1
|
Bartusik-Aebisher D, Przygórzewska A, Woźnicki P, Aebisher D. Nanoparticles for Photodynamic Therapy of Breast Cancer: A Review of Recent Studies. Molecules 2025; 30:1571. [PMID: 40286175 PMCID: PMC11990253 DOI: 10.3390/molecules30071571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic method based on the interaction between light and a photosensitizer. Supported by nanoparticles, this method represents a promising interdisciplinary approach for the treatment of many diseases. This article reviews the latest 2024 developments in the design and applications of nanoparticles dedicated to stand-alone PDT of breast cancer. Strategies to improve therapeutic efficacy by enhancing reactive oxygen species (ROS) production, precise delivery of photosensitizers and their stabilization in the systemic circulation are discussed, among others. Results from preclinical studies indicate significant improvements in therapeutic efficacy, including inhibition of tumor growth, reduction in metastasis and improvement of the immune microenvironment. The potential of these technologies to expand PDT applications in medicine and the need for further clinical trials to confirm their safety and efficacy are highlighted.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Agnieszka Przygórzewska
- English Division Science Club, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Paweł Woźnicki
- Doctoral School, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
2
|
Zhang Y, Xu W, Peng C, Ren S, Mustafe Hidig S, Zhang C. Exploring the role of m7G modification in Cancer: Mechanisms, regulatory proteins, and biomarker potential. Cell Signal 2024; 121:111288. [PMID: 38971569 DOI: 10.1016/j.cellsig.2024.111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The dysregulation of N(7)-methylguanosine (m7G) modification is increasingly recognized as a key factor in the pathogenesis of cancers. Aberrant expression of these regulatory proteins in various cancers, including lung, liver, and bladder cancers, suggests a universal role in tumorigenesis. Studies have established a strong correlation between the expression levels of m7G regulatory proteins, such as Methyltransferase like 1 (METTL1) and WD repeat domain 4 (WDR4), and clinical parameters including tumor stage, grade, and patient prognosis. For example, in hepatocellular carcinoma, high METTL1 expression is associated with advanced tumor stage and poor prognosis. Similarly, WDR4 overexpression in colorectal cancer correlates with increased tumor invasiveness and reduced patient survival. This correlation underscores the potential of these proteins as valuable biomarkers for cancer diagnosis and prognosis. Additionally, m7G modification regulatory proteins influence cancer progression by modulating the expression of target genes involved in critical biological processes, including cell proliferation, apoptosis, migration, and invasion. Their ability to regulate these processes highlights their significance in the intricate network of molecular interactions driving tumor development and metastasis. Given their pivotal role in cancer biology, m7G modification regulatory proteins are emerging as promising therapeutic targets. Targeting these proteins could offer a novel approach to disrupt the malignant behavior of cancer cells and enhance treatment outcomes. Furthermore, their diagnostic and prognostic value could aid in the early detection of cancer and the selection of appropriate therapeutic strategies, ultimately enhancing patient management and survival rates. This review aims to explore the mechanisms of action of RNA m7G modification regulatory proteins in tumors and their potential applications in cancer progression and treatment. By delving into the roles of these regulatory proteins, we intend to provide a theoretical foundation for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenli Ren
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sakarie Mustafe Hidig
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Zhejiang University School of Medicine Fourth Affiliated Hospital, Yiwu, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Sun T, Kang L, Zhao H, Zhao Y, Gu Y. Photoacid Generators for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302875. [PMID: 38039443 PMCID: PMC10837391 DOI: 10.1002/advs.202302875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/26/2023] [Indexed: 12/03/2023]
Abstract
Photoacid generators (PAGs) are compounds capable of producing hydrogen protons (H+ ) upon irradiation, including irreversible and reversible PAGs, which have been widely studied in photoinduced polymerization and degradation for a long time. In recent years, the applications of PAGs in the biomedical field have attracted more attention due to their promising clinical value. So, an increasing number of novel PAGs have been reported. In this review, the recent progresses of PAGs for biomedical applications is systematically summarized, including tumor treatment, antibacterial treatment, regulation of protein folding and unfolding, control of drug release and so on. Furthermore, a concept of water-dependent reversible photoacid (W-RPA) and its antitumor effect are highlighted. Eventually, the challenges of PAGs for clinical applications are discussed.
Collapse
Affiliation(s)
- Tianzhen Sun
- School of Medical TechnologyBeijing Institute of TechnologyNo. 5 South Street, ZhongguancunHaidian DistrictBeijing100081China
| | - Lin Kang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of SciencesNo. 29 Zhongguancun East Road, Haidian DistrictBeijing100190China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Hongyou Zhao
- School of Medical TechnologyBeijing Institute of TechnologyNo. 5 South Street, ZhongguancunHaidian DistrictBeijing100081China
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of SciencesNo. 29 Zhongguancun East Road, Haidian DistrictBeijing100190China
- University of Chinese Academy of SciencesNo. 19A Yuquan RoadBeijing100049China
| | - Ying Gu
- Department of Laser MedicineThe First Medical CentreChinese PLA General HospitalNo. 28 Fuxing Road, Haidian DistrictBeijing100853China
| |
Collapse
|
4
|
Chen W, He H, Jiao P, Han L, Li J, Wang X, Guo X. Metal-Organic Framework for Hypoxia/ROS/pH Triple-Responsive Cargo Release. Adv Healthc Mater 2023; 12:e2301785. [PMID: 37590153 DOI: 10.1002/adhm.202301785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Nanoparticulate antitumor photodynamic therapy (PDT) is suffering from a very short lifetime, limited diffusion distance of reactive oxygen species (ROS). Herein, a hypoxia/ROS/pH triple-responsive metal-organic framework (MOF) is designed to facilitate the on-demand release of photosensitizers and hence enhanced PDT efficacy. Tailored azo-containing imidazole ligand is coordinated with zinc to form MOF where photosensitizer (Chlorin e6/Ce6) is encapsulated. Azo can be reduced by overexpressed azoreductase in hypoxic tumor cells, resulting in depletion of glutathione (GSH) and thioredoxin (Trx) which are major antioxidants against ROS oxidative damage in PDT, resulting in rapid cargo release and additional efficacy amplification. The imidazole ionization causes a proton sponge effect to ensure the disintegration of the nanocarriers in acidic organelles, allowing the rapid release of Ce6 through lysosome escape. Under light irradiation, ROS produced by Ce6 may oxidize imidazole to urea, resulting in rapid cargo release. All of the triggers are expected to show interactive synergism. The pH- and hypoxia-responsiveness can improve the release rate of Ce6 for enhanced PDT therapy, whereas the consumption of oxygen by PDT may induce elevated hypoxia and hence in turn enhanced cargo release. This work highlights the role of triple-responsive nanocarriers for triggered photosensitizer release and improved antitumor PDT efficacy.
Collapse
Affiliation(s)
- Wenyu Chen
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Huixin He
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Pengfei Jiao
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Lefei Han
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xiu Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xuliang Guo
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| |
Collapse
|
5
|
Qian R, Yi X, Liu T, Chen H, Wang Y, Hu L, Guo L, Yang K, Deng H. Regulation of Ion Homeostasis for Enhanced Tumor Radio-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304092. [PMID: 37740415 PMCID: PMC10646238 DOI: 10.1002/advs.202304092] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Indexed: 09/24/2023]
Abstract
Intra/extracellular ion content affects the growth and metastasis of tumor cells, as well as the efficacy of various antitumor therapies. Herein, a carbonic anhydrase inhibitor (CAI) is loaded onto pH-responsive calcium carbonate (CaCO3 ) nanoparticles and then modify theses nanoparticles with liposomes to obtain biocompatible CaCO3 /CAI@Lipsome (CCL) for enhance tumor radio-immunotherapy. CCL can specially decompose in tumor microenvironment, releasing calcium ion (Ca2+ ) and CAI, as well as increasing the pH value of extracellular fluid. CAI restrains the flow of hydrogen ion (H+ ) inside and outside the tumor cells, resulting in the reversal of tumor acidic microenvironment and the increase of intracellular H+ , both of which can improve the sensitivity of tumor to radiotherapy. Afterward, the increased intracellular H+ together with radiotherapy-causes reactive oxygen species promotes calcium influx, leading to cellular calcium overload. Moreover, the CCL-tailored content of H+ and Ca2+ strengthens radiotherapy-induced immunogenic cell death and dendritic cell maturation, amplifying systemic anti-tumor adaptive immunity. Meanwhile, macrophages in the CCL-treated tumors are polarized from pro-tumor M2 to anti-tumor M1 under X-ray exposure, owing to the neutralization of tumor acidic microenvironment and enhances Ca2+ content. Therefore, multi-directional regulation of the intra/extra tumor cell pH/calcium by simple nano-preparation would provide a powerful way to improve the efficacy of radio-immunotherapy.
Collapse
Affiliation(s)
- Rui Qian
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510000China
| | - Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug TargetsNantong UniversityNantongJiangsu226001China
| | - Teng Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsu215123China
| | - Hua Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsu215123China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215005China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsu215123China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215005China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD‐X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsu215123China
- Department of Pathology, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhou215005China
| | - Haijun Deng
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510000China
| |
Collapse
|
6
|
Wei J, Du L, Cao Z, Li M, Zhang C, Zhang C, Meng L. 5-Aminolevulinic Acid Photodynamic Therapy Combined with Intralesional Triamcinolone and 5-Fluorouracil to Treat Acne Hypertrophic Scar. Clin Cosmet Investig Dermatol 2023; 16:3057-3064. [PMID: 37920822 PMCID: PMC10618392 DOI: 10.2147/ccid.s427427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Background Acne is a chronic inflammatory disease of the pilosebaceous unit. Improper treatment of acne can lead to skin lesions in some people. Acne hypertrophic scar is relatively rare, but it significantly affects the appearance and beauty, and usually has a great psychological and social impact on patients. Objective To evaluate the clinical efficacy and safety of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) combined with 5-fluorouracil (5-FU) injection and triamcinolone acetonide (TAC) solution in the treatment of acne hypertrophic scars. Methods This article included 13 outpatients with acne accompanied by acne hypertrophic scar who were treated from September 2018 to September 2022. All patients received ALA-PDT combined with intralesional injection of 5-FU and TAC. At first, patients received ALA-PDT once every two weeks. After the third ALA-PDT, 5-FU and TAC were mixed in a ratio of 3:7, and then immediately injected in the local scars. The effect was observed after 1 month. If the effect is not obvious, a further injection of 5-FU and TAC to the lesion is necessary. The patients were followed up for 6 months. The Vancouver Scars Scale (VSS) was used to evaluate the efficacy before and after treatment and photos of patients were collected. Results After ALA-PDT combined with intralesional 5-FU and TAC, all patients achieved good clinical efficacy. 23.08% of patients received one local injection and 76.92% received two local injections. After treatment, the scar lesions were reduced and flattened, and the scars became soft. The total score of VSS after treatment was significantly lower than before, and the difference was statistically significant (P<0.05). The main adverse reactions were pain, erythema, and pigmentation, which can subside within 3 weeks. There was no recurrence after 6 months of follow-up. Conclusion ALA-PDT combined with intralesional injection of 5-FU and TAC significantly affects acne hypertrophic scars, which is worthy of further in-depth and large-scale research.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Lingyun Du
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Zhiqiang Cao
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Mingming Li
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Chunhong Zhang
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Chunmin Zhang
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| | - Liya Meng
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
7
|
Guo D, Lei JH, Rong D, Zhang T, Zhang B, Tang Z, Shen H, Deng C, Qu S. Photocatalytic Pt(IV)-Coordinated Carbon Dots for Precision Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2205106. [PMID: 36307905 PMCID: PMC9798972 DOI: 10.1002/advs.202205106] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Indexed: 05/13/2023]
Abstract
Rapid, efficient, and precise cancer therapy is highly desired. Here, this work reports solvothermally synthesized photoactivatable Pt(IV)-coordinated carbon dots (Pt-CDs) and their bovine serum albumin (BSA) complex (Pt-CDs@BSA) as a novel orange light-triggered anti-tumor therapeutic agent. The homogeneously distributed Pt(IV) in the Pt-CDs (Pt: 17.2 wt%) and their carbon cores with significant visible absorption exhibit excellent photocatalytic properties, which not only efficiently releases cytotoxic Pt(II) species but also promotes hydroxy radical generation from water under orange light. When triggered with a 589 nm laser, Pt-CDs@BSA possesses the ultrastrong cancer cell killing capacities of intracellular Pt(II) species release, hydroxyl radical generation, and acidification, which induce powerful immunogenic cell death. Activation of Pt-CDs@BSA by a single treatment with a 589 nm laser effectively eliminated the primary tumor and inhibited distant tumor growth and lung metastasis. This study thus presents a new concept for building photoactivatable Pt(IV)-enriched nanodrug-based CDs for precision cancer therapy.
Collapse
Affiliation(s)
- Dongbo Guo
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacau SARChina
- School of Biomedical EngineeringState Key Laboratory of Marine Resource Utilization in South China SeaHainan University570228HaikouChina
| | - Josh Haipeng Lei
- Faculty of Health SciencesUniversity of MacauTaipaMacau SARChina
- MOE Frontier Science Centre for Precision OncologyCancer CenterFaculty of Health SciencesUniversity of MacauTaipaMacau SARChina
| | - Dade Rong
- Faculty of Health SciencesUniversity of MacauTaipaMacau SARChina
| | - Tesen Zhang
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacau SARChina
| | - Bohan Zhang
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacau SARChina
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacau SARChina
- MOE Frontier Science Centre for Precision OncologyCancer CenterFaculty of Health SciencesUniversity of MacauTaipaMacau SARChina
- Department of Physics and ChemistryUniversity of MacauTaipaMacau SARChina
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauTaipaMacau SARChina
- MOE Frontier Science Centre for Precision OncologyCancer CenterFaculty of Health SciencesUniversity of MacauTaipaMacau SARChina
| | - Chu‐Xia Deng
- Faculty of Health SciencesUniversity of MacauTaipaMacau SARChina
- MOE Frontier Science Centre for Precision OncologyCancer CenterFaculty of Health SciencesUniversity of MacauTaipaMacau SARChina
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacau SARChina
- MOE Frontier Science Centre for Precision OncologyCancer CenterFaculty of Health SciencesUniversity of MacauTaipaMacau SARChina
- Department of Physics and ChemistryUniversity of MacauTaipaMacau SARChina
| |
Collapse
|
8
|
Liu L, Zhang C, Wei G. Photodynamic therapy combined with fire needle for a case of bullous lichen sclerosus. Photodiagnosis Photodyn Ther 2022; 41:103143. [PMID: 36273793 DOI: 10.1016/j.pdpdt.2022.103143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022]
Abstract
In this work, we treated a case of stubborn bullous lichen sclerosus with photodynamic therapy(PDT) combined with fire needle. After 3 sessions of PDT ,pretreated with fire needle, most of the patient's skin lesions subsided and symptoms improved significantly. We found that photodynamic therapy is a potential treatment modality for lichen sclerosus with significant efficacy. Combined with fire needle pretreatment, which may not only promote the transdermal absorption of the drug, but also play a synergistic effect.
Collapse
Affiliation(s)
- Lin Liu
- Department of Dermato-venereology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Chunmin Zhang
- Department of Dermato-venereology, the Second Hospital, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Guo Wei
- Department of Dermato-venereology, the Second Hospital, Cheeloo college of Medicine, Shandong University, Jinan, Shandong 250033, China.
| |
Collapse
|
9
|
Pérez-Herrero E, Fernández-Medarde A. The reversed intra- and extracellular pH in tumors as a unified strategy to chemotherapeutic delivery using targeted nanocarriers. Acta Pharm Sin B 2021; 11:2243-2264. [PMID: 34522586 PMCID: PMC8424227 DOI: 10.1016/j.apsb.2021.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Solid tumors are complex entities, comprising a wide variety of malignancies with very different molecular alterations. Despite this, they share a set of characteristics known as "hallmarks of cancer" that can be used as common therapeutic targets. Thus, every tumor needs to change its metabolism in order to obtain the energy levels required for its high proliferative rates, and these adaptations lead to alterations in extra- and intracellular pH. These changes in pH are common to all solid tumors, and can be used either as therapeutic targets, blocking the cell proton transporters and reversing the pH changes, or as means to specifically deliver anticancer drugs. In this review we will describe how proton transport inhibitors in association with nanocarriers have been designed to block the pH changes that are needed for cancer cells to survive after their metabolic adaptations. We will also describe studies aiming to decrease intracellular pH in cancer using nanoparticles as molecular cages for protons which will be released upon UV or IR light exposure. Finally, we will comment on several studies that have used the extracellular pH in cancer for an enhanced cell internalization and tumor penetration of nanocarriers and a controlled drug delivery, describing how nanocarriers are being used to increase drug stability and specificity.
Collapse
Affiliation(s)
- Edgar Pérez-Herrero
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna 38206, Tenerife, Spain
- Instituto Universitario de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna 38200, Tenerife, Spain
| | - Alberto Fernández-Medarde
- Instituto de Biología Molecular y Celular Del Cáncer, Centro de Investigación Del Cáncer (USAL-CSIC), Salamanca 37007, Spain
| |
Collapse
|
10
|
Hou K, Liu J, Du J, Mi S, Ma S, Ba Y, Ji H, Li B, Hu S. Dihydroartemisinin prompts amplification of photodynamic therapy-induced reactive oxygen species to exhaust Na/H exchanger 1-mediated glioma cells invasion and migration. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 219:112192. [PMID: 34000476 DOI: 10.1016/j.jphotobiol.2021.112192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) is a promising glioma therapy; however, its efficacy is compromised due to the PDT-induced reactive oxygen species (ROS) production being limited by the local hypoxic tumor microenvironment. Furthermore, Hypoxia activates sodium/hydrogen exchanger 1 (NHE1), an essential component for tumor progression and metastasis, enables glioma cells (GC) to escape PDT-mediated phototoxicity via increased H+ extrusion. However, interactions between NHE1 expression with ROS level involving response of GC remain unclear. Dihydroartemisinin (DHA), a ROS generator, has extensive anti-tumor effects. This study aimed to explore whether PDT along with DHA could amplify the total ROS levels and diminish GC invasion and migration by inhibiting NHE1 expression. Proliferation and invasion of U251 and LN229 cells were evaluated under different treatments using cell counting Kit-8 (CCK-8), transwell, and wound healing assays. ROS levels were measured using fluorescence probes and flow cytometry. NHE1 levels were detected by immunofluorescence and western blotting. Co-treatment effects and molecular events were further confirmed in a bilateral tumor-bearing nude mouse model. PDT with synergistic DHA significantly increased the total abundance of ROS to further suppress the invasion and migration of GC by reducing NHE1 levels in vitro. Using a bilateral glioma xenograft mouse model with primary and recurrent gliomas, we found that PDT markedly suppressed primary tumor growth, while PDT in synergy with DHA also suppressed recurrent tumors, and improved overall survival by regulating the ROS-NHE1 axis. No evident side effects were observed. Our results suggest that PDT with DHA can amplify the total ROS levels to weaken GC invasion and migration by suppressing NHE1 expression in vitro and in vivo, thus abolishing the resistance of GC to PDT. The synergistic therapy of PDT and DHA therefore represents a more efficient and safe strategy for comprehensive glioma treatment.
Collapse
Affiliation(s)
- Kuiyuan Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jie Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jianyang Du
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shan Mi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yixu Ba
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Bo Li
- Department of Neurosurgery, The First People's Hospital of Taizhou, Taizhou 318020, China
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
11
|
Xiao J, Cong H, Wang S, Yu B, Shen Y. Recent research progress in the construction of active free radical nanoreactors and their applications in photodynamic therapy. Biomater Sci 2021; 9:2384-2412. [PMID: 33576752 DOI: 10.1039/d0bm02013c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy is the most important treatment strategy in free radical therapy. However, tumor microenvironment hypoxia is a key obstacle in PDT. In order to overcome this obstacle, the strategy of in situ production of O2/radicals by catalytic reaction in solid tumors was proposed. In recent years, it has been found that there are many oxygen-independent carbon-based free radicals that can generate toxic active free radicals under laser irradiation and lead to tumor cell death. Based on the rational design of multifunctional nano-medicine, the active free radical nano-generator has opened up a new way for the highly developed nanotechnology and tumor cooperative therapy to improve the therapeutic effect. In this paper, the research status of active free radical nano-generators, especially reactive oxygen species, including the construction mechanism of active free radical nanomaterials, is reviewed and the application of free radical nano-generators in tumor therapy is emphasized.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | | | | | | | | |
Collapse
|
12
|
Adil MS, Khulood D, Somanath PR. Targeting Akt-associated microRNAs for cancer therapeutics. Biochem Pharmacol 2020; 189:114384. [PMID: 33347867 DOI: 10.1016/j.bcp.2020.114384] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
The uncontrolled growth and spread of abnormal cells because of activating protooncogenes and/or inactivating tumor suppressor genes are the hallmarks of cancer. The PI3K/Akt signaling is one of the most frequently activated pathways in cancer cells responsible for the regulation of cell survival and proliferation in stress and hypoxic conditions during oncogenesis. Non-coding RNAs are a large family of RNAs that are not involved in protein-coding, and microRNAs (miRNAs) are a sub-set of non-coding RNAs with a single strand of 18-25 nucleotides. miRNAs are extensively involved in the post-transcriptional regulation of gene expression and play an extensive role in the regulatory mechanisms including cell differentiation, proliferation, apoptosis, and tumorigenesis. The impact of cancer on mRNA stability and translation efficiency is extensive and therefore, cancerous tissues exhibit drastic alterations in the expression of miRNAs. miRNAs can be modulated by utilizing techniques such as miRNA mimics, miRNA antagonists, or CRISPR/Cas9. In addition to their capacity as potential targets in cancer therapy, they can be used as reliable biomarkers to diagnose the disease at the earliest stage. Recent evidence indicates that microRNA-mediated gene regulation intersects with the Akt pathway, forming an Akt-microRNA regulatory network. miRNAs and Akt in this network operate together to exert their cellular tasks. In the current review, we discuss the Akt-associated miRNAs in several cancers, their molecular regulation, and how this newly emerging knowledge may contribute greatly to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Mir S Adil
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Daulat Khulood
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
13
|
Harguindey S, Alfarouk K, Polo Orozco J, Hardonnière K, Stanciu D, Fais S, Devesa J. A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. Int J Mol Sci 2020; 21:E1110. [PMID: 32046158 PMCID: PMC7036897 DOI: 10.3390/ijms21031110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Despite all efforts, the treatment of breast cancer (BC) cannot be considered to be a success story. The advances in surgery, chemotherapy and radiotherapy have not been sufficient at all. Indeed, the accumulated experience clearly indicates that new perspectives and non-main stream approaches are needed to better characterize the etiopathogenesis and treatment of this disease. This contribution deals with how the new pH-centric anticancer paradigm plays a fundamental role in reaching a more integral understanding of the etiology, pathogenesis, and treatment of this multifactorial disease. For the first time, the armamentarium available for the treatment of the different types and phases of BC is approached here from a Unitarian perspective-based upon the hydrogen ion dynamics of cancer. The wide-ranged pH-related molecular, biochemical and metabolic model is able to embrace most of the fields and subfields of breast cancer etiopathogenesis and treatment. This single and integrated approach allows advancing towards a unidirectional, concerted and synergistic program of treatment. Further efforts in this line are likely to first improve the therapeutics of each subtype of this tumor and every individual patient in every phase of the disease.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Institute of Clinical Biology and Metabolism, Postas 13, 01004 Vitoria, Spain;
| | - Kévin Hardonnière
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290 Châtenay-Malabry, France;
| | - Daniel Stanciu
- Scientific Direction, MCS Foundation For Life, 5623KR Eindhoven, The Netherlands;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, Travesía de Montouto 24, 15886 Teo, Spain;
| |
Collapse
|
14
|
Harguindey S, Polo Orozco J, Alfarouk KO, Devesa J. Hydrogen Ion Dynamics of Cancer and a New Molecular, Biochemical and Metabolic Approach to the Etiopathogenesis and Treatment of Brain Malignancies. Int J Mol Sci 2019; 20:ijms20174278. [PMID: 31480530 PMCID: PMC6747469 DOI: 10.3390/ijms20174278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
The treatment of cancer has been slowly but steadily progressing during the last fifty years. Some tumors with a high mortality in the past are curable nowadays. However, there is one striking exception: glioblastoma multiforme. No real breakthrough has been hitherto achieved with this tumor with ominous prognosis and very short survival. Glioblastomas, being highly glycolytic malignancies are strongly pH-dependent and driven by the sodium hydrogen exchanger 1 (NHE1) and other proton (H+) transporters. Therefore, this is one of those pathologies where the lessons recently learnt from the new pH-centered anticancer paradigm may soon bring a promising change to treatment. This contribution will discuss how the pH-centric molecular, biochemical and metabolic perspective may introduce some urgently needed and integral novel treatments. Such a prospective therapeutic approach for malignant brain tumors is developed here, either to be used alone or in combination with more standard therapies.
Collapse
Affiliation(s)
| | | | - Khalid O Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia
- Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain
| |
Collapse
|
15
|
Saleem H, Iqbal U. The Fight Against Cancer: Nitrobenzaldehyde as the Potential Warrior. Cureus 2018; 10:e2163. [PMID: 29644152 PMCID: PMC5889157 DOI: 10.7759/cureus.2163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
New milestones have been reached in oncology with the advent of a noninvasive, photodynamic therapy which aims to eradicate cancer cells rapidly. A chemical compound, Nitrobenzaldehyde, injected into the tumor, activates by ultraviolet (UV) light and disrupts the cancer cells' internal and external dynamics. This technique could be of enormous therapeutic value in destroying numerous cancer lines including breast, prostate, pancreatic cancers, etc., without causing unwanted systemic side effects.
Collapse
Affiliation(s)
- Hira Saleem
- Dow Medical College, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Unzela Iqbal
- Dow Medical College, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| |
Collapse
|
16
|
Adam K, Hunter T. Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. J Transl Med 2018; 98:233-247. [PMID: 29058706 PMCID: PMC5815933 DOI: 10.1038/labinvest.2017.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation is the most common type of post-translational modification in eukaryotes. The phosphoproteome is defined as the complete set of experimentally detectable phosphorylation sites present in a cell's proteome under various conditions. However, we are still far from identifying all the phosphorylation sites in a cell mainly due to the lack of information about phosphorylation events involving residues other than Ser, Thr and Tyr. Four types of phosphate-protein linkage exist and these generate nine different phosphoresidues-pSer, pThr, pTyr, pHis, pLys, pArg, pAsp, pGlu and pCys. Most of the effort in studying protein phosphorylation has been focused on Ser, Thr and Tyr phosphorylation. The recent development of 1- and 3-pHis monoclonal antibodies promises to increase our understanding of His phosphorylation and the kinases and phosphatases involved. Several His kinases are well defined in prokaryotes, especially those involved in two-component system (TCS) signaling. However, in higher eukaryotes, NM23, a protein originally characterized as a nucleoside diphosphate kinase, is the only characterized protein-histidine kinase. This ubiquitous and conserved His kinase autophosphorylates its active site His, and transfers this phosphate either onto a nucleoside diphosphate or onto a protein His residue. Studies of NM23 protein targets using newly developed anti-pHis antibodies will surely help illuminate the elusive His phosphorylation-based signaling pathways. This review discusses the role that the NM23/NME/NDPK phosphotransferase has, how the addition of the pHis phosphoproteome will expand the phosphoproteome and make His phosphorylation part of the global phosphorylation world. It also summarizes why our understanding of phosphorylation is still largely restricted to the acid stable phosphoproteome, and highlights the study of NM23 histidine kinase as an entrée into the world of histidine phosphorylation.
Collapse
Affiliation(s)
- Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
17
|
Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis 2017; 22:1321-1335. [PMID: 28936716 DOI: 10.1007/s10495-017-1424-9] [Citation(s) in RCA: 406] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS), a group of ions and molecules, include hydroxyl radicals (·OH), alkoxyl radicals, superoxide anion (O2·-), singlet oxygen (1O2) and hydrogen peroxide (H2O2). Hydroxyl radicals and alkoxyl radicals are extremely and highly reactive species respectively. Endogenous ROS are mainly formed in mitochondrial respiratory chain. Low levels of ROS play important roles in regulating biological functions in mammalian cells. However, excess production of ROS can induce cell death by oxidative damaging effects to intracellular biomacromolecules. Cancer cell death types induced by ROS include apoptotic, autophagic, ferroptotic and necrotic cell death. Since abnormal metabolism in cancer cells, they have higher ROS content compared to normal cells. The higher endogenous ROS levels in cancer cells endow them more susceptible to the ROS-induction treatment. Indeed, some anticancer drugs currently used in clinic, such as molecular targeted drugs and chemotherapeutic agents, effectively kill cancer cells by inducing ROS generation. In addition, photodynamic therapy (PDT) is mainly based on induction of ROS burst to kill cancer cells. The mechanism of cell death induced by radiotherapy using ionizing radiation also refers to ROS production. Moreover, ROS play an important role in tumor immune therapy. Altogether, combining above traditional treatments with ROS-induced agents will be considered as a promising strategy in cancer therapy. In this review, we focus on our current understanding of the anticancer effects of ROS.
Collapse
Affiliation(s)
- Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
- Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, South China Normal University, Guangzhou, China.
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haolong Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Songmao Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|