1
|
Philippe C, Jaud M, Féral K, Gay A, Van Den Berghe L, Farce M, Bousquet M, Pyronnet S, Mazzolini L, Rouault-Pierre K, Touriol C. Pivotal role of the endoplasmic reticulum stress-related XBP1s/miR-22/SIRT1 axis in acute myeloid leukemia apoptosis and response to chemotherapy. Leukemia 2024; 38:1764-1776. [PMID: 38909090 PMCID: PMC11286524 DOI: 10.1038/s41375-024-02321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Malignant growth relies on rapid protein synthesis frequently leading to endoplasmic reticulum (ER) overload and accumulation of unfolded or misfolded protein in this cellular compartment. In the ER, protein homeostasis is finely regulated by a mechanism called the unfolded protein response (UPR), involving the activation of signalization pathways mediated by three transmembrane proteins, namely PERK, IRE1 and ATF6. IRE1 endoribonuclease activation leads in particular to the splicing of the cytosolic mRNA encoding the key UPR-specific transcription factor XBP1s. Our study shows that sustained activation of XBP1s expression in acute myeloid leukemia (AML) cells induces apoptosis in vitro and in vivo, whereas a moderate XBP1s expression sensitizes cells to chemotherapeutic treatments. ChIP-seq experiments identified specific XBP1s target genes including the MIR22HG lncRNA, the precursor transcript of microRNA-22-3p. miR-22-3p upregulation by XBP1s or forced expression of miR-22 significantly decreases cell's viability and sensitizes leukemic cells to chemotherapy. We found that miR-22-3p intracellular effects result at least partially from the targeting of the mRNA encoding the deacetylase sirtuin-1 (SIRT1), a well-established pro-survival factor. Therefore, this novel XBP1s/miR-22/SIRT1 axis identified could play a pivotal role in the proliferation and chemotherapeutic response of leukemic cells.
Collapse
Affiliation(s)
- Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Manon Jaud
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly Féral
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Alexandre Gay
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Loïc Van Den Berghe
- Vectorology Platform, CRCT INSERM UMR-1037 Technological Pole, F-31037, Toulouse, France
| | - Manon Farce
- Flow Cytometry and Cell Sorting Platform, CRCT INSERM UMR-1037 Technological Pole, F-31037, Toulouse, France
| | - Marina Bousquet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Stéphane Pyronnet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | - Laurent Mazzolini
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France
| | | | - Christian Touriol
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Université de Toulouse, Toulouse, France.
| |
Collapse
|
2
|
Iaiza A, Mazzanti G, Goeman F, Cesaro B, Cortile C, Corleone G, Tito C, Liccardo F, De Angelis L, Petrozza V, Masciarelli S, Blandino G, Fanciulli M, Fatica A, Fontemaggi G, Fazi F. WTAP and m 6A-modified circRNAs modulation during stress response in acute myeloid leukemia progenitor cells. Cell Mol Life Sci 2024; 81:276. [PMID: 38909325 PMCID: PMC11335200 DOI: 10.1007/s00018-024-05299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent and conserved RNA modifications. It controls several biological processes, including the biogenesis and function of circular RNAs (circRNAs), which are a class of covalently closed-single stranded RNAs. Several studies have revealed that proteotoxic stress response induction could be a relevant anticancer therapy in Acute Myeloid Leukemia (AML). Furthermore, a strong molecular interaction between the m6A mRNA modification factors and the suppression of the proteotoxic stress response has emerged. Since the proteasome inhibition leading to the imbalance in protein homeostasis is strictly linked to the stress response induction, we investigated the role of Bortezomib (Btz) on m6A regulation and in particular its impact on the modulation of m6A-modified circRNAs expression. Here, we show that treating AML cells with Btz downregulated the expression of the m6A regulator WTAP at translational level, mainly because of increased oxidative stress. Indeed, Btz treatment promoted oxidative stress, with ROS generation and HMOX-1 activation and administration of the reducing agent N-acetylcysteine restored WTAP expression. Additionally, we identified m6A-modified circRNAs modulated by Btz treatment, including circHIPK3, which is implicated in protein folding and oxidative stress regulation. These results highlight the intricate molecular networks involved in oxidative and ER stress induction in AML cells following proteotoxic stress response, laying the groundwork for future therapeutic strategies targeting these pathways.
Collapse
MESH Headings
- Humans
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine/pharmacology
- Oxidative Stress/drug effects
- Bortezomib/pharmacology
- Cell Line, Tumor
- Reactive Oxygen Species/metabolism
- RNA Splicing Factors/metabolism
- RNA Splicing Factors/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Heme Oxygenase-1/metabolism
- Heme Oxygenase-1/genetics
- Protein Serine-Threonine Kinases
- Intracellular Signaling Peptides and Proteins
Collapse
Affiliation(s)
- Alessia Iaiza
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Gilla Mazzanti
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Frauke Goeman
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Bianca Cesaro
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Clelia Cortile
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corleone
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Tito
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Francesca Liccardo
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Luciana De Angelis
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Science and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Silvia Masciarelli
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Maurizio Fanciulli
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Francesco Fazi
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy.
| |
Collapse
|
3
|
Zhou M, Li H, Hu J, Zhou T, Zhou L, Li Y. Construction and validation of a prognostic signature based on seven endoplasmic reticulum stress-related lncRNAs for patients with head and neck squamous cell carcinoma. Sci Rep 2023; 13:22414. [PMID: 38104177 PMCID: PMC10725423 DOI: 10.1038/s41598-023-49987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) occurs when misfolded or unfolded proteins accumulate in the endoplasmic reticulum (ER), and it is often observed in tumors, including head and neck squamous cell carcinoma (HNSCC). Relevant studies have demonstrated the prognostic significance of ERS-related long non-coding RNAs (lncRNAs) in various cancers. However, the relationship between ERS and lncRNAs in HNSCC has received limited attention in previous studies. In this study, we aimed to develop an ERS-related lncRNAs prognostic model using correlation analysis, Cox regression analysis, least absolute shrinkage, and selection operator (LASSO) regression analysis based on data from The Cancer Genome Atlas (TCGA) database. The survival and predictive ability of this model were evaluated using Kaplan-Meier analysis and time-dependent receiver operating characteristics (ROC), while nomograms and calibration curves were constructed. Then, functional enrichment analyses, tumor mutation burden (TMB), tumor infiltration of immune cells, single sample Gene Set Enrichment Analysis (ssGSEA), and drug sensitivity analysis were performed. Additionally, we conducted a consensus cluster analysis to compare differences between subtypes of tumors. Finally, we validated the expression of the ERS-related lncRNAs that constructed prognostic risk score model in HNSCC tissues through quantitative real-time PCR (qRT-PCR). We developed a prognostic signature based on seven ERS-related lncRNAs, which showed better predictive performance than other clinicopathological features. The high-risk poor prognosis group had a poorer prognosis in comparison to the low-risk good prognosis. The area under the ROC curve (AUC) predicted by this model for 3-year survival rates of HNSCC patients was 0.805. Enrichment analysis revealed that the differentially expressed genes were primarily enriched in pathways related to immune responses and signal transduction. Low-risk patients had lower TMB, more immune cell infiltrations, and enhanced anti-tumor immunity. Cluster analysis indicated that cluster 3 may have a better prognosis and immunotherapy effect. In addition, the result of qRT-PCR was consistent with our analysis. This prognostic model based on seven ERS-related lncRNAs is a promising tool for risk stratification, survival prediction, and immune cell infiltration status assessment.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huihui Li
- Physical Examination Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Hu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Construction and Validation of a UPR-Associated Gene Prognostic Model for Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8677309. [PMID: 35707371 PMCID: PMC9192238 DOI: 10.1155/2022/8677309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Our study is aimed at constructing and validating a UPR-associated gene signature to predict HNSCC prognosis. We obtained 544 samples of RNA sequencing data and clinical characteristics from TCGA database and randomly grouped the samples into training and testing cohorts (1 : 1 ratio). After identifying 14 UPR-associated genes with LASSO and univariate Cox regression analysis, HNSCC samples were categorized into low-risk (LR) and high-risk (HR) subgroups depending on the risk score. Our analyses indicated that low-risk patients had a much better prognosis in the training and testing cohorts. To predict the HNSCC prognosis with the 14 UPR-associated gene signatures, we incorporated the UPR gene risk score, N stage, M stage, and age into a nomogram model. We further explored the sensitivity to anticancer drugs by using the IC50 analysis in two subgroups from the Cancer Genome Project database. The outcomes showed that the AKT inhibitor III and sorafenib were sensitive anticancer drugs in HR and LR patients, respectively. The immune cell infiltration analysis and GSEA provided strong evidence for elucidating the molecular mechanisms of UPR-associated genes affecting HNSCC. In conclusion, the UPR-associated gene risk score, N stage, M stage, and age can serve as a robust model for predicting prognosis and can improve decision-making at the individual patient level.
Collapse
|
5
|
Féral K, Jaud M, Philippe C, Di Bella D, Pyronnet S, Rouault-Pierre K, Mazzolini L, Touriol C. ER Stress and Unfolded Protein Response in Leukemia: Friend, Foe, or Both? Biomolecules 2021; 11:biom11020199. [PMID: 33573353 PMCID: PMC7911881 DOI: 10.3390/biom11020199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive signaling pathway triggered by a stress of the endoplasmic reticulum (ER) lumen compartment, which is initiated by the accumulation of unfolded proteins. This response, mediated by three sensors-Inositol Requiring Enzyme 1 (IRE1), Activating Transcription Factor 6 (ATF6), and Protein Kinase RNA-Like Endoplasmic Reticulum Kinase (PERK)—allows restoring protein homeostasis and maintaining cell survival. UPR represents a major cytoprotective signaling network for cancer cells, which frequently experience disturbed proteostasis owing to their rapid proliferation in an usually unfavorable microenvironment. Increased basal UPR also participates in the resistance of tumor cells against chemotherapy. UPR activation also occurs during hematopoiesis, and growing evidence supports the critical cytoprotective role played by ER stress in the emergence and proliferation of leukemic cells. In case of severe or prolonged stress, pro-survival UPR may however evolve into a cell death program called terminal UPR. Interestingly, a large number of studies have revealed that the induction of proapoptotic UPR can also strongly contribute to the sensitization of leukemic cells to chemotherapy. Here, we review the current knowledge on the consequences of the deregulation of UPR signaling in leukemias and their implications for the treatment of these diseases.
Collapse
Affiliation(s)
- Kelly Féral
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
| | - Manon Jaud
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
| | - Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (K.R.-P.)
| | - Doriana Di Bella
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (K.R.-P.)
| | - Stéphane Pyronnet
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
| | - Kevin Rouault-Pierre
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (K.R.-P.)
| | - Laurent Mazzolini
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- CNRS ERL5294, CRCT, F-31037 Toulouse, France
- Correspondence: (L.M.); (C.T.)
| | - Christian Touriol
- Inserm UMR1037-Cancer Research Center of Toulouse, 2 avenue Hubert Curien, Oncopole entrée C, CS 53717, 31037 Toulouse, France; (K.F.); (M.J.); (S.P.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France
- Correspondence: (L.M.); (C.T.)
| |
Collapse
|
6
|
Pluquet O, Galmiche A. Impact and Relevance of the Unfolded Protein Response in HNSCC. Int J Mol Sci 2019; 20:ijms20112654. [PMID: 31151143 PMCID: PMC6601021 DOI: 10.3390/ijms20112654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) encompass a heterogeneous group of solid tumors that arise from the upper aerodigestive tract. The tumor cells face multiple challenges including an acute demand of protein synthesis often driven by oncogene activation, limited nutrient and oxygen supply and exposure to chemo/radiotherapy, which forces them to develop adaptive mechanisms such as the Unfolded Protein Response (UPR). It is now well documented that the UPR, a homeostatic mechanism, is induced at different stages of cancer progression in response to intrinsic (oncogenic activation) or extrinsic (microenvironment) perturbations. This review will discuss the role of the UPR in HNSCC as well as in the key processes that characterize the physiology of HNSCC. The role of the UPR in the clinical context of HNSCC will also be addressed.
Collapse
Affiliation(s)
- Olivier Pluquet
- Institut Pasteur de Lille, Université de Lille, CNRS, UMR8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, F-59000 Lille, France.
| | - Antoine Galmiche
- Service de Biochimie, Centre de Biologie Humaine (CBH), CHU Sud, 80054 Amiens, France.
- EA7516, Université de Picardie Jules Verne (UPJV), 80054 Amiens, France.
| |
Collapse
|
7
|
Tan X, He X, Fan Z. Upregulation of HRD1 promotes cell migration and invasion in colon cancer. Mol Cell Biochem 2018; 454:1-9. [PMID: 30306455 DOI: 10.1007/s11010-018-3447-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/01/2018] [Indexed: 12/21/2022]
Abstract
3-Hydroxy-3-methylglutaryl reductase degradation (HRD1) is an E3 ubiquitin ligase that functions by promoting degradation of misfolded proteins in processes such as embryogenesis and rheumatoid arthritis. However, little is known about the role of HRD1 in cancer. The aim of the present study was to investigate the expression pattern and functions of HRD1 in human colon cancer (CC). We found that HRD1 expression was increased significantly in human CC tissues, and its overexpression was associated with TNM stage, tumor differentiation, tumor invasive depth, and distant metastasis. Knockdown of HRD1 using small hairpin (sh) RNA plasmid significantly inhibited CC cell migration and invasion. Furthermore, the silencing of HRD1 decreased the expression of MMP-2 and MMP-9, which is critical for CC cell migration and invasion. Taken together, these results revealed that HRD1 is overexpressed in CC and promotes migration and invasion of CC cells. Inhibition of HRD1 may be considered as an effective anti-CC strategy.
Collapse
Affiliation(s)
- Xueming Tan
- Department of Digestive Endoscopy Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou St., Nanjing, 210029, Jiangsu, People's Republic of China.,Department of Digestive Endoscopy Center, Zhongda Hospital Southest University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Xiaolu He
- Department of Apheresis, Nanjing Red Cross Blood Center, Nanjing, 210003, Jiangsu, People's Republic of China
| | - Zhining Fan
- Department of Digestive Endoscopy Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou St., Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Kharabi Masouleh B, Chevet E, Panse J, Jost E, O'Dwyer M, Bruemmendorf TH, Samali A. Drugging the unfolded protein response in acute leukemias. J Hematol Oncol 2015; 8:87. [PMID: 26179601 PMCID: PMC4504168 DOI: 10.1186/s13045-015-0184-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR), an endoplasmic reticulum (ER) stress-induced signaling cascade, is mediated by three major stress sensors IRE-1α, PERK, and ATF6α. Studies described the UPR as a critical network in selection, adaptation, and survival of cancer cells. While previous reviews focused mainly on solid cancer cells, in this review, we summarize the recent findings focusing on acute leukemias. We take into account the impact of the underlying genetic alterations of acute leukemia cells, the leukemia stem cell pool, and provide an outline on the current genetic, clinical, and therapeutic findings. Furthermore, we shed light on the important oncogene-specific regulation of individual UPR signaling branches and the therapeutic relevance of this information to answer the question if the UPR could be an attractive novel target in acute leukemias.
Collapse
Affiliation(s)
- Behzad Kharabi Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Eric Chevet
- Université Rennes 1 - ER_440 "Oncogenesis, Stress & Signaling", Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Edgar Jost
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael O'Dwyer
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Medicine, National University of Ireland, Galway, Ireland
| | - Tim H Bruemmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Afshin Samali
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Biochemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|