not only utilizing DNA proximity ligation but also high-resolution genome imaging (DNA tracing), have required theoretical modeling to determine the structural ensembles consistent with such data. These 3D polymer models of the genome provide an understanding of the physical mechanisms governing genome architecture. Here, we present an overview of the recent advances in modeling the ensemble of 3D chromosomal structures by employing the maximum entropy approach combined with polymer physics. Particularly, we discuss the minimal chromatin model (MiChroM) along with the "maximum entropy genomic annotations from biomarkers associated with structural ensembles" (MEGABASE) model, which have been remarkably successful in the accurate modeling of chromosomes consistent with both Hi-C and DNA-tracing data.
Collapse
Affiliation(s)
- Vinícius G Contessoto
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA. https://twitter.com/Vini_Contessoto
| | - Ryan R Cheng
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA. https://twitter.com/ryanrcheng
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Physics and Astronomy, Rice University, Houston, TX, USA; Department of Chemistry, Rice University, Houston, TX, USA; Department of Biosciences, Rice University, Houston, TX, USA.
| |
Collapse
|
3
|
Naik R, Galande S. SATB family chromatin organizers as master regulators of tumor progression. Oncogene 2019; 38:1989-2004. [PMID: 30413763 DOI: 10.1038/s41388-018-0541-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Rutika Naik
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
4
|
Kumar R, Lizana L, Stenberg P. Genomic 3D compartments emerge from unfolding mitotic chromosomes. Chromosoma 2018; 128:15-20. [PMID: 30357462 PMCID: PMC6394678 DOI: 10.1007/s00412-018-0684-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 11/29/2022]
Abstract
The 3D organisation of the genome in interphase cells is not a randomly folded polymer. Rather, experiments show that chromosomes arrange into a network of 3D compartments that correlate with biological processes, such as transcription, chromatin modifications and protein binding. However, these compartments do not exist during cell division when the DNA is condensed, and it is unclear how and when they emerge. In this paper, we focus on the early stages after cell division as the chromosomes start to decondense. We use a simple polymer model to understand the types of 3D structures that emerge from local unfolding of a compact initial state. From simulations, we recover 3D compartments, such as TADs and A/B compartments that are consistently detected in chromosome capture experiments across cell types and organisms. This suggests that the large-scale 3D organisation is a result of an inflation process.
Collapse
Affiliation(s)
- Rajendra Kumar
- Integrated Science Lab, Umeå University, Umeå, Sweden.,Department of Physics, Umeå University, Umeå, Sweden
| | - Ludvig Lizana
- Integrated Science Lab, Umeå University, Umeå, Sweden. .,Department of Physics, Umeå University, Umeå, Sweden.
| | - Per Stenberg
- Department of Ecology and Environmental Science (EMG), Umeå University, Umeå, Sweden. .,Division of CBRN Security and Defence, FOI-Swedish Defence Research Agency, Umeå, Sweden.
| |
Collapse
|
5
|
Chai P, Jia R, Jia R, Pan H, Wang S, Ni H, Wang H, Zhou C, Shi Y, Ge S, Zhang H, Fan X. Dynamic chromosomal tuning of a novel GAU1 lncing driver at chr12p13.32 accelerates tumorigenesis. Nucleic Acids Res 2018; 46:6041-6056. [PMID: 29741668 PMCID: PMC6158754 DOI: 10.1093/nar/gky366] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/02/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Aberrant chromatin transformation dysregulates gene expression and may be an important driver of tumorigenesis. However, the functional role of chromosomal dynamics in tumorigenesis remains to be elucidated. Here, using in vitro and in vivo experiments, we reveal a novel long noncoding (lncing) driver at chr12p13.3, in which a novel lncRNA GALNT8 Antisense Upstream 1 (GAU1) is initially activated by an open chromatin status, triggering recruitment of the transcription elongation factor TCEA1 at the oncogene GALNT8 promoter and cis-activates the expression of GALNT8. Analysis of The Cancer Genome Atlas (TCGA) clinical database revealed that the GAU1/GALNT8 driver serves as an important indicative biomarker, and targeted silencing of GAU1 via the HKP-encapsulated method exhibited therapeutic efficacy in orthotopic xenografts. Our study presents a novel oncogenetic mechanism in which aberrant tuning of the chromatin state at specific chromosomal loci exposes factor-binding sites, leading to recruitment of trans-factor and activation of oncogenetic driver, thereby provide a novel alternative concept of chromatin dynamics in tumorigenesis.
Collapse
MESH Headings
- Adult
- Animals
- Biomarkers, Tumor
- Carcinogenesis/genetics
- Cell Line
- Cells, Cultured
- Chromatin/metabolism
- Chromosomes, Human, Pair 12
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice, Inbred BALB C
- Mice, Nude
- N-Acetylgalactosaminyltransferases/genetics
- N-Acetylgalactosaminyltransferases/metabolism
- Neuroblastoma/genetics
- Neuroblastoma/metabolism
- Promoter Regions, Genetic
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Retinal Neoplasms/genetics
- Retinal Neoplasms/metabolism
- Retinal Neoplasms/pathology
- Retinoblastoma/genetics
- Retinoblastoma/metabolism
- Retinoblastoma/pathology
- Transcriptional Elongation Factors/metabolism
- Polypeptide N-acetylgalactosaminyltransferase
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Hui Pan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Shaoyun Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Hongyan Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Huixue Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Yingyun Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
6
|
De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture. Proc Natl Acad Sci U S A 2017; 114:12126-12131. [PMID: 29087948 PMCID: PMC5699090 DOI: 10.1073/pnas.1714980114] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible.
Collapse
|
7
|
Botchkarev VA. The Molecular Revolution in Cutaneous Biology: Chromosomal Territories, Higher-Order Chromatin Remodeling, and the Control of Gene Expression in Keratinocytes. J Invest Dermatol 2017; 137:e93-e99. [PMID: 28411854 DOI: 10.1016/j.jid.2016.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/05/2016] [Accepted: 04/15/2016] [Indexed: 12/16/2022]
Abstract
Three-dimensional organization of transcription in the nucleus and mechanisms controlling the global chromatin folding, including spatial interactions between the genes, noncoding genome elements, and epigenetic and transcription machinery, are essential for establishing lineage-specific gene expression programs during cell differentiation. Spatial chromatin interactions in the nucleus involving gene promoters and distal regulatory elements are currently considered major forces that drive cell differentiation and genome evolution in general, and such interactions are substantially reorganized during many pathological conditions. During terminal differentiation of the epidermal keratinocytes, the nucleus undergoes programmed transformation from highly active status, associated with execution of the genetic program of epidermal barrier formation, to a fully inactive condition and finally becomes a part of the keratinized cells of the cornified epidermal layer. This transition is accompanied by marked remodeling of the three-dimensional nuclear organization and microanatomy, including changes in the spatial arrangement of lineage-specific genes, nuclear bodies, and heterochromatin. This mini-review highlights the important landmarks in the accumulation of our current knowledge on three-dimensional organization of the nucleus, spatial arrangement of the genes, and their distal regulatory elements, and it provides an update on the mechanisms that control higher-order chromatin remodeling in the context of epidermal keratinocyte differentiation in the skin.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
8
|
Yang YA, Kim J, Yu J. Influence of oncogenic transcription factors on chromatin conformation and implications in prostate cancer. APPLICATION OF CLINICAL GENETICS 2014; 7:81-91. [PMID: 24876790 PMCID: PMC4036145 DOI: 10.2147/tacg.s35598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, facilitated by rapid technological advances, we are becoming more adept at probing the molecular processes, which take place in the nucleus, that are crucial for the hierarchical regulation and organization of chromatin architecture. With an unprecedented level of resolution, a detailed atlas of chromosomal structures (histone displacement, variants, modifications, chromosome territories, and DNA looping) and mechanisms underlying their establishment, provides invaluable insight into physiological as well as pathological phenomena. In this review, we will focus on prostate cancer, a prevalent malignancy in men worldwide, and for which a curative treatment strategy is yet to be attained. We aim to catalog the most frequently observed oncogenic alterations associated with chromatin conformation, while emphasizing the TMPRSS2-ERG fusion, which is found in more than one-half of prostate cancer patients and its functions in compromising the chromatin landscape in prostate cancer.
Collapse
Affiliation(s)
- Yeqing Angela Yang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA ; Robert H Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
|