1
|
Gössl FJ, Polo P, Helmprobst F, Menzenbach A, Visekruna A, Gress TM, Adhikary T, Lauth M. ER-phagy mediates the anti-tumoral synergism between HDAC inhibition and chemotherapy. Cell Commun Signal 2025; 23:202. [PMID: 40287668 PMCID: PMC12034116 DOI: 10.1186/s12964-025-02198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Histone deacetylase inhibitors (HDACi) are clinically approved drugs for the treatment of hematological malignancies synergizing with chemotherapy. However, despite the long history of HDACi, the mechanistic underpinnings of this synergism have remained unclear. METHODS Using transmission electron microscopy, we identified autophagy and ER-stress in HDACi-treated cells. We quantified ER-phagy and ER-stress with reporter systems by using 3D-deconvolution microscopy and flow cytometry. We complemented these data with qPCR and Western blot results. Apoptosis rates were assessed using a caspase assay and flow cytometry, and large public datasets were utilized. RESULTS HDAC blockade results in specific upregulation of the selective autophagy receptor FAM134B (RETREG1) and the induction of ER-phagy. Combined with the chemotherapeutic drug Gemcitabine, this results in subsequent elevated ER-stress levels and apoptosis. Inhibiting the distinct ER-stress branches fully rescues this process. Broadening the scope of these findings, certain non-HDAC-inhibitory and clinically approved compounds like Loperamide and Nelfinavir are able to induce FAM134B and could hence constitute novel Gemcitabine-synergizing molecules. Additionally, pancreatic cancer patients with high FAM134B expression have significantly longer survival rates under chemotherapy. CONCLUSION In summary, we provide mechanistic evidence for ER-phagy playing a hitherto unknown central role in the clinical synergy between HDACi and chemotherapy.
Collapse
Affiliation(s)
- Felix J Gössl
- Clinic of Gastroenterology, Endocrinology and Metabolism, Center for Tumor- and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, Marburg, 35043, Germany
| | - Pierfrancesco Polo
- Clinic of Gastroenterology, Endocrinology and Metabolism, Center for Tumor- and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, Marburg, 35043, Germany
| | - Frederik Helmprobst
- Core Facility for Mouse Pathology and Electron Microscopy, Philipps University Marburg, Marburg, 35043, Germany
| | - André Menzenbach
- Clinic of Gastroenterology, Endocrinology and Metabolism, Center for Tumor- and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, Marburg, 35043, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, 35043, Germany
| | - Thomas M Gress
- Clinic of Gastroenterology, Endocrinology and Metabolism, Center for Tumor- and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, Marburg, 35043, Germany
| | - Till Adhikary
- Center for Tumor- and Immune Biology, Institute for Biomedical Informatics and Biostatistics, Philipps University Marburg, Hans-Meerwein-Str. 3, Marburg, 35043, Germany
| | - Matthias Lauth
- Clinic of Gastroenterology, Endocrinology and Metabolism, Center for Tumor- and Immune Biology, Philipps University Marburg, Hans-Meerwein-Str. 3, Marburg, 35043, Germany.
| |
Collapse
|
2
|
Lei J, Chen J, Yu W, Wu Q, Jing S, Tang Y, Lin L, Hu M. Portrait of WWP1: the current state in human cancer. Front Cell Dev Biol 2025; 12:1516613. [PMID: 39949609 PMCID: PMC11821962 DOI: 10.3389/fcell.2024.1516613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
WWP1, a member of the C2-WW-HECT E3 ligase family, is an E3 ubiquitin-protein ligase containing WW domains. This enzyme plays a critical role in regulating diverse cellular processes. Its expression is modulated by various factors and non-coding RNAs, resulting in ubiquitination that affects substrate protein degradation. WWP1 demonstrates a dual function, acting predominantly as an oncogene in tumors but occasionally as a tumor suppressor. This review summarizes WWP1's biological roles, therapeutic potential in oncology, upstream regulatory factors, and downstream substrates. It aims to promote research on WWP1's antitumor effects, improve understanding of its role in tumorigenesis, and support the development of targeted therapies.
Collapse
Affiliation(s)
- Jiaming Lei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jun Chen
- The Central Hospital of Ezhou, Affiliated Hospital of Hubei University of Science and Technology, Ezhou, Hubei, China
| | - Wenwen Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Qing Wu
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shuang Jing
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuanguang Tang
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
3
|
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y, Tang X. Beclin-1: a therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol 2024; 15:1506426. [PMID: 39650649 PMCID: PMC11621085 DOI: 10.3389/fimmu.2024.1506426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
The significant identification of Beclin-1's function in regulating autophagy flow signified a significant progression in our understanding of cellular operations. Beclin-1 acts as a scaffold for forming the PI3KC3 complex, controlling autophagy and cellular trafficking processes in a complicated way. This intricate protein has garnered considerable attention due to its substantial impact on the development of tumors. Strong evidence indicates Beclin-1 plays a critical role in controlling autophagy in various human cancer types and its intricate connection with apoptosis and ferroptosis. The potential of Beclin-1 as a viable target for cancer therapy is highlighted by its associations with key autophagy regulators such as AMPK, mTOR, and ATGs. Beclin-1 controls the growth and dissemination of tumors by autophagy. It also affects how tumors react to therapies such as chemotherapy and radiation therapy. The role of Beclin-1 in autophagy can influence apoptosis, depending on whether it supports cell survival or leads to cell death. Beclin-1 plays a crucial role in ferroptosis by increasing ATG5 levels, which in turn promotes autophagy-triggered ferroptosis. Finally, we analyzed the possible function of Beclin-1 in tumor immunology and drug sensitivity in cancers. In general, Beclin-1 has a significant impact on regulating autophagy, offering various potentials for medical intervention and altering our understanding of cancer biology.
Collapse
Affiliation(s)
- Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yincheng Ran
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Haonan Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yana Ding
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaowei Tang
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
4
|
Dutta A, Chakraborty A, Ghosh T, Kumar A. 5-Fluorouracil induces apoptosis in nutritional deprived hepatocellular carcinoma through mitochondrial damage. Sci Rep 2024; 14:23387. [PMID: 39379402 PMCID: PMC11461840 DOI: 10.1038/s41598-024-73143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
5-Fluorouracil (5-FU) is the leading chemotherapeutic drug used to treat hepatocellular carcinoma, one of the major cancer diseases after atherosclerosis. Because of chemo-resistance, the success rate of treatment declines with time due to continuous drug exposure. Though autophagy induction is majorly responsible for acquired resistance, the exact role of this evolutionary conserved mechanism is unknown in cancer cell survival and suppression. The usual practice involves the combinatorial use of chemotherapeutic drugs with autophagy inhibitors like Chloroquine and Bafilomycin A, while neglecting the side effects caused by autophagy impairment in healthy cells. Starvation is a well-known physiological inducer of autophagy. In this study, by caloric modulation, we tried to circumvent the resistance imposed by prolonged drug exposure and investigated the effect of 5-FU in nutrient-sufficient and deficient conditions. Our findings show a substantial correlation between autophagy and increased cancer cell death in the presence of 5-FU, with negligible effects on normal cells. Experimental data revealed that nutritional deprivation augmented cell death in the presence of 5-FU through mitochondrial membrane damage and excessive reactive oxygen species (ROS) production, initiating apoptosis. Lipidation study also unveiled that under such combinatorial treatment cellular metabolism shifts from glucose to lipid biosynthesis. Overall, our experimental findings suggest that nutritional deprivation in combination with chemotherapeutic medication can be a new effective strategy to control hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ankita Dutta
- Advanced Nanoscale Molecular Oncology Laboratory (ANMOL), Department of Biotechnology, University of North Bengal, Raja Rammohunpur, District - Darjeeling, 734013, Siliguri, West Bengal, India
| | - Anuja Chakraborty
- Advanced Nanoscale Molecular Oncology Laboratory (ANMOL), Department of Biotechnology, University of North Bengal, Raja Rammohunpur, District - Darjeeling, 734013, Siliguri, West Bengal, India
| | - Tulika Ghosh
- Advanced Nanoscale Molecular Oncology Laboratory (ANMOL), Department of Biotechnology, University of North Bengal, Raja Rammohunpur, District - Darjeeling, 734013, Siliguri, West Bengal, India
| | - Anoop Kumar
- Advanced Nanoscale Molecular Oncology Laboratory (ANMOL), Department of Biotechnology, University of North Bengal, Raja Rammohunpur, District - Darjeeling, 734013, Siliguri, West Bengal, India.
| |
Collapse
|
5
|
Ali ML, Roky AH, Azad SAK, Shaikat AH, Meem JN, Hoque E, Ahasan AMF, Islam MM, Arif MSR, Mostaq MS, Mahmud MZ, Amin MN, Mahmud MA. Autophagy as a targeted therapeutic approach for skin cancer: Evaluating natural and synthetic molecular interventions. CANCER PATHOGENESIS AND THERAPY 2024; 2:231-245. [PMID: 39371094 PMCID: PMC11447340 DOI: 10.1016/j.cpt.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 10/08/2024]
Abstract
Skin cancer, a prevalent malignancy worldwide, poses significant health concerns owing to its increasing incidence. Autophagy, a natural cellular process, is a pivotal event in skin cancer and has advantageous and detrimental effects. This duality has prompted extensive investigations into medical interventions targeting autophagy modulation for their substantial therapeutic potential. This systematic review aimed to investigate the relationship between skin cancer and autophagy and the contribution and mechanism of autophagy modulators in skin cancer. We outlined the effectiveness and safety of targeting autophagy as a promising therapeutic strategy for the treatment of skin cancer. This comprehensive review identified a diverse array of autophagy modulators with promising potential for the treatment of skin cancer. Each of these compounds demonstrates efficacy through distinct physiological mechanisms that have been elucidated in detail. Interestingly, findings from a literature search indicated that none of the natural, synthetic, or semisynthetic compounds exhibited notable adverse effects in either human or animal models. Consequently, this review offers novel mechanistic and therapeutic perspectives on the targeted modulation of autophagy in skin cancer.
Collapse
Affiliation(s)
- Md. Liakot Ali
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Amdad Hossain Roky
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - S.M. Asadul Karim Azad
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Abdul Halim Shaikat
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Jannatul Naima Meem
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Emtiajul Hoque
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Abu Mohammed Fuad Ahasan
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Mohammed Murshedul Islam
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, Daffodil International University, Dhaka 1216, Bangladesh
| | - Md. Saifur Rahaman Arif
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh
| | - Md. Saqline Mostaq
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | - Mohammad Nurul Amin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Md. Ashiq Mahmud
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| |
Collapse
|
6
|
Bozzuto G, Calcabrini A, Colone M, Condello M, Dupuis ML, Pellegrini E, Stringaro A. Phytocompounds and Nanoformulations for Anticancer Therapy: A Review. Molecules 2024; 29:3784. [PMID: 39202863 PMCID: PMC11357218 DOI: 10.3390/molecules29163784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is a complex disease that affects millions of people and remains a major public health problem worldwide. Conventional cancer treatments, including surgery, chemotherapy, immunotherapy, and radiotherapy, have limited achievements and multiple drawbacks, among which are healthy tissue damage and multidrug-resistant phenotype onset. Increasing evidence shows that many plants' natural products, as well as their bioactive compounds, have promising anticancer activity and exhibit minimal toxicity compared to conventional anticancer drugs. However, their widespread use in cancer therapy is severely restricted by limitations in terms of their water solubility, absorption, lack of stability, bioavailability, and selective targeting. The use of nanoformulations for plants' natural product transportation and delivery could be helpful in overcoming these limitations, thus enhancing their therapeutic efficacy and providing the basis for improved anticancer treatment strategies. The present review is aimed at providing an update on some phytocompounds (curcumin, resveratrol, quercetin, and cannabinoids, among others) and their main nanoformulations showing antitumor activities, both in vitro and in vivo, against such different human cancer types as breast and colorectal cancer, lymphomas, malignant melanoma, glioblastoma multiforme, and osteosarcoma. The intracellular pathways underlying phytocompound anticancer activity and the main advantages of nanoformulation employment are also examined. Finally, this review critically analyzes the research gaps and limitations causing the limited success of phytocompounds' and nanoformulations' clinical translation.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Annarica Calcabrini
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Condello
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| |
Collapse
|
7
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
8
|
Dutta A, Thakur S, Dey DK, Kumar A. Cisplatin and Starvation Differently Sensitize Autophagy in Renal Carcinoma: A Potential Therapeutic Pathway to Target Variegated Drugs Resistant Cancerous Cells. Cells 2024; 13:471. [PMID: 38534315 PMCID: PMC10968928 DOI: 10.3390/cells13060471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
Cisplatin, a powerful chemotherapy medication, has long been a cornerstone in the fight against cancer due to chemotherapeutic failure. The mechanism of cisplatin resistance/failure is a multifaceted and complex issue that consists mainly of apoptosis inhibition through autophagy sensitization. Currently, researchers are exploring ways to regulate autophagy in order to tip the balance in favor of effective chemotherapy. Based on this notion, the current study primarily identifies the differentially expressed genes (DEGs) in cisplatin-treated autophagic ACHN cells through the Illumina Hi-seq platform. A protein-protein interaction network was constructed using the STRING database and KEGG. GO classifiers were implicated to identify genes and their participating biological pathways. ClueGO, David, and MCODE detected ontological enrichment and sub-networking. The network topology was further examined using 12 different algorithms to identify top-ranked hub genes through the Cytoscape plugin Cytohubba to identify potential targets, which established profound drug efficacy under an autophagic environment. Considerable upregulation of genes related to autophagy and apoptosis suggests that autophagy boosts cisplatin efficacy in malignant ACHN cells with minimal harm to normal HEK-293 growth. Furthermore, the determination of cellular viability and apoptosis by AnnexinV/FITC-PI assay corroborates with in silico data, indicating the reliability of the bioinformatics method followed by qRT-PCR. Altogether, our data provide a clear molecular insight into drug efficacy under starved conditions to improve chemotherapy and will likely prompt more clinical trials on this aspect.
Collapse
Affiliation(s)
- Ankita Dutta
- Advanced Nanoscale Molecular Oncology Laboratory (ANMOL), Department of Biotechnology, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Subarna Thakur
- Department of Bioinformatics, University of North Bengal, Siliguri 734013, West Bengal, India
| | - Debasish Kumar Dey
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anoop Kumar
- Advanced Nanoscale Molecular Oncology Laboratory (ANMOL), Department of Biotechnology, University of North Bengal, Siliguri 734013, West Bengal, India
| |
Collapse
|
9
|
Wang R, Ma X, Zhang X, Jiang D, Mao H, Li Z, Tian Y, Cheng B. Autophagy-mediated NKG2D internalization impairs NK cell function and exacerbates radiation pneumonitis. Front Immunol 2023; 14:1250920. [PMID: 38077388 PMCID: PMC10704197 DOI: 10.3389/fimmu.2023.1250920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Radiation pneumonitis is a critical complication that constrains the use of radiation therapy for thoracic malignancies, leading to substantial morbidity via respiratory distress and lung function impairment. The role of Natural killer (NK) cells in inflammatory diseases is well-documented; however, their involvement in radiation pneumonitis is not fully understood. Methods To explore the involvement of NK cells in radiation pneumonitis, we analyzed tissue samples for NK cell presence and function. The study utilized immunofluorescence staining, western blotting, and immunoprecipitation to investigate CXCL10 and ROS levels, autophagy activity, and NKG2D receptor dynamics in NK cells derived from patients and animal models subjected to radiation. Result In this study, we observed an augmented infiltration of NK cells in tissues affected by radiation pneumonitis, although their function was markedly diminished. In animal models, enhancing NK cell activity appeared to decelerate the disease progression. Concomitant with the disease course, there was a notable upsurge in CXCL10 and ROS levels. CXCL10 was found to facilitate NK cell migration through CXCR3 receptor activation. Furthermore, evidence of excessive autophagy in patient NK cells was linked to ROS accumulation, as indicated by immunofluorescence and Western blot analyses. The association between the NKG2D receptor and its adaptor proteins (AP2 subunits AP2A1 and AP2M1), LC3, and lysosomes was intensified after radiation exposure, as demonstrated by immunoprecipitation. This interaction led to NKG2D receptor endocytosis and subsequent lysosomal degradation. Conclusion Our findings delineate a mechanism by which radiation-induced lung injury may suppress NK cell function through an autophagy-dependent pathway. The dysregulation observed suggests potential therapeutic targets; hence, modulating autophagy and enhancing NK cell activity could represent novel strategies for mitigating radiation pneumonitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Tian
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Cheng
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Zheng W, Chen Q, Liu H, Zeng L, Zhou Y, Liu X, Bai Y, Zhang J, Pan Y, Shao C. SDC1-dependent TGM2 determines radiosensitivity in glioblastoma by coordinating EPG5-mediated fusion of autophagosomes with lysosomes. Autophagy 2023; 19:839-857. [PMID: 35913916 PMCID: PMC9980589 DOI: 10.1080/15548627.2022.2105562] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common brain malignancy insensitive to radiotherapy (RT). Although macroautophagy/autophagy was reported to be a fundamental factor prolonging the survival of tumors under radiotherapeutic stress, the autophagic biomarkers coordinated to radioresistance of GBM are still lacking in clinical practice. Here we established radioresistant GBM cells and identified their protein profiles using tandem mass tag (TMT) quantitative proteomic analysis. It was found that SDC1 and TGM2 proteins were overexpressed in radioresistant GBM cells and tissues and they contributed to the poor prognosis of RT. Knocking down SDC1 and TGM2 inhibited the fusion of autophagosomes with lysosomes and thus enhanced the radiosensitivity of GBM cells. After irradiation, TGM2 bound with SDC1 and transported it from the cell membrane to lysosomes, and then bound to LC3 through its two LC3-interacting regions (LIRs), coordinating the encounter between autophagosomes and lysosomes, which should be a prerequisite for lysosomal EPG5 to recognize LC3 and subsequently stabilize the STX17-SNAP29-VAMP8 QabcR SNARE complex assembly. Moreover, when combined with RT, cystamine dihydrochloride (a TGM2 inhibitor) extended the lifespan of GBM-bearing mice. Overall, our findings demonstrated the EPG5 tethering mode with SDC1 and TGM2 during the fusion of autophagosomes with lysosomes, providing new insights into the molecular mechanism and therapeutic target underlying radioresistant GBM.Abbreviations: BafA1: bafilomycin A1; CQ: chloroquine; Cys-D: cystamine dihydrochloride; EPG5: ectopic P-granules 5 autophagy tethering factor; GBM: glioblastoma multiforme; GFP: green fluorescent protein; LAMP2: lysosomal associated membrane protein 2; LIRs: LC3-interacting regions; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NC: negative control; RFP: red fluorescent protein; RT: radiotherapy; SDC1: syndecan 1; SNAP29: synaptosome associated protein 29; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TGM2: transglutaminase 2; TMT: tandem mass tag; VAMP8: vesicle associated membrane protein 8; WT: wild type.
Collapse
Affiliation(s)
- Wang Zheng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qianping Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongxia Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Zeng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Bai
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Degan S, May BL, Jin YJ, Hammouda MB, Sun H, Zhang G, Wang Y, Erdmann D, Warren W, Zhang JY. Co-Treatment of Chloroquine and Trametinib Inhibits Melanoma Cell Proliferation and Decreases Immune Cell Infiltration. Front Oncol 2022; 12:782877. [PMID: 35847840 PMCID: PMC9282877 DOI: 10.3389/fonc.2022.782877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Autophagy is characterized as a cytoprotective process and inhibition of autophagy with medicinally active agents, such as chloroquine (CQ) is proposed as a prospective adjuvant therapy for cancer. Here, we examined the preclinical effects of CQ combined with the MEK inhibitor trametinib (TRA) on melanoma. We found that cotreatment of CQ and TRA markedly slowed melanoma growth induced in Tyr-CreER.BrafCa.Ptenfl/fl mice. Immunostaining showed that trametinib decreased Ki-67+ proliferating cells, and increased TUNEL+ apoptotic cells. The combo treatment induced a further decrease of Ki-67+ proliferating cells. Consistent with the in vivo findings, CQ and TRA inhibited melanoma cell proliferation in vitro, which was correlated by decreased cyclin D1 expression. In addition, we found that tissues treated with CQ and TRA had significantly decreased numbers of CD4+ and CD8+ T-lymphocytes and F4/80+ macrophages. Together, these results indicate that cotreatment of CQ and TRA decreases cancer cell proliferation, but also dampens immune cell infiltration. Further study is warranted to understand whether CQ-induced immune suppression inadvertently affects therapeutic benefits.
Collapse
Affiliation(s)
- Simone Degan
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Brian L. May
- Department of Surgery, Duke University, Durham, NC, United States
| | - Yingai J. Jin
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Manel Ben Hammouda
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Huiying Sun
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Guoqiang Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Yan Wang
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Detlev Erdmann
- Division of Plastic, Maxillofacial and Oral Surgery, Duke University Medical Center, Durham, NC, United States
| | - Warren Warren
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Jennifer Y. Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
12
|
DU BX, LIN P, LIN J. EGCG and ECG induce apoptosis and decrease autophagy via the AMPK/mTOR and PI3K/AKT/mTOR pathway in human melanoma cells. Chin J Nat Med 2022; 20:290-300. [DOI: 10.1016/s1875-5364(22)60166-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 12/11/2022]
|
13
|
Hu Y, Wu Y, Jiang C, Wang Z, Shen C, Zhu Z, Li H, Zeng Q, Xue Y, Wang Y, Liu L, Yi Y, Zhu H, Liu Q. Investigative on the Molecular Mechanism of Licorice Flavonoids Anti-Melanoma by Network Pharmacology, 3D/2D-QSAR, Molecular Docking, and Molecular Dynamics Simulation. Front Chem 2022; 10:843970. [PMID: 35308797 PMCID: PMC8924370 DOI: 10.3389/fchem.2022.843970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 01/29/2023] Open
Abstract
Licorice flavonoids (LCFs) are natural flavonoids isolated from Glycyrrhiza which are known to have anti-melanoma activities in vitro. However, the molecular mechanism of LCF anti-melanoma has not been fully understood. In this study, network pharmacology, 3D/2D-QSAR, molecular docking, and molecular dynamics (MD) simulation were used to explore the molecular mechanism of LCF anti-melanoma. First of all, we screened the key active components and targets of LCF anti-melanoma by network pharmacology. Then, the logIC50 values of the top 20 compounds were predicted by the 2D-QSAR pharmacophore model, and seven highly active compounds were screened successfully. An optimal 3D-QSAR pharmacophore model for predicting the activity of LCF compounds was established by the HipHop method. The effectiveness of the 3D-QSAR pharmacophore was verified by a training set of compounds with known activity, and the possible decisive therapeutic effect of the potency group was inferred. Finally, molecular docking and MD simulation were used to verify the effective pharmacophore. In conclusion, this study established the structure–activity relationship of LCF and provided theoretical guidance for the research of LCF anti-melanoma.
Collapse
Affiliation(s)
- Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - CuiPing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Hongxia Zhu, ; Qiang Liu,
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Hongxia Zhu, ; Qiang Liu,
| |
Collapse
|
14
|
Mao C, Xu X, Ding Y, Xu N. Optimization of BCG Therapy Targeting Neutrophil Extracellular Traps, Autophagy, and miRNAs in Bladder Cancer: Implications for Personalized Medicine. Front Med (Lausanne) 2021; 8:735590. [PMID: 34660642 PMCID: PMC8514698 DOI: 10.3389/fmed.2021.735590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
Bladder cancer (BC) is the ninth most common cancer and the thirteenth most common cause of mortality worldwide. Bacillus Calmette Guerin (BCG) instillation is a common treatment option for BC. BCG therapy is associated with the less adversary effects, compared to chemotherapy, radiotherapy, and other conventional treatments. BCG could inhibit the progression and recurrence of BC by triggering apoptosis pathways, arrest cell cycle, autophagy, and neutrophil extracellular traps (NETs) formation. However, BCG therapy is not efficient for metastatic cancer. NETs and autophagy were induced by BCG and help to suppress the growth of tumor cells especially in the primary stages of BC. Activated neutrophils can stimulate autophagy pathway and release NETs in the presence of microbial pathogenesis, inflammatory agents, and tumor cells. Autophagy can also regulate NETs formation and induce production of reactive oxygen species (ROS) and NETs. Moreover, miRNAs are important regulator of gene expression. These small non-coding RNAs are also considered as an essential factor to control the levels of tumor development. However, the interaction between BCG and miRNAs has not been well-understood yet. Therefore, the present study discusses the roles of miRNAs in regulations of autophagy and NETs formation in BCG therapy in the treatment of BC. The roles of autophagy and NETs formation in BC treatment and efficiency of BCG are also discussed.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Xu
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Wang Y, Wu N, Jiang N. Autophagy provides a conceptual therapeutic framework for bone metastasis from prostate cancer. Cell Death Dis 2021; 12:909. [PMID: 34611139 PMCID: PMC8492756 DOI: 10.1038/s41419-021-04181-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a common malignant tumor, which can spread to multiple organs in the body. Metastatic disease is the dominant reason of death for patients with prostate cancer. Prostate cancer usually transfers to bone. Bone metastases are related to pathologic fracture, pain, and reduced survival. There are many known targets for prostate cancer treatment, including androgen receptor (AR) axis, but drug resistance and metastasis eventually develop in advanced disease, suggesting the necessity to better understand the resistance mechanisms and consider multi-target medical treatment. Because of the limitations of approved treatments, further research into other potential targets is necessary. Metastasis is an important marker of cancer development, involving numerous factors, such as AKT, EMT, ECM, tumor angiogenesis, the development of inflammatory tumor microenvironment, and defect in programmed cell death. In tumor metastasis, programmed cell death (autophagy, apoptosis, and necroptosis) plays a key role. Malignant cancer cells have to overcome the different forms of cell death to transfer. The article sums up the recent studies on the mechanism of bone metastasis involving key regulatory factors such as macrophages and AKT and further discusses as to how regulating autophagy is crucial in relieving prostate cancer bone metastasis.
Collapse
Affiliation(s)
- YouZhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Ning Wu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, 300060, Tianjin, China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
16
|
Li J, Chen S, Zhao Y, Gong H, Wang T, Ge X, Wang Y, Zhu C, Chen L, Dai F, Xie S, Wang C, Luo W. Design, Synthesis, and Biological Evaluation of Benzo[cd]indol-2(1H)-ones Derivatives as a Lysosome-Targeted Anti-metastatic Agent. Front Oncol 2021; 11:733589. [PMID: 34540699 PMCID: PMC8446683 DOI: 10.3389/fonc.2021.733589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023] Open
Abstract
Lysosomes have become a hot topic in tumor therapy; targeting the lysosome is therefore a promising strategy in cancer therapy. Based on our previous lysosome-targeted bio-imaging agent, homospermine-benzo[cd]indol-2(1H)-one conjugate (HBC), we further developed three novel series of polyamine- benzo[cd]indol-2(1H)-one conjugates. Among them, compound 15f showed potent inhibitory activity in hepatocellular carcinoma migration both in vitro and in vivo. Our study results showed that compound 15f entered the cancer cells via the polyamine transporter localized in the lysosomes and caused autophagy and apoptosis. The mechanism of action revealed that the crosstalk between autophagy and apoptosis induced by 15f was mutually reinforcing patterns. Besides, 15f also targeted lysosomes and exhibited stronger green fluorescence than HBC, which indicated its potential as an imaging agent. To summarize, compound 15f could be used as a valuable dual-functional lead compound for future development against liver-cancer metastasis and lysosome imaging.
Collapse
Affiliation(s)
- Jinghua Li
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Shuai Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Yancong Zhao
- The First Affiliated Hospital, Henan University, Kaifeng, China
| | - Huiyuan Gong
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Tong Wang
- Institute of Chemical Biology, School of Pharmacy, Henan University, Kaifeng, China
| | - Xiaoling Ge
- College of Chemistry and Chemical Engineering Henan University, Kaifeng, China
| | - Yuxia Wang
- College of Chemistry and Chemical Engineering Henan University, Kaifeng, China
| | - Chenguang Zhu
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Liang Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Songqiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, Kaifeng, China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| |
Collapse
|
17
|
A Novel Autophagy-Related lncRNA Gene Signature to Improve the Prognosis of Patients with Melanoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8848227. [PMID: 34250091 PMCID: PMC8238568 DOI: 10.1155/2021/8848227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
Objective Autophagy and long noncoding RNAs (lncRNAs) have been the focus of research on the pathogenesis of melanoma. However, the autophagy network of lncRNAs in melanoma has not been reported. The purpose of this study was to investigate the lncRNA prognostic markers related to melanoma autophagy and predict the prognosis of patients with melanoma. Methods We downloaded RNA sequencing data and clinical information of melanoma from the Cancer Genome Atlas. The coexpression of autophagy-related genes (ARGs) and lncRNAs was analyzed. The risk model of autophagy-related lncRNAs was established by univariate and multivariate Cox regression analyses, and the best prognostic index was evaluated combined with clinical data. Finally, gene set enrichment analysis was performed on patients in the high- and low-risk groups. Results According to the results of the univariate Cox analysis, only the overexpression of LINC00520 was associated with poor overall survival, unlike HLA-DQB1-AS1, USP30-AS1, AL645929, AL365361, LINC00324, and AC055822. The results of the multivariate Cox analysis showed that the overall survival of patients in the high-risk group was shorter than that recorded in the low-risk group (p < 0.001). Moreover, in the receiver operating characteristic curve of the risk model we constructed, the area under the curve (AUC) was 0.734, while the AUC of T and N was 0.707 and 0.658, respectively. The Gene Ontology was mainly enriched with the positive regulation of autophagy and the activation of the immune system. The results of the Kyoto Encyclopedia of Genes and Genomes enrichment were mostly related to autophagy, immunity, and melanin metabolism. Conclusion The positive regulation of autophagy may slow the transition from low-risk patients to high-risk patients in melanoma. Furthermore, compared with clinical information, the autophagy-related lncRNA risk model may better predict the prognosis of patients with melanoma and provide new treatment ideas.
Collapse
|
18
|
D'Aguanno S, Mallone F, Marenco M, Del Bufalo D, Moramarco A. Hypoxia-dependent drivers of melanoma progression. J Exp Clin Cancer Res 2021; 40:159. [PMID: 33964953 PMCID: PMC8106186 DOI: 10.1186/s13046-021-01926-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia, a condition of low oxygen availability, is a hallmark of tumour microenvironment and promotes cancer progression and resistance to therapy. Many studies reported the essential role of hypoxia in regulating invasiveness, angiogenesis, vasculogenic mimicry and response to therapy in melanoma. Melanoma is an aggressive cancer originating from melanocytes located in the skin (cutaneous melanoma), in the uveal tract of the eye (uveal melanoma) or in mucosal membranes (mucosal melanoma). These three subtypes of melanoma represent distinct neoplasms in terms of biology, epidemiology, aetiology, molecular profile and clinical features.In this review, the latest progress in hypoxia-regulated pathways involved in the development and progression of all melanoma subtypes were discussed. We also summarized current knowledge on preclinical studies with drugs targeting Hypoxia-Inducible Factor-1, angiogenesis or vasculogenic mimicry. Finally, we described available evidence on clinical studies investigating the use of Hypoxia-Inducible Factor-1 inhibitors or antiangiogenic drugs, alone or in combination with other strategies, in metastatic and adjuvant settings of cutaneous, uveal and mucosal melanoma.Hypoxia-Inducible Factor-independent pathways have been also reported to regulate melanoma progression, but this issue is beyond the scope of this review.As evident from the numerous studies discussed in this review, the increasing knowledge of hypoxia-regulated pathways in melanoma progression and the promising results obtained from novel antiangiogenic therapies, could offer new perspectives in clinical practice in order to improve survival outcomes of melanoma patients.
Collapse
Affiliation(s)
- Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Mallone
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Marenco
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | | |
Collapse
|
19
|
Juszczak AM, Czarnomysy R, Strawa JW, Zovko Končić M, Bielawski K, Tomczyk M. In Vitro Anticancer Potential of Jasione montana and Its Main Components against Human Amelanotic Melanoma Cells. Int J Mol Sci 2021; 22:3345. [PMID: 33805898 PMCID: PMC8036727 DOI: 10.3390/ijms22073345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Jasione montana L. (Campanulaceae) is used in traditional Belarusian herbal medicine for sleep disorders in children, but the chemical composition and biological activity have not been investigated. In this study, the activities of J. montana extracts, their fractions and main compounds were evaluated in amelanotic melanoma C32 (CRL-1585) cells and normal fibroblasts (PCS-201-012). The extracts and fractions were analyzed using liquid chromatography-photodiode array detection-electrospray ionization-mass spectrometry (LC-PDA-ESI-MS/TOF) to characterize 25 compounds. Further, three major and known constituents, luteolin (22) and its derivatives such as 7-O-glucoside (12) and 7-O-sambubioside (9) were isolated and identified. The cytotoxic activities against fibroblasts and the amelanotic melanoma cell line were determined using the fixable viability stain (FVS) assay. The influence of diethyl ether (Et2O) fraction (JM4) and 22 on apoptosis induction was investigated using an annexin V binding assay. The obtained results showed significant cytotoxicity of JM4 and 22 with IC50 values of 119.7 ± 3.2 and 95.1 ± 7.2 μg/mL, respectively. The proapoptotic potential after 22 treatment in the C32 human amelanotic melanoma cell line was comparable to that of vinblastine sulfate (VLB), detecting 29.2 ± 3.0% apoptotic cells. Moreover, 22 displayed less necrotic potential against melanoma cells than VLB. In addition, the influences of JM4 and 22 on the dysfunction of the mitochondrial membrane potential (MMP), cell cycle and activity of caspases 3, 8, 9, and 10 were established. The effects of JM4 on MMP change (74.5 ± 3.0% of the cells showed a reduced MMP) corresponded to the results obtained from the annexin V binding assay and activation of caspase-9. JM4 and 22 displayed a significant impact on caspase-9 (40.9 ± 2.4% of the cells contained active caspase-9 after JM4 treatment and 16.6 ± 0.8% after incubation with 22) and the intrinsic (mitochondrial) apoptotic pathway. Moreover, studies have shown that JM4 and 22 affect the activation of external apoptosis pathways by inducing the caspase-8 and caspase-10 cascades. Thus, activation of caspase-3 and DNA damage via external and internal apoptotic pathways were observed after treatment with JM4 and 22. The obtained results suggest that J. montana extracts could be developed as new topical preparations with potential anticancer properties due to their promising cytotoxic and proapoptotic potential.
Collapse
Affiliation(s)
- Aleksandra Maria Juszczak
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (A.M.J.); (J.W.S.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland; (R.C.); (K.B.)
| | - Jakub Władysław Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (A.M.J.); (J.W.S.)
| | - Marijana Zovko Končić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20/II, 10000 Zagreb, Croatia;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Kilińskiego 1, 15-089 Białystok, Poland; (R.C.); (K.B.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (A.M.J.); (J.W.S.)
| |
Collapse
|
20
|
Yang D, Chen M, Sun Y, Jin Y, Lu C, Pan X, Quan G, Wu C. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater 2021; 121:119-133. [PMID: 33285323 DOI: 10.1016/j.actbio.2020.12.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Transdermal drug delivery is an attractive route for dermatological disease therapy because it can directly target the lesion site on the skin, reduce adverse reactions associated with systemic administration, and improve patient compliance. However, the stratum corneum, as the main skin barrier, severely limits transdermal drug penetration, with compromised bioavailability. Microneedles (MNs), which are leveraged to markedly improve the penetration of therapeutic agents by piercing the stratum corneum and creating hundreds of reversible microchannels in a minimally invasive manner, have been envisioned as a milestone for effective transdermal drug delivery, especially for superficial disease therapy. Here, the emergence of versatile MNs for the transdermal delivery of various drugs is reviewed, particularly focusing on the application of MNs for the treatment of diverse skin diseases, including superficial tumors, scars, psoriasis, herpes, acne, and alopecia. Additionally, the promises and challenges of the widespread translation of MN-mediated transdermal drug delivery in the dermatology field are summarized.
Collapse
|
21
|
Role of Hypoxia-Mediated Autophagy in Tumor Cell Death and Survival. Cancers (Basel) 2021; 13:cancers13030533. [PMID: 33573362 PMCID: PMC7866864 DOI: 10.3390/cancers13030533] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death or type I apoptosis has been extensively studied and its contribution to the pathogenesis of disease is well established. However, autophagy functions together with apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive for cell survival or cell death. Autophagy can promote tumor suppression but also tumor growth by inducing cancer-cell development and proliferation. In this review, we will discuss how autophagy reprograms tumor cells in the context of tumor hypoxic stress. We will illustrate how autophagy acts as both a suppressor and a driver of tumorigenesis through tuning survival in a context dependent manner. We also shed light on the relationship between autophagy and immune response in this complex regulation. A better understanding of the autophagy mechanisms and pathways will undoubtedly ameliorate the design of therapeutics aimed at targeting autophagy for future cancer immunotherapies.
Collapse
|
22
|
Jia X, Chen H, Ren Y, Dejizhuoga, Gesangyuzhen, Gao N, Feng H, Huang W, Liao Y, Yu H. BAP1 antagonizes WWP1-mediated transcription factor KLF5 ubiquitination and inhibits autophagy to promote melanoma progression. Exp Cell Res 2021; 402:112506. [PMID: 33516665 DOI: 10.1016/j.yexcr.2021.112506] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/07/2023]
Abstract
Accumulating evidence revealed the abnormal expression of KLF5 in human cancers while its role in melanoma remains uncharacterized. This study aimed to explore the role of KLF5 in the proliferation and metastasis of melanoma. Bioinformatics analysis was performed to detect WWP1, BAP1 and KLF5 expression in melanoma, followed by expression determination on clinical tissues from melanoma patients and cancer cells. The cancer cells were infected with lentivirus expressing KLF5 or BAP1 while PI3K, AKT and mTOR expression was detected and autophagy was observed. Treated cells were injected to mice when tumor growth was measured and autophagy-related protein was detected. Plasmids expressing WWP1 and Ub-K48 were co-transfected into treated melanoma cells while immunoprecipitation assay was performed to determine the interaction among KLF5, WWP1, and BAP1. WWP1 was poorly expressed in melanoma cells and tissues whereas KLF5 was highly expressed and was positively correlated to poor prognosis. KLF5 promoted melanoma cell malignant phenotypes as well as inhibited autophagy. Interestingly, KLF5 contributed to activation of PI3K-AKT-mTOR signaling pathway, thereby inhibiting autophagy in melanoma cells. WWP1 mediated K48-linked ubiquitination of KLF5 to promote its degradation, and BAP1 antagonized this modification and stabilized KLF5 protein expression. Besides, BAP1 promoted KLF5-mediated growth of melanoma in vivo. Taken altogether, BAP1 antagonized WWP1-mediated ubiquitination of KLF5 to inhibit autophagy and promote melanoma development.
Collapse
Affiliation(s)
- Xiaomin Jia
- Department of Pathology, Lhasa People's Hospital, Tibet Autonomous Region, Lhasa, 850000, PR China
| | - Hongwei Chen
- Department of General Surgery, Hunan Province Brain Hospital, Changsha, 410007, PR China
| | - Yi Ren
- Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Dejizhuoga
- Department of Pathology, Lhasa People's Hospital, Tibet Autonomous Region, Lhasa, 850000, PR China
| | - Gesangyuzhen
- Department of Pathology, Lhasa People's Hospital, Tibet Autonomous Region, Lhasa, 850000, PR China
| | - Nina Gao
- Department of Pathology, Hunan Cancer Hospital, Changsha, 410013, PR China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, PR China.
| | - Wei Huang
- Department of Gynaecology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, PR China.
| | - Yangying Liao
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, PR China
| | - Hong Yu
- Department of Pathology, The Third People's Hospital of Shenzhen, Shenzhen, 518000, PR China
| |
Collapse
|
23
|
Liu Y, Xie Y, Lin Y, Xu Q, Huang Y, Peng M, Lai W, Zheng Y. Cepharanthine as a Potential Novel Tumor-Regional Therapy in Treating Cutaneous Melanoma: Altering the Expression of Cathepsin B, Tumor Suppressor Genes and Autophagy-Related Proteins. Front Bioeng Biotechnol 2020; 8:601969. [PMID: 33335896 PMCID: PMC7736638 DOI: 10.3389/fbioe.2020.601969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
The incidence of primary cutaneous melanoma continues to increase annually and is one of the most aggressive malignancies in humans and need to develop more novel non-surgical therapies. Autophagy and cathepsin B targeted therapy was reported to improve melanoma treatment. Cepharanthine (CEP), a natural alkaloid extracted from the genus Cephalophyllum has been reported to have the function of inhibiting cancers. We found that CEP inhibited human primary cutaneous melanoma cells viability and proliferation in 24 h in vitro, and topical application or intra-tumoral injection of CEP decreased the growth of cutaneous melanoma in mice within 4 weeks. CEP preparations below 50% concentration did not induce skin irritation and allergy reaction on human skin in vivo. Primary cutaneous melanoma cells incubated with CEP, the expression of cathepsin B was decreased and the LC3-I and LC3-II expression changed in a dose-dependent manner, while p53, p21Cip1p, and p16Inka gene expression was up-regulated. We demonstrated the effects of CEP as a novel tumor-regional therapy for cutaneous melanoma and provided a preliminary research basis for future clinical treatment researches and the exploration of integrated treatments with systemic therapy, radiotherapy, and surgery for human primary cutaneous melanoma.
Collapse
Affiliation(s)
- Yufang Liu
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Xie
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yao Lin
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingfang Xu
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunfen Huang
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengran Peng
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Lai
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Zheng
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Shang XY, Guo R, Yu XQ, Lin B, Huang XX, Yao GD, Song SJ. Enantiomeric 8-O-4'-type neolignans from Crataegus pinnatifida exhibit cytotoxic effect via apoptosis and autophagy in Hep3B cells. Bioorg Chem 2020; 104:104267. [PMID: 32920350 DOI: 10.1016/j.bioorg.2020.104267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
Crataegus pinnatifida has been famous for its nutritional purpose. However, systematic investigation on the bioactive constituents is still lacking, although this fruit has been reported for its cytotoxic effect before. In this study, two pairs of new lignan enantiomers (1a/1b, 2a/2b), which isolated using chiral chromatographic column from the fruits of C. pinnatifida were studied. The absolute configurations of enantiomers were determined by comparison between the experimental electronic circular dichroism (ECD) and calculated ECD spectra. Among them, 1a/1b exhibited a better cytotoxic effect in hepatocellular carcinoma Hep3B cells with an IC50 value of 34.97 ± 2.74 and 17.42 ± 0.71 μM, respectively. In addition, 1b induced much more apoptotic, autophagic cells than 1a in Hep3B cells. Furthermore, the underlying mechanism was demonstrated that p38 activation could promote 1b-induced apoptosis and autophagy. Moreover, 1b-induced apoptosis was significantly decreased in the presence of autophagic inhibitor Bafilomycin A1 (Baf A1), suggesting that the induction of autophagy enhanced apoptotic cell death in 1b-treated cells. In general, these findings provide a valuable basis for further understanding the effect of 8-O-4' lignans in C. pinnatifida on cytotoxic effect.
Collapse
Affiliation(s)
- Xin-Yue Shang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Rui Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Qi Yu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
25
|
Alimohammadi M, Golpour M, Sohbatzadeh F, Hadavi S, Bekeschus S, Niaki HA, Valadan R, Rafiei A. Cold Atmospheric Plasma Is a Potent Tool to Improve Chemotherapy in Melanoma In Vitro and In Vivo. Biomolecules 2020; 10:1011. [PMID: 32650505 PMCID: PMC7407977 DOI: 10.3390/biom10071011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Malignant melanoma is a devastating disease. Because of its aggressiveness, it also serves as a model tumor for investigating novel therapeutic avenues. In recent years, scientific evidence has shown that cold atmospheric plasma (CAP) might be a promising modality in cancer therapy. In this study, we aimed to evaluate the effect of CAP generated by an argon plasma jet alone or in combination with dacarbazine (DAC) on melanoma cells in vitro and in vivo. The effects of the CAP on inducing lipid peroxidation and nitric oxide production were higher in B16 melanoma cells in comparison to non-malignant L929 cells. Assays on cell growth, apoptosis, and expression of genes related to, e.g., autophagic processes, showed CAP to have a substantial impact in melanoma cells while there were only minoreffects in L929 cells. In vivo, both CAP monotherapy and combination with DAC significantly decreased tumor growth. These results suggest that CAP not only selectively induces cell death in melanoma but also holds promises in combination with chemotherapy that might lead to improved tumor control.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari 4847191971, Iran; (M.A.); (R.V.)
| | - Monireh Golpour
- Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari 4847191971, Iran;
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar 4741613534, Iran; (F.S.); (S.H.)
| | - Seyedehniaz Hadavi
- Department of Atomic and Molecular Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar 4741613534, Iran; (F.S.); (S.H.)
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany;
| | - Haleh Akhavan Niaki
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 4817813748, Iran;
| | - Reza Valadan
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari 4847191971, Iran; (M.A.); (R.V.)
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari 4847191971, Iran; (M.A.); (R.V.)
| |
Collapse
|
26
|
Xu W, Yu M, Qin J, Luo Y, Zhong M. LACTB Regulates PIK3R3 to Promote Autophagy and Inhibit EMT and Proliferation Through the PI3K/AKT/mTOR Signaling Pathway in Colorectal Cancer. Cancer Manag Res 2020; 12:5181-5200. [PMID: 32636680 PMCID: PMC7335311 DOI: 10.2147/cmar.s250661] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common aggressive malignancies. LACTB functions as a tumor suppressor, and previous findings have demonstrated that LACTB can inhibit epithelial-to-mesenchymal transition (EMT) and proliferation of breast cancer and CRC cells. However, few studies have investigated the roles of LACTB in autophagy and proliferation in CRC. The current study aimed to identify the roles of LACTB in EMT and proliferation associated with autophagy in CRC and to elucidate the probable molecular mechanisms through which LACTB are involved in these processes. Materials and Methods Transwell invasion, MTT, transmission electron microscopy, RNA-seq, immunoprecipitation, immunohistochemistry and Western blotting assays were performed to evaluate the migratory, invasive, proliferative and autophagic abilities of CRC cells, and the levels of active molecules involved in PI3K/AKT signaling were examined through Western blotting analysis. In addition, the in vivo function of LACTB was assessed using a tumor xenograft model. Results Weaker LACTB expression was found in CRC tissue samples than in nonmalignant tissue samples, and LACTB inhibited cell invasion, migration, and proliferation by promoting autophagy in vitro. Furthermore, the regulatory effects of LACTB on autophagy and EMT were partially attributed to the PI3K/AKT signaling pathway. The in vivo results also showed that LACTB modulated CRC tumorigenesis. Conclusion LACTB can regulate the activity of PIK3R3 to influence the level of PI3K, and it also promotes autophagy and inhibits EMT and proliferation in part through the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Wei Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, People's Republic of China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, People's Republic of China
| | - Jun Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, People's Republic of China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, People's Republic of China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, People's Republic of China
| |
Collapse
|
27
|
Liu H, He Z, Germič N, Ademi H, Frangež Ž, Felser A, Peng S, Riether C, Djonov V, Nuoffer JM, Bovet C, Mlinarič-Raščan I, Zlobec I, Fiedler M, Perren A, Simon HU. ATG12 deficiency leads to tumor cell oncosis owing to diminished mitochondrial biogenesis and reduced cellular bioenergetics. Cell Death Differ 2020; 27:1965-1980. [PMID: 31844253 PMCID: PMC7244572 DOI: 10.1038/s41418-019-0476-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
In contrast to the "Warburg effect" or aerobic glycolysis earlier generalized as a phenomenon in cancer cells, more and more recent evidence indicates that functional mitochondria are pivotal for ensuring the energy supply of cancer cells. Here, we report that cancer cells with reduced autophagy-related protein 12 (ATG12) expression undergo an oncotic cell death, a phenotype distinct from that seen in ATG5-deficient cells described before. In addition, using untargeted metabolomics with ATG12-deficient cancer cells, we observed a global reduction in cellular bioenergetic pathways, such as β-oxidation (FAO), glycolysis, and tricarboxylic acid cycle activity, as well as a decrease in mitochondrial respiration as monitored with Seahorse experiments. Analyzing the biogenesis of mitochondria by quantifying mitochondrial DNA content together with several mitochondrion-localizing proteins indicated a reduction in mitochondrial biogenesis in ATG12-deficient cancer cells, which also showed reduced hexokinase II expression and the upregulation of uncoupling protein 2. ATG12, which we observed in normal cells to be partially localized in mitochondria, is upregulated in multiple types of solid tumors in comparison with normal tissues. Strikingly, mouse xenografts of ATG12-deficient cells grew significantly slower as compared with vector control cells. Collectively, our work has revealed a previously unreported role for ATG12 in regulating mitochondrial biogenesis and cellular energy metabolism and points up an essential role for mitochondria as a failsafe mechanism in the growth and survival of glycolysis-dependent cancer cells. Inducing oncosis by imposing an ATG12 deficiency in solid tumors might represent an anticancer therapy preferable to conventional caspase-dependent apoptosis that often leads to undesirable consequences, such as incomplete cancer cell killing and a silencing of the host immune system.
Collapse
Affiliation(s)
- He Liu
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland
| | - Zhaoyue He
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - Nina Germič
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland
| | - Hyrijie Ademi
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland
| | - Živa Frangež
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland
| | - Andrea Felser
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - Shuang Peng
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, CH-3012, Bern, Switzerland
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
- Pediatric Endocrinology and Diabetology and Metabolism, University Children's Hospital Bern, CH-3010, Bern, Switzerland
| | - Cédric Bovet
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | | | - Inti Zlobec
- Institute of Pathology, University of Bern, CH-3008, Bern, Switzerland
| | - Martin Fiedler
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - Aurel Perren
- Institute of Pathology, University of Bern, CH-3008, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland.
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.
| |
Collapse
|
28
|
Significance of STAT3 in Immune Infiltration and Drug Response in Cancer. Biomolecules 2020; 10:biom10060834. [PMID: 32486001 PMCID: PMC7355836 DOI: 10.3390/biom10060834] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor and regulates tumorigenesis. However, the functions of STAT3 in immune and drug response in cancer remain elusive. Hence, we aim to reveal the impact of STAT3 in immune infiltration and drug response comprehensively by bioinformatics analysis. The expression of STAT3 and its relationship with tumor stage were explored by Tumor Immune Estimation Resource (TIMER), Human Protein Altas (HPA), and UALCAN databases. The correlations between STAT3 and immune infiltration, gene markers of immune cells were analyzed by TIMER. Moreover, the association between STAT3 and drug response was evaluated by the Cancer Cell Line Encyclopedia (CCLE) and Cancer Therapeutics Response Portal (CTRP). The results suggested that the mRNA transcriptional level of STAT3 was lower in tumors than normal tissues and mostly unrelated to tumor stage. Besides, the protein expression of STAT3 decreased in colorectal and renal cancer compared with normal tissues. Importantly, STAT3 was correlated with immune infiltration and particularly regulated tumor-associated macrophage (TAM), M2 macrophage, T-helper 1 (Th1), follicular helper T (Treg), and exhausted T-cells. Remarkably, STAT3 was closely correlated with the response to specified inhibitors and natural compounds in cancer. Furthermore, the association between STAT3 and drug response was highly cell line type dependent. Significantly, the study provides thorough insight that STAT3 is associated with immunosuppression, as well as drug response in clinical treatment.
Collapse
|
29
|
Wan Q, Jin L, Su Y, liu Y, Li C, Wang Z. Development and validation of autophagy‐related‐gene biomarker and nomogram for predicting the survival of cutaneous melanoma. IUBMB Life 2020; 72:1364-1378. [DOI: 10.1002/iub.2258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Qi Wan
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐Sen University Guangzhou China
| | - Lin Jin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐Sen University Guangzhou China
| | - Yaru Su
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐Sen University Guangzhou China
| | - Ying liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐Sen University Guangzhou China
| | - Chaoyang Li
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐Sen University Guangzhou China
| | - Zhichong Wang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat‐Sen University Guangzhou China
| |
Collapse
|
30
|
Machine learning with autophagy-related proteins for discriminating renal cell carcinoma subtypes. Sci Rep 2020; 10:720. [PMID: 31959887 PMCID: PMC6971298 DOI: 10.1038/s41598-020-57670-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Machine learning techniques have been previously applied for classification of tumors based largely on morphological features of tumor cells recognized in H&E images. Here, we tested the possibility of using numeric data acquired from software-based quantification of certain marker proteins, i.e. key autophagy proteins (ATGs), obtained from immunohistochemical (IHC) images of renal cell carcinomas (RCC). Using IHC staining and automated image quantification with a tissue microarray (TMA) of RCC, we found ATG1, ATG5 and microtubule-associated proteins 1A/1B light chain 3B (LC3B) were significantly reduced, suggesting a reduction in the basal level of autophagy with RCC. Notably, the levels of the ATG proteins expressed did not correspond to the mRNA levels expressed in these tissues. Applying a supervised machine learning algorithm, the K-Nearest Neighbor (KNN), to our quantified numeric data revealed that LC3B provided a strong measure for discriminating clear cell RCC (ccRCC). ATG5 and sequestosome-1 (SQSTM1/p62) could be used for classification of chromophobe RCC (crRCC). The quantitation of particular combinations of ATG1, ATG16L1, ATG5, LC3B and p62, all of which measure the basal level of autophagy, were able to discriminate among normal tissue, crRCC and ccRCC, suggesting that the basal level of autophagy would be a potentially useful parameter for RCC discrimination. In addition to our observation that the basal level of autophagy is reduced in RCC, our workflow from quantitative IHC analysis to machine learning could be considered as a potential complementary tool for the classification of RCC subtypes and also for other types of tumors for which precision medicine requires a characterization.
Collapse
|
31
|
Samaka RM, Basha MA, Mansour E. Does the Autophagy Related Gene 7 (ATG7) Have a Role in Non-Melanoma Skin Cancer? Clin Cosmet Investig Dermatol 2020; 13:49-58. [PMID: 32021368 PMCID: PMC6980838 DOI: 10.2147/ccid.s222051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
Purpose To evaluate the role of autophagy related gene 7 (ATG7) in non-melanoma skin cancer. Subjects and Methods This retrospective and prospective case-control study was performed on 104 patients with non-melanoma skin cancer (NMSC) in addition to 20 apparently healthy subjects matched for age and sex as a control group. Multiple skin biopsies were taken for immunohistochemical evaluation of ATG7 expression. Results Both epithelial and stromal ATG7 were expressed in all participants while all patients showed nucleocytoplasmic localization and controls showed both cytoplasmic and nucleocytoplasmic expression. In addition, significantly higher H-scores of ATG7 in both epithelium and stroma were detected in patients compared to controls (P<0.001). Conclusion ATG7 nucleocytoplasmic topographic localization might be involved in the pathogenesis of NMSC, which can open the gate for new target therapy for this skin cancer.
Collapse
Affiliation(s)
- Rehab M Samaka
- Pathology Department, Faculty of Medicine, Menoufia University, Al Minufya, Egypt
| | - Mohammed A Basha
- Dermatology, Andrology and STDs Department, Faculty of Medicine, Menoufia University, Al Minufya, Egypt
| | - Eman Mansour
- Ministry of Health, El Menshawy General Hospital, Tanta, Egypt
| |
Collapse
|
32
|
Palrasu M, Knapinska AM, Diez J, Smith L, LaVoi T, Giulianotti M, Houghten RA, Fields GB, Minond D. A Novel Probe for Spliceosomal Proteins that Induces Autophagy and Death of Melanoma Cells Reveals New Targets for Melanoma Drug Discovery. Cell Physiol Biochem 2019; 53:656-686. [PMID: 31573152 PMCID: PMC6990463 DOI: 10.33594/000000164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Background/Aims: Despite recent advances in melanoma drug discovery, the average overall survival of patients with late stage metastatic melanoma is approximately 3 years, suggesting a need for approaches that identify new melanoma targets. We have previously reported a discovery of novel anti-melanoma compound 2155–14 (Onwuha-Ekpete et al., J Med Chem. 2014 Feb 27; 57(4):1599–608). In the report presented herein we aim to identify its target(s) and mechanism of action. Methods: We utilized biotinylated analog of 2155–14 to pull down its targets from melanoma cells. Proteomics in combination with western blot were used to identify the targets. Mechanism of action of 2155–14 was determined using flow cytometry, RT-PCR, microscopy, western blot, and enzymatic activity assays. Where applicable, one-way analysis of variance (ANOVA) was used followed by Dunnett post hoc test. Results: In the present study, we identified ATP-dependent RNA helicase DDX1 and heterogeneous nuclear ribonucleoproteins (hnRNPs) H1, H2 and A2/B1 as targets of anti-melanoma compound 2155–14. To the best of our knowledge, this is a first report suggesting that these proteins could be targeted for melanoma therapy. Mechanistic investigations showed that 2155–14 induces ER stress leading to potentiation of basal autophagy resulting in melanoma cell death in BRAF and NRAS mutated melanoma cells. Conclusion: Identification of mode of action of 2155–14 may provide insight into novel therapies against a broad range of melanoma subtypes. These studies were enabled by the novel probe derived from a mixture-based library, an important class of chemical biology tools for discovering novel targets.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Anna M Knapinska
- Department of Chemistry & Biochemistry, Center for Molecular Biology & Biotechnology, Florida Atlantic University, Jupiter, FL, USA
| | - Juan Diez
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Lyndsay Smith
- Department of Chemistry & Biochemistry, Center for Molecular Biology & Biotechnology, Florida Atlantic University, Jupiter, FL, USA
| | - Travis LaVoi
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | - Marc Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | | | - Gregg B Fields
- Department of Chemistry & Biochemistry, Center for Molecular Biology & Biotechnology, Florida Atlantic University, Jupiter, FL, USA
| | - Dmitriy Minond
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA,
| |
Collapse
|
33
|
Guo R, Shang XY, Lv TM, Yao GD, Lin B, Wang XB, Huang XX, Song SJ. Phenylpropanoid derivatives from the fruit of Crataegus pinnatifida Bunge and their distinctive effects on human hepatoma cells. PHYTOCHEMISTRY 2019; 164:252-261. [PMID: 31109713 DOI: 10.1016/j.phytochem.2019.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Ten undescribed phenylpropanoid derivatives including four pairs of enantiomers and two 8-9' linked neolignans, together with fifteen known ones were isolated from the fruit of Crataegus pinnatifida Bunge. Their structures were established by comprehensive spectroscopic analyses. Enantiomers were separated successfully by chiral chromatographic column and their absolute configurations were determined by comparison of the experimental and calculated electronic circular dichroism (ECD) spectra. The in vitro cytotoxicity of the isolates were evaluated against two human hepatocellular carcinoma, HepG2 and Hep3B cells. Among them, (±)-crataegusanoid A, (±)-crataegusanoid B and crataegusanoid F exhibited moderate cytotoxicity. Interestingly, the different absolute configurations of (±)-crataegusanoid A and B demonstrated enantioselective cytotoxicity in HepG2 cells. Further flow cytometry analysis indicated that both (-)-crataegusanoid A and (-)-crataegusanoid B performed more significant effects on cell apoptosis, autophagy, and cell cycle progression compared with their enantiomers (+)-crataegusanoid A and (+)-crataegusanoid B. In addition, the results revealed that these two pairs of enantiomers induced protective autophagy in HepG2 cells.
Collapse
Affiliation(s)
- Rui Guo
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Xin-Yue Shang
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Tian-Ming Lv
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Guo-Dong Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, China
| | - Xiao-Bo Wang
- Chinese People's Liberation Army 210 Hospital, Dalian, 116021, PR China
| | - Xiao-Xiao Huang
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Chinese People's Liberation Army 210 Hospital, Dalian, 116021, PR China.
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
34
|
Liang N, He Q, Liu X, Sun H. Multifaceted roles of ATM in autophagy: From nonselective autophagy to selective autophagy. Cell Biochem Funct 2019; 37:177-184. [PMID: 30847960 DOI: 10.1002/cbf.3385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 01/14/2023]
Abstract
The ataxia-telangiectasia mutated (ATM) protein kinase is best known for its critical nuclear roles in the DNA damage response (DDR), cell cycle checkpoints, and the maintenance of gene stability. In this review, we highlight the multifaceted cytoplasmic functions of ATM in autophagy. We focused on the functions of ATM in nonselective autophagy in cancer. An Oncomine database analysis showed a tight association between ATM and autophagy in various cancers. In particular, its mechanisms in nonselective autophagy, those induced by ionizing radiation (IR), are illustrated in detail and involve the MAPK14 pathway, mTOR pathway, and Beclin1/PI3KIII complexes. Recently, an increasing number of studies revealed that autophagy could also be highly selective. We additionally emphasized the novel roles of ATM in selective autophagy, including mitophagy, pexophagy, and lipophagy. The regulation of these processes mainly involves ATM-PEX5, ATM-AMPK-TSC2-mTORC1-ULK1, PPM1D-ATM-MTOR, PINK I/Parkin, and NAD+/SIRT1. We aimed to provide new perspectives on the importance of ATM in the diverse field of autophagy. The intricate regulation of ATM in autophagy still requires further investigation, which would enhance our understanding of its role in cell dynamics and homeostasis. SIGNIFICANCE OF THE STUDY: Our review highlighted the multifaceted cytoplasmic functions of ATM on autophagy. First, we focused on the functions of ATM in nonselective autophagy within cancer especially those induced by IR, involving the MAPK14 pathway, mTOR pathway, and Beclin1/PI3KIII complexes. These provided a theoretical understanding of tumour radiosensitivity and chemosensitivity. In addition, we emphasized the novel roles of ATM in selective autophagy, including mitophagy, pexophagy, and lipophagy. This review provides new perspectives on the importance of ATM in the diverse field of autophagy, which would provide more information on its role in whole cell dynamics and homeostasis.
Collapse
Affiliation(s)
- Nan Liang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun City, Jilin Province, China
| | - Qiao He
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun City, Jilin Province, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Hui Sun
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Jilin Provincial Precision Medicine Laboratory of Molecular Biology and Translational Medicine on Differentiated Thyroid Carcinoma, Changchun City, Jilin Province, China
| |
Collapse
|
35
|
Germic N, Frangez Z, Yousefi S, Simon HU. Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells. Cell Death Differ 2019; 26:703-714. [PMID: 30737478 PMCID: PMC6460399 DOI: 10.1038/s41418-019-0295-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an evolutionally conserved, highly regulated catabolic process that combines cellular functions required for the regulation of metabolic balance under conditions of stress with those needed for the degradation of damaged cell organelles via the lysosomal machinery. The importance of autophagy for cell homeostasis and survival has long been appreciated. Recent data suggest that autophagy is also involved in non-metabolic functions that impact the immune system. Here, we reflect in two review articles the recent literature pointing to an important role for autophagy in innate immune cells. In this article, we focus on neutrophils, eosinophils, mast cells, and natural killer cells. We mainly discuss the influence of autophagy on functional cellular responses and its importance for overall host defense. In the companion review, we present the role of autophagy in the functions performed by monocytes/macrophages and dendritic cells.
Collapse
Affiliation(s)
- Nina Germic
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Ziva Frangez
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.
| |
Collapse
|
36
|
Zhang Y, Liu S, Feng Q, Huang X, Wang X, Peng Y, Zhao Z, Liu Z. Perilaldehyde activates AMP-activated protein kinase to suppress the growth of gastric cancer via induction of autophagy. J Cell Biochem 2019; 120:1716-1725. [PMID: 30378150 DOI: 10.1002/jcb.27491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND AIM Perillaldehyde (PAH), one of the major oil components in Perilla frutescens, is very critical to health maintenance, for a wide range of human chronic diseases, including cancers. AMP-activated protein kinase (AMPK) has been implicated in the activation of autophagy in distinct tissues. This study was designed to explore whether PAH prevents gastric cancer growth and to investigate the molecular mechanism. METHODS AND RESULTS In cultured mouse gastric cancer cell line MFCs and human gastric cancer cell lines GC9811-P, PAH activated AMPK by increasing the Thr172 phosphorylation and activity in a time-/concentration-dependent manner. Furthermore, incubation of MFCs with PAH also increased autophagy as determined by monodansylcadaverine (MDC) staining, which was reversed by AMPK inhibitor compound C. PAH further decreased MFCs cell survival, which was abolished by compound C or autophagy inhibitor 3-Methyladenine (3-MA). In vivo studies indicated that 4-week administration of PAH (100 mg/kg/day) suppressed the growth of gastric cancer and increased the levels of autophagy-related proteins, including beclin-1, LC3-II, cathepsin, caspase-3, p53, and cathepsin in tumors isolated from the xenograft model of gastric cancer in mice. Moreover, these anticancer effects produced by PAH were abolished by coadministration of compound C or 3-MA in vivo. CONCLUSIONS PAH increases AMPK phosphorylation and activity to induce gastric cancer cell autophagy to inhibit the growth of gastric cancer. In perspective, therapy of PAH should be applied to treat patients with gastric cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Suosi Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Qin Feng
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Xiuyun Huang
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Xiangyang Wang
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Ya Peng
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Zhihong Zhao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
37
|
Serrano-Saenz S, Palacios C, Delgado-Bellido D, López-Jiménez L, Garcia-Diaz A, Soto-Serrano Y, Casal JI, Bartolomé RA, Fernández-Luna JL, López-Rivas A, Oliver FJ. PIM kinases mediate resistance of glioblastoma cells to TRAIL by a p62/SQSTM1-dependent mechanism. Cell Death Dis 2019; 10:51. [PMID: 30718520 PMCID: PMC6362213 DOI: 10.1038/s41419-018-1293-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor and is associated with poor prognosis. GBM cells are frequently resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and finding new combinatorial therapies to sensitize glioma cells to TRAIL remains an important challenge. PIM kinases are serine/threonine kinases that promote cell survival and proliferation and are highly expressed in different tumors. In this work, we studied the role of PIM kinases as regulators of TRAIL sensitivity in GBM cells. Remarkably, PIM inhibition or knockdown facilitated activation by TRAIL of a TRAIL-R2/DR5-mediated and mitochondria-operated apoptotic pathway in TRAIL-resistant GBM cells. The sensitizing effect of PIM knockdown on TRAIL-induced apoptosis was mediated by enhanced caspase-8 recruitment to and activation at the death-inducing signaling complex (DISC). Interestingly, TRAIL-induced internalization of TRAIL-R2/DR5 was significantly reduced in PIM knockdown cells. Phospho-proteome profiling revealed a decreased phosphorylation of p62/SQSTM1 after PIM knockdown. Our results also showed an interaction between p62/SQSTM1 and the DISC that was reverted after PIM knockdown. In line with this, p62/SQSTM1 ablation increased TRAIL-R2/DR5 levels and facilitated TRAIL-induced caspase-8 activation, revealing an inhibitory role of p62/SQSTM1 in TRAIL-mediated apoptosis in GBM. Conversely, upregulation of TRAIL-R2/DR5 upon PIM inhibition and apoptosis induced by the combination of PIM inhibitor and TRAIL were abrogated by a constitutively phosphorylated p62/SQSTM1S332E mutant. Globally, our data represent the first evidence that PIM kinases regulate TRAIL-induced apoptosis in GBM and identify a specific role of p62/SQSTM1Ser332 phosphorylation in the regulation of the extrinsic apoptosis pathway activated by TRAIL.
Collapse
Affiliation(s)
- Santiago Serrano-Saenz
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain
| | - Carmen Palacios
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, CIBERONC, Avda Américo Vespucio 24, 41092, Sevilla, Spain
| | - Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain
| | - Laura López-Jiménez
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain
| | - Angel Garcia-Diaz
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain
| | - Yolanda Soto-Serrano
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain
| | - José Luis Fernández-Luna
- HUMV-Hospital Universitario Marqués de Valdecilla Avenida Valdecilla, 25, 39008, Santander, Cantabria, Spain
| | - Abelardo López-Rivas
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain. .,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, CIBERONC, Avda Américo Vespucio 24, 41092, Sevilla, Spain.
| | - F Javier Oliver
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain. .,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
38
|
Motegi SI, Fujiwara C, Yamazaki S, Sekiguchi A, Ishikawa O. Possible contribution of autophagy in pyogenic granuloma. J Dermatol 2019; 45:1145-1146. [PMID: 30173418 DOI: 10.1111/1346-8138.14515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/21/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chisako Fujiwara
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sahori Yamazaki
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
39
|
Yi EH, Xu F, Li P, Guo JQ. Transactive response DNA binding protein of 43/histone deacetylase 6 axis alleviates H 2 O 2 -induced retinal ganglion cells injury through inhibiting apoptosis and autophagy. J Cell Biochem 2018; 120:4312-4320. [PMID: 30320895 DOI: 10.1002/jcb.27717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
Oxidative damage is believed to contribute to the pathogenesis of diabetic retinopathy (DR). The current study aimed to detect the effects of transactive response DNA binding protein of 43 (TDP-43) on cell damage induced by hydrogen peroxide (H2 O2 ) in retinal ganglion cells (RGCs) and to investigate the molecular mechanisms involved in this process. We observed that TDP-43 was highly expressed in RGC-5 cells induced by H2 O2 , and that repression of TDP-43 obviously ameliorated H2 O2 -induced RGC-5 cell injury. In addition, loss of TDP-43 profoundly mitigated H2 O2 -triggered oxidative stress by decreasing the production of intracellular reactive oxygen species and the activity of oxidative stress indicator malondialdehyde, as well as enhancing the content of antioxidant enzymes superoxide dismutase, glutathione peroxidase and catalase to restore the antioxidant defense system. Moreover, suppression of TDP-43 obviously obstructed H2 O2 -induced apoptosis. Meanwhile, knockdown of TDP-43 attenuated the expression of the proapoptotic proteins Bax and Cytochrome c, elevated the anti-apoptotic protein Bcl-2, and suppressed the activation of caspase 3 in H2 O2 -induced RGC-5 cells. Moreover, elimination of TDP-43 inhibited H2 O2 -triggered autophagy, which appeared as decreased expression of LC3II/I and Beclin-1, along with p62 degradation. Importantly, silencing of TDP-43 diminished the expression of histone deacetylase 6 (HDAC6), and HDAC6 also abolished the inhibitory effect of TDP-43 inhibition on H2 O2 -induced apoptosis and autophagy. Collectively, our findings demonstrated that depletion of TDP-43 may protect RGC-5 cells against oxidative stress-mediated apoptosis and autophagy by suppressing its target HDAC6. Thus, the TDP-43/HDAC6 axis might be a promising strategy for the treatment of DR.
Collapse
Affiliation(s)
- En-Hui Yi
- Department of Ophthalmology, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Feng Xu
- Department of Ophthalmology, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Peng Li
- Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian-Qiang Guo
- Department of Ophthalmology, Xi'an No. 1 Hospital, First Affiliated Hospital of Northwestern University; Shaanxi Institute of Ophthalmology; Shaanxi Key Laboratory of Ophthalmology; Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| |
Collapse
|
40
|
Liu H, He Z, Bode P, Moch H, Simon HU. Downregulation of Autophagy-Related Proteins 1, 5, and 16 in Testicular Germ Cell Tumors Parallels Lowered LC3B and Elevated p62 Levels, Suggesting Reduced Basal Autophagy. Front Oncol 2018; 8:366. [PMID: 30245976 PMCID: PMC6137693 DOI: 10.3389/fonc.2018.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/17/2018] [Indexed: 12/03/2022] Open
Abstract
Autophagy is a cellular “self-digestion” process known to be essential for various physiological and pathological pathways, including cancer, where its role appears to be context-dependent. In this work, we aimed to investigate the level of autophagy by evaluating the expression of key autophagy-related proteins (ATGs) in testicular germ cell tumors (TGCT) for which autophagy has been rarely investigated. We decided to use an immunohistochemical (IHC) staining approach employing a tissue microarray (TMA). Software-based evaluation of the integrated optical densities (IODs) of these proteins indicated a significant downregulation of ATG1, ATG5, and ATG16L1. Accordingly, reduced levels of microtubule-associated proteins 1A/1B light chain 3B (LC3B) were found to parallel increases in sequestosome-1 (SQSTM1 or p62), a protein normally degraded via autophagy, suggesting an in vivo reduction in autophagy with TGCT. Thus, our work provides evidence for a tumor suppressive function of autophagy in the development of TGCT and supports the concept of a context-dependent role of autophagy in tumorigenesis which is tumor type-dependent.
Collapse
Affiliation(s)
- He Liu
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Zhaoyue He
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Peter Bode
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
41
|
Biochemical re-programming of human dermal stem cells to neurons by increasing mitochondrial membrane potential. Cell Death Differ 2018; 26:1048-1061. [PMID: 30154448 DOI: 10.1038/s41418-018-0182-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 01/07/2023] Open
Abstract
Stem cells are generally believed to contain a small number of mitochondria, thus accounting for their glycolytic phenotype. We demonstrate here, however, that despite an indispensable glucose dependency, human dermal stem cells (hDSCs) contain very numerous mitochondria. Interestingly, these stem cells segregate into two distinct subpopulations. One exhibits high, the other low-mitochondrial membrane potentials (Δψm). We have made the same observations with mouse neural stem cells (mNSCs) which serve here as a complementary model to hDSCs. Strikingly, pharmacologic inhibition of phosphoinositide 3-kinase (PI3K) increased the overall Δψm, decreased the dependency on glycolysis and led to formation of TUJ1 positive, electrophysiologically functional neuron-like cells in both mNSCs and hDSCs, even in the absence of any neuronal growth factors. Furthermore, of the two, it was the Δψm-high subpopulation which produced more mitochondrial reactive oxygen species (ROS) and showed an enhanced neuronal differentiation capacity as compared to the Δψm-low subpopulation. These data suggest that the Δψm-low stem cells may function as the dormant stem cell population to sustain future neuronal differentiation by avoiding excessive ROS production. Thus, chemical modulation of PI3K activity, switching the metabotype of hDSCs to neurons, may have potential as an autologous transplantation strategy for neurodegenerative diseases.
Collapse
|
42
|
A Sterol from Soft Coral Induces Apoptosis and Autophagy in MCF-7 Breast Cancer Cells. Mar Drugs 2018; 16:md16070238. [PMID: 30018246 PMCID: PMC6071057 DOI: 10.3390/md16070238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that plays a key role in regulating cellular metabolism, and is a therapeutic target for cancer therapy. To search for potential PPARγ activators, a compound library comprising 11 marine compounds was examined. Among them, a sterol, 3β,11-dihydroxy-9,11-secogorgost-5-en-9-one (compound 1), showed the highest PPARγ activity with an IC50 value of 8.3 μM for inhibiting human breast adenocarcinoma cell (MCF-7) growth. Western blotting experiments showed that compound 1 induces caspase activation and PARP cleavage. In addition, compound 1 modulated the expression of various PPARγ-regulated downstream biomarkers including cyclin D1, cyclin-dependent kinase (CDK)6, B-cell lymphoma 2 (Bcl-2), p38, and extracellular-signal-regulated kinase (ERK). Moreover, compound 1 increased reactive oxygen species (ROS) generation, upregulated the phosphorylation and expression of H2AX, and induced autophagy. Interestingly, pre-treatment with the autophagy inhibitor 3-methyladenine rescued cells from compound 1-induced growth inhibition, which indicates that the cytotoxic effect of compound 1 is, in part, attributable to its ability to induce autophagy. In conclusion, these findings suggest the translational potential of compound 1 in breast cancer therapy.
Collapse
|
43
|
Li G, Chen L, Chen K. Curcumin Promotes Femoral Fracture Healing in a Rat Model by Activation of Autophagy. Med Sci Monit 2018; 24:4064-4072. [PMID: 29902161 PMCID: PMC6032800 DOI: 10.12659/msm.908311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aim of this study was to use a rat model of femoral fracture healing to study the effects of curcumin on cell autophagy, compared with treatment with 3-methyladenine (3-MA), an inhibitor of autophagy. MATERIAL AND METHODS Thirty-six Sprague-Dawley rats with right mid-femoral fracture were divided into three groups: the curcumin-treated group (N=12) (gavage with curcumin 400 mg/kg/day); the curcumin + 3-MA-treated group (gavage with curcumin 400 mg/kg/day + 3-MA 30 mg/kg/day); and the control group (N=12) (gavage normal saline). Each group underwent femoral bone imaging using anteroposterior X-ray and micro-computed tomography (CT) at two weeks and six weeks following bone fracture. All rats were euthanized at the end of the study. Histology of the bone was performed to compare bone healing. Immunofluorescence and immunohistochemical tissue staining and Western blots were performed, to compare the expression of autophagy-related proteins, Beclin-1 and LC3-II. RESULTS Autophagy of rat femoral bone tissue was activated following fracture, increasing with time, reaching a peak at 24 hours. Imaging and histology showed that curcumin promoted the fracture healing in rats, which was reduced by treatment with 3-MA. Immunohistochemistry, immunofluorescence, and Western blot showed that curcumin treatment increased the expression of Beclin-1 and LC3-II, which were reduced by treatment with the autophagy inhibitor, 3-MA. CONCLUSIONS The findings of this study, in a rat model of femoral bone fracture healing, showed that curcumin promoted bone healing and autophagy, which were reduced by treatment with 3-MA, a known inhibitor of autophagy.
Collapse
Affiliation(s)
- Gang Li
- Department of Orthopaedics, Ward 2, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Lei Chen
- Department of Orthopaedics, Ward 2, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, China (mainland)
| | - Kai Chen
- Department of Orthopaedics, Ward 2, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, China (mainland)
| |
Collapse
|
44
|
Xia Y, Jiang L, Zhong T. The role of HIF-1α in chemo-/radioresistant tumors. Onco Targets Ther 2018; 11:3003-3011. [PMID: 29872312 PMCID: PMC5973460 DOI: 10.2147/ott.s158206] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chemo-/radioresistance is a major obstacle in clinical oncology. The precise failure mechanisms of chemo-/radioresistance are multifactorial failures. It is now widely accepted that a tumor hypoxia microenvironment contributes significantly to chemo-/radioresistance. Hypoxia is the most common and obvious neoplastic microenvironment and is due to the rapid proliferation of tumor cells. HIF-1α is a principal molecular mediator of adaptability to hypoxia in tumor cells. HIF-1α activation leads to the transcription of a plethora of target genes that promote physiological changes associated with chemo-/radioresistance, including increasing the ability of DNA repair, the inhibition of apoptosis, and alterations of the cellular metabolism. Moreover, recent findings suggest that HIF-1α-activated autophagy is a crucial factor in the promotion of cell survival under the distressed microenvironment, thereby leading to the chemo-/radioresistance. This chapter presents an overview of the role of HIF-1α in chemo-/radioresistance of tumor cells.
Collapse
Affiliation(s)
- Yu Xia
- The Graduate School, Gannan Medical University, Ganzhou, People's Republic of China
| | - Lixia Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| |
Collapse
|
45
|
ROS-induced autophagy reduces B16F10 melanoma cell proliferative activity. Lasers Med Sci 2018; 33:1335-1340. [DOI: 10.1007/s10103-018-2489-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/19/2018] [Indexed: 11/25/2022]
|
46
|
Cell death-based treatments of melanoma:conventional treatments and new therapeutic strategies. Cell Death Dis 2018; 9:112. [PMID: 29371600 PMCID: PMC5833861 DOI: 10.1038/s41419-017-0059-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Abstract
The incidence of malignant melanoma has continued to rise during the past decades. However, in the last few years, treatment protocols have significantly been improved thanks to a better understanding of the key oncogenes and signaling pathways involved in its pathogenesis and progression. Anticancer therapy would either kill tumor cells by triggering apoptosis or permanently arrest them in the G1 phase of the cell cycle. Unfortunately, melanoma is often refractory to commonly used anticancer drugs. More recently, however, some new anticancer strategies have been developed that are “external” to cancer cells, for example stimulating the immune system’s response or inhibiting angiogenesis. In fact, the increasing knowledge of melanoma pathogenetic mechanisms, in particular the discovery of genetic mutations activating specific oncogenes, stimulated the development of molecularly targeted therapies, a form of treatment in which a drug (chemical or biological) is developed with the goal of exclusively destroying cancer cells by interfering with specific molecules that drive growth and spreading of the tumor. Again, after the initial exciting results associated with targeted therapy, tumor resistance and/or relapse of the melanoma lesion have been observed. Hence, very recently, new therapeutic strategies based on the modulation of the immune system function have been developed. Since cancer cells are known to be capable of evading immune-mediated surveillance, i.e., to block the immune system cell activity, a series of molecular strategies, including monoclonal antibodies, have been developed in order to “release the brakes” on the immune system igniting immune reactivation and hindering metastatic melanoma cell growth. In this review we analyze the various biological strategies underlying conventional chemotherapy as well as the most recently developed targeted therapies and immunotherapies, pointing at the molecular mechanisms of cell injury and death engaged by the different classes of therapeutic agents.
Collapse
|
47
|
Xia X, Wang L, Zhang X, Wang S, Lei L, Cheng L, Xu Y, Sun Y, Hang B, Zhang G, Bai Y, Hu J. Halofuginone-induced autophagy suppresses the migration and invasion of MCF-7 cells via regulation of STMN1 and p53. J Cell Biochem 2018; 119:4009-4020. [PMID: 29231257 DOI: 10.1002/jcb.26559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
Abstract
Traditional Chinese medicines have been recognized as especially promising anticancer agents in modern anticancer research. Halofuginone (HF), an analog of quinazolinone alkaloid extracted from Dichroa febrifuga, is widely used in traditional medicine. However, whether HF inhibits the growth of breast cancer cells and/or reduces the migration and invasion of MCF-7 human breast cancer cells, as well as the underlying mechanisms in vitro, remains unclear. In this study, we report that an HF extract inhibits the growth of MCF-7 cells and reduces their migration and invasion, an important feature of potential anticancer agents. In addition, HF significantly increases the activation of autophagy, which is closely associated with tumor metastasis. As STMN1 and p53 have been closely implicated in breast cancer progression, we analyzed their expression in the context of HF extract treatment. Western blot analysis showed that HF suppresses STMN1 and p53 expression and activity in an autophagy-dependent manner. Collectively, these data indicate that activation of autophagy reduces expression of STMN1 and p53, and the migration and invasion of cancer cells contributes to the anti-cancer effects of the HF. These findings may provide new insight into breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China.,Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, P.R. China.,Post-doctoral Research Station, Henan Agriculture University, Zhengzhou, P.R. China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Xiaojian Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Shan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Lianchen Lei
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Likun Cheng
- Shandong Binzhou Animal Science &Veterinary Medicine Academy, Binzhou, P.R. China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Bolin Hang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Gaiping Zhang
- Post-doctoral Research Station, Henan Agriculture University, Zhengzhou, P.R. China
| | - YueYu Bai
- Animal Health Supervision of Henan Province, Bureau of Animal Husbandry of Henan province, Zhengzhou, P.R. China
| | - JianHe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, P.R. China.,Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, P.R. China
| |
Collapse
|
48
|
Eclalbasaponin I from Aralia elata (Miq.) Seem. reduces oxidative stress-induced neural cell death by autophagy activation. Biomed Pharmacother 2018; 97:152-161. [DOI: 10.1016/j.biopha.2017.10.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/16/2022] Open
|
49
|
He S, Li Q, Jiang X, Lu X, Feng F, Qu W, Chen Y, Sun H. Design of Small Molecule Autophagy Modulators: A Promising Druggable Strategy. J Med Chem 2017; 61:4656-4687. [PMID: 29211480 DOI: 10.1021/acs.jmedchem.7b01019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a lysosome-dependent mechanism of intracellular degradation for maintaining cellular homeostasis. Dysregulation of autophagy has been verified to be closely linked to a number of human diseases. Consequently, targeting autophagy has been highlighted as a novel therapeutic strategy for clinical utility. Mounting efforts have been done in recent years to elucidate the mechanisms of autophagy regulation and to identify potential modulators of autophagy. However, most of the compounds target complex and multifaceted pathway and proteins, which may limit the evaluation of therapeutic value and in depth studies as chemical tools. Therefore, the development of specific and active autophagy modulators becomes most desirable. Here, we briefly review the regulation of autophagy and then summarize the recent development of small molecules targeting the core autophagic machinery. Finally, we put forward our viewpoints on the current problems, with the aim to provide reference for future drug discovery and potential therapeutic perspectives on novel, potent, selective autophagy modulators.
Collapse
Affiliation(s)
- Siyu He
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Qi Li
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Xueyang Jiang
- Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Xin Lu
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Feng Feng
- Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Wei Qu
- Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing 211198 , China
| | - Yao Chen
- School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , 210023 , China
| | - Haopeng Sun
- Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
50
|
Antunes F, Pereira GJ, Jasiulionis MG, Bincoletto C, Smaili SS. Nutritional shortage augments cisplatin-effects on murine melanoma cells. Chem Biol Interact 2017; 281:89-97. [PMID: 29273566 DOI: 10.1016/j.cbi.2017.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/25/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023]
Abstract
Melanoma incidence increases every year worldwide and is responsible for 80% of skin cancer deaths. Due to its metastatic potential and resistance to almost any treatments such as chemo, radio, immune and targeted-therapy, the patients still have a poor prognosis, especially at metastatic stage. Considering that, it is crucial to find new therapeutic approaches to overcome melanoma resistance. Here we investigated the effect of cisplatin (CDDP), one of the chemotherapeutic agents used for melanoma treatment, in association with nutritional deprivation in murine melanoma cell lines. Cell death and autophagy were evaluated after the treatment with cisplatin, nutritional deprivation and its association using an in vitro model of murine melanocytes malignant transformation to metastatic melanoma. Our results showed that nutritional deprivation augmented cell death induced by cisplatin in melanoma cells, especially at the metastatic subtype, with slight effects on melanocytes. Mechanistic studies revealed that although autophagy was present at high levels in basal conditions in melanoma cells, was not essential for cell death process that involved mitochondrial damage, reactive oxygen species production and possible glycolysis inhibition. In conclusion, nutritional shortage in combination with chemotherapeutic drugs as cisplatin can be a valuable new therapeutic strategy to overcome melanoma resistance.
Collapse
Affiliation(s)
- F Antunes
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil
| | - G J Pereira
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil.
| | - M G Jasiulionis
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil
| | - C Bincoletto
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil
| | - S S Smaili
- Universidade Federal de São Paulo, Escola Paulista de Medicina Department of Pharmacology (EPM/UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|