1
|
Gan L, Zheng L, Yao L, Lei L, Huang Y, Zeng Z, Fang N. Exosomes from adipose-derived mesenchymal stem cells improve liver fibrosis by regulating the miR-20a-5p/TGFBR2 axis to affect the p38 MAPK/NF-κB pathway. Cytokine 2023; 172:156386. [PMID: 37852157 DOI: 10.1016/j.cyto.2023.156386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Human adipose-derived mesenchymal stem cell exosomes (ADSC-Exos) are active constituents for treating liver fibrosis. This paper attempted to preliminarily explain the functional mechanism of ADSC-Exos in liver fibrosis through the p38 MAPK/NF-κB pathway. METHODS The cell models of hepatic fibrosis were established by inducing LX-2 cells with TGF-β1. Mouse models of liver fibrosis were established by treating mice with CCl4. The in vivo and in vitro models of liver fibrosis were treated with ADSC-Exos. ADSCs were identified by flow cytometry/Alizarin red/oil red O/alcian blue staining. ADSC-Exos were identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot. LX-2 cell proliferation/viability were evaluated by MTT/BrdU assays. Exosomes were tracked in vivo and body weight changes in mice were monitored. Hepatic pathological changes were observed by HE/Masson staining. α-SMA/collagen I levels in liver tissues were assessed by immunohistochemistry. HA/PIIINP concentrations were measured using the magnetic particle chemiluminescence method. Liver function was assessed using an automatic analyzer. miR-20a-5p level was measured by RT-qPCR. The mRNA levels of fibrosis markers were determined by RT-qPCR, and their protein levels and levels of MAPK/NF-κB pathway-related proteins, as well as TGFBR2 protein level were measured by Western blot. The P65 nuclear expression in mouse liver tissues was quantified by immunofluorescence. RESULTS ADSC-Exos suppressed TGF-β1-induced LX-2 cell proliferation and fibrosis and reduced mRNA and protein levels of fibrosis markers in vitro. ADSC-Exos ameliorated liver fibrosis by inhibiting the p38 MAPK/NF-κB pathway activation. ADSC-Exos inhibited activation of the p38 MAPK/NF-κB pathway via regulating the miR-20a-5p/TGFBR2 axis. The in vivo experiment asserted that ADSC-Exos were mainly distributed in the liver, and ADSC-Exos relieved liver fibrosis in mice, which was evidenced by alleviating decreased body weight, reducing collagen and enhancing liver function, and repressed the activation of the p38 MAPK/NF-κB pathway via the miR-20a-5p/TGFBR2 axis. CONCLUSION ADSC-Exos attenuated liver fibrosis by suppressing the activation of the p38 MAPK/NF-κB pathway via the miR-20a-5p/TGFBR2 axis.
Collapse
Affiliation(s)
- Lihong Gan
- Third Clinical Medical College, Nanchang University, Nanchang, China; Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China
| | - Li Zheng
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China
| | - Ling Yao
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China
| | - Ling Lei
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China
| | - Yaqin Huang
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China
| | - Zhiping Zeng
- Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China
| | - Nian Fang
- Third Clinical Medical College, Nanchang University, Nanchang, China; Department of Gastroenterology, The First Hospital of Nanchang (The Third Affiliated Hospital of Nanchang University), Nanchang, China.
| |
Collapse
|
2
|
Cai J, Tang D, Hao X, Liu E, Li W, Shi J. Mesenchymal stem cell-derived exosome alleviates sepsis- associated acute liver injury by suppressing MALAT1 through microRNA-26a-5p: an innovative immunopharmacological intervention and therapeutic approach for sepsis. Front Immunol 2023; 14:1157793. [PMID: 37398640 PMCID: PMC10310917 DOI: 10.3389/fimmu.2023.1157793] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Background Sepsis is a syndrome with the disturbed host response to severe infection and is a major health problem worldwide. As the front line of infection defense and drug metabolism, the liver is vulnerable to infection- or drug-induced injury. Acute liver injury (ALI) is thus common in patients with sepsis and is significantly associated with poor prognosis. However, there are still few targeted drugs for the treatment of this syndrome in clinics. Recent studies have reported that mesenchymal stem cells (MSCs) show potential for the treatment of various diseases, while the molecular mechanisms remain incompletely characterized. Aims and Methods Herein, we used cecal ligation puncture (CLP) and lipopolysaccharide (LPS) plus D-galactosamine (D-gal) as sepsis-induced ALI models to investigate the roles and mechanisms of mesenchymal stem cells (MSCs) in the treatment of ALI in sepsis. Results We found that either MSCs or MSC-derived exosome significantly attenuated ALI and consequent death in sepsis. miR-26a-5p, a microRNA downregulated in septic mice, was replenished by MSC-derived exosome. Replenishment of miR-26a-5p protected against hepatocyte death and liver injury caused by sepsis through targeting Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), a long non-coding RNA highly presented in hepatocyte and liver under sepsis and inhibiting anti-oxidant system. Conclusion Taken together, the results of the current study revealed the beneficial effects of MSC, exosome or miR-26a-5p on ALI, and determined the potential mechanisms of ALI induced by sepsis. MALAT1 would be a novel target for drug development in the treatment of this syndrome.
Collapse
Affiliation(s)
- Jizhen Cai
- Department of Critical Care Medicine and Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Da Tang
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Hao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, China
| | - Enyi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, China
| | - Wenbo Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jian Shi
- Department of Critical Care Medicine and Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
The Emerging Role of Noncoding RNA Regulation of the Ferroptosis in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3595745. [PMID: 36187333 PMCID: PMC9519351 DOI: 10.1155/2022/3595745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Cardiovascular disease (CVD) is a significant public health issue due to its high prevalence and considerable contribution to the global disease burden. Recent studies suggest that genetic factors, including noncoding RNAs, have an important role in the progression of CVD. Noncoding RNA plays a critical role in genetic programming and gene regulation during development. Ferroptosis is a form of iron-dependent regulated cell death (RCD), which is mainly caused by increased lipid hydroperoxide and redox imbalance. Ferroptosis is essentially different from other forms of RCD in morphology and mechanism, such as apoptosis, autophagic cell death, pyroptosis, and necroptosis. Much evidence suggested ferroptosis is involved in the development of various CVDs, especially in cardiac ischemia/reperfusion injury, heart failure, and aortic dissection. Here, we review the latest findings based on noncoding RNA regulation of ferroptosis and its involvement in the pathogenesis of CVD and related treatments, aimed at providing insights into the impact of noncoding RNA regulation of ferroptosis for CVD.
Collapse
|
4
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Xu J, Li X, Zhang P, Luo J, Mou E, Liu S. miR-143-5p suppresses breast cancer progression by targeting the HIF-1α-related GLUT1 pathway. Oncol Lett 2022; 23:147. [PMID: 35350590 PMCID: PMC8941519 DOI: 10.3892/ol.2022.13268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC) is a commonly identified life-threatening type of cancer and a major cause of death among women worldwide. Several microRNAs (miRs), including miR-143-5p, have been reported to be vital for regulating hallmarks of cancer; however, the effect of miR-143-5p on BC requires further exploration. The present study performed bioinformatics analysis on GSE42072 and GSE41922 datasets from the National Center for Biotechnology Information Gene Expression Omnibus (GEO) database to identify miR-143-5p expression patterns. Furthermore, miR-143-5p expression was detected in BC cell lines and tissues via reverse transcription-quantitative PCR. Post-transfection with miR-143-5p mimics, Cell Counting Kit-8, colony formation and Transwell assays were performed to explore the effects of miR-143-5p on BC cell proliferation, colony formation, and migration. The association of miR-143-5p with the hypoxia-inducible factor-1α (HIF-1α)-associated glucose transporter 1 (GLUT1) pathway was explored via western blotting, immunofluorescence and dual-luciferase reporter assay. The present study detected high expression of miR-143-5p in BC tissue of the GSE42072 and serum of the GSE41922 datasets by GEO chip analysis. Additionally, the expression levels of miR-143-5p were decreased in BC tissues compared with those in adjacent healthy tissues, and low miR-143-5p expression was associated with a poorer prognosis and shorter survival time in patients with BC. In vitro, miR-143-5p expression levels were decreased in BC cells, and transfection with miR-143-5p mimics suppressed BC cell proliferation, colony formation, migration. Furthermore, miR-143-5p targeted the HIF-1α-related GLUT1 pathway, and inhibited HIF-1α and GLUT1 expression. Additionally, HIF-1α agonists reversed the miR-143-5p-induced inhibition during tumorigenesis. In conclusion, miR-143-5p exhibited low expression in BC tissues, and suppressed BC cell proliferation, colony formation, migration. Moreover, the antitumor effects of miR-143-5p targeted the HIF-1α-related GLUT1 pathway.
Collapse
Affiliation(s)
- Jia Xu
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Xi Li
- Department of Plastic Surgery, Chengdu First People's Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Purong Zhang
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jie Luo
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Exian Mou
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shiwei Liu
- Department of Breast Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Zhang S, Wang X, Wang D. Long non-coding RNA LINC01296 promotes progression of oral squamous cell carcinoma through activating the MAPK/ERK signaling pathway via the miR-485-5p/PAK4 axis. Arch Med Sci 2022; 18:786-799. [PMID: 35591837 PMCID: PMC9102572 DOI: 10.5114/aoms.2019.86805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/19/2019] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Long intergenic non-protein-coding RNA 1296 (LINC01296), a newly identified lncRNA, can function as an oncogenic driver to promote the development of multiple carcinomas. However, the effect of LINC01296 on oral squamous cell carcinoma (OSCC) is still unclear. MATERIAL AND METHODS We determined the expression and role of LINC01296 in OSCC tissues and cell lines. The cell viability, migration and invasion were determined by MTT, wound healing assay and transwell assay, respectively. Flow cytometry was used for detecting cell cycle and apoptosis. The interaction and association between LINC01296, microRNA-485-5p (miR-485-5p) and p21 (RAC1) activated kinase 4 (PAK4) were analyzed by RNA immunoprecipitation (RIP) and luciferase reporter assays. The xenograft mouse model was established to detect the effect of LINC01296 on OSCC tumor growth. RESULTS Our study showed that LINC01296 was over-expressed in OSCC tissues and cell lines. The level of LINC01296 was positively correlated with the patient's tumor node metastasis (TNM) stage and nodal invasion. Knockdown of LINC01296 effectively inhibits cell viability, migration and invasion but promotes cell apoptosis in vitro. The in vivo experiment showed that LINC01296 knockdown inhibited OSCC tumor growth. The following analysis indicated that LINC01296 acted as a ceRNA for miR-485-5p, and PAK4 was identified as a direct target of miR-485-5p. Furthermore, we found that the effects of LINC01296 on OSCC progression were through regulating the expression of PAK4/p-MEK/p-ERK via sponging miR-485-5p. CONCLUSIONS LINC01296 promote the cell cycle, proliferation, migration and invasion, and inhibit apoptosis of OSCC cells through activating the MAPK/ERK signaling pathway via sponging miR-485-5p to regulate PAK4 expression. These results suggested that the LINC01296/miR-485-5p/PAK4 axis was closely associated with OSCC progression. Our study provides a new insight into the molecular pathogenesis of OSCC, and may supply novel biomarkers for diagnosis and therapy of OSCC.
Collapse
Affiliation(s)
- Shuangyue Zhang
- Department of Stomatology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu Province, China
| | - Xiaowei Wang
- Department of Oncology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu Province, China
| | - Dazhao Wang
- Department of Stomatology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu Province, China
| |
Collapse
|
7
|
Zhao J, Chen HQ, Yang HF, Li XY, Liu WB. Gene expression network related to DNA methylation and miRNA regulation during the process of aflatoxin B1-induced malignant transformation of L02 cells. J Appl Toxicol 2021; 42:475-489. [PMID: 34561900 DOI: 10.1002/jat.4233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 01/12/2023]
Abstract
Aflatoxin is a secondary metabolite secreted by Aspergillus flavus, parasitic Aspergillus, and other fungi through the polyketone pathway, and it can be detected in many foods. Aflatoxin has strong toxicity and carcinogenicity, and many studies have shown that aflatoxin is highly associated with liver cancer. In the present study, malignant transformation of L02 cells was induced by aflatoxin B1 (AFB1), and the gene expression, miRNA expression, and methylation level were detected by high-throughput sequencing. The gene and miRNA expression results showed that 2547 genes and 315 miRNAs were changed in the AFB1-treated group compared with the DMSO group. Among them, RSAD2 and SCIN were significantly upregulated, whereas TRAPPC3L and UBE2L6 were significantly downregulated. Has-miR-33b-3p was significantly upregulated, whereas Has-miR-3613-5p was significantly downregulated. The methylation results showed that 2832 CpG sites were methylated on the promoter or coding DNA sequence (CDS) of the gene, whereas the expression of DNMT3a and DNMT3b was significantly upregulated. Moreover, hypermethylation occurred in TRAPPC3L, CDH13, and SPINK13. The results of GO and KEGG pathway analyses showed that significantly changed genes and miRNAs were mainly involved in tumor formation, proliferation, invasion, and migration. The results of network map analysis showed that Hsa-miR-3613-5p, Hsa-miR-615-5p, Hsa-miR-615-3p, and Hsa-miR-3158-3p were the key miRNAs for malignant transformation of L02 cells induced by AFB1. In addition, the expression of ONECUT2, RAP1GAP2, and FSTL4 was regulated by DNA methylation and miRNAs. These results suggested that the gene expression network regulated by DNA methylation and miRNAs may play a vital role in AFB1-induced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ji Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.,School of Public Healthy and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui-Fang Yang
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Xiao-Yu Li
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
8
|
Prediction of Grade Reclassification of Prostate Cancer Patients on Active Surveillance through the Combination of a Three-miRNA Signature and Selected Clinical Variables. Cancers (Basel) 2021; 13:cancers13102433. [PMID: 34069838 PMCID: PMC8157371 DOI: 10.3390/cancers13102433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Active surveillance (AS) has evolved as an alternative to radical treatment for potentially indolent prostate cancer. However, current selection criteria for entering AS are suboptimal, and a significant percentage of patients discontinue AS because of disease reclassification. Hence, there is an unmet need for novel biomarkers for the accurate identification of high-risk PCa and the unequivocal classification of indolent disease. Circulating biomarkers, including microRNAs identified through liquid biopsies, represent a valuable approach to improve on currently available clinicopathological risk-stratification tools. In an attempt to identify specific microRNA signatures as potential circulating biomarkers, the authors performed an unprecedented analysis of the global microRNA profile in plasma samples from AS patients and identified and validated a three-microRNA signature able to predict patient reclassification. The addition of the three-microRNA signature was able to improve the performance of currently available clinicopathological variables, thus showing potential for the refinement of AS patients’ selection. Abstract Active surveillance (AS) has evolved as a strategy alternative to radical treatments for very low risk and low-risk prostate cancer (PCa). However, current criteria for selecting AS patients are still suboptimal. Here, we performed an unprecedented analysis of the circulating miRNome to investigate whether specific miRNAs associated with disease reclassification can provide risk refinement to standard clinicopathological features for improving patient selection. The global miRNA expression profiles were assessed in plasma samples prospectively collected at baseline from 386 patients on AS included in three independent mono-institutional cohorts (training, testing and validation sets). A three-miRNA signature (miR-511-5p, miR-598-3p and miR-199a-5p) was found to predict reclassification in all patient cohorts (training set: AUC 0.74, 95% CI 0.60–0.87, testing set: AUC 0.65, 95% CI 0.51–0.80, validation set: AUC 0.68, 95% CI 0.56–0.80). Importantly, the addition of the three-miRNA signature improved the performance of the clinical model including clinicopathological variables only (AUC 0.70, 95% CI 0.61–0.78 vs. 0.76, 95% CI 0.68–0.84). Overall, we trained, tested and validated a three-miRNA signature which, combined with selected clinicopathological variables, may represent a promising biomarker to improve on currently available clinicopathological risk stratification tools for a better selection of truly indolent PCa patients suitable for AS.
Collapse
|
9
|
Tassinari M, Richter SN, Gandellini P. Biological relevance and therapeutic potential of G-quadruplex structures in the human noncoding transcriptome. Nucleic Acids Res 2021; 49:3617-3633. [PMID: 33721024 PMCID: PMC8053107 DOI: 10.1093/nar/gkab127] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Noncoding RNAs are functional transcripts that are not translated into proteins. They represent the largest portion of the human transcriptome and have been shown to regulate gene expression networks in both physiological and pathological cell conditions. Research in this field has made remarkable progress in the comprehension of how aberrations in noncoding RNA drive relevant disease-associated phenotypes; however, the biological role and mechanism of action of several noncoding RNAs still need full understanding. Besides fulfilling its function through sequence-based mechanisms, RNA can form complex secondary and tertiary structures which allow non-canonical interactions with proteins and/or other nucleic acids. In this context, the presence of G-quadruplexes in microRNAs and long noncoding RNAs is increasingly being reported. This evidence suggests a role for RNA G-quadruplexes in controlling microRNA biogenesis and mediating noncoding RNA interaction with biological partners, thus ultimately regulating gene expression. Here, we review the state of the art of G-quadruplexes in the noncoding transcriptome, with their structural and functional characterization. In light of the existence and further possible development of G-quadruplex binders that modulate G-quadruplex conformation and protein interactions, we also discuss the therapeutic potential of G-quadruplexes as targets to interfere with disease-associated noncoding RNAs.
Collapse
Affiliation(s)
- Martina Tassinari
- Department of Biosciences, University of Milan, via G. Celoria 26, 20133 Milano, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padova, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, via G. Celoria 26, 20133 Milano, Italy
| |
Collapse
|
10
|
Qu L, Zhang W, Li J, Liu P. The miR-146b-5p promotes Ewing's sarcoma cells progression via suppressing the expression of BTG2. Sci Prog 2021; 104:368504211002043. [PMID: 33844600 PMCID: PMC10454925 DOI: 10.1177/00368504211002043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ewing sarcoma (ES) is a malignant tumor that occurs mostly in children. However, the underlying mechanisms of ES are still unknown. Analyzing the results of two previous miRNA array reports, we found that miR-146b-5p might be an onco-miRNA in ES progression. To test this hypothesis, we detected the expression levels of miR-146b-5p by real-time PCR and observed the effects of miR-146b-5p on the progression of ES cells by CCK8 and transwell assays. Bioinformatics and luciferase assays were used to identify the target genes of miR-146b-5p. It showed that the expression levels of miR-146b-5p were upregulated in ES cell lines compared with human mesenchymal stem cells (MSCs). Up- or downregulation of miR-146b-5p in ES cell lines could effectively promote or block the proliferation, migration, and invasion of ES cells, respectively. Furthermore, we demonstrated that BTG2 was one of the target genes and mediated the effects of miR-146b-5p in ES cells. Interestingly, we also found that miR-146b-5p was partly involved in the anticancer effects of pemetrexed in ES cells. Our study revealed that miR-146b-5p affected the progression of ES by suppressing BTG2, which might shed light on anticancer drug development and ES treatment in the future.
Collapse
Affiliation(s)
- Lizhen Qu
- Department of Orthopedics Trauma, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, P.R. China
| | - Wu Zhang
- Department of Orthopedics, Zaozhuang Hospital of ZaoZhuang Mining Group, ZaoZhuang, Shandong, P.R. China
| | - Jiajiang Li
- Department of Orthopedics, Zaozhuang Hospital of ZaoZhuang Mining Group, ZaoZhuang, Shandong, P.R. China
| | - Peng Liu
- Department of Orthopedics Trauma, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, P.R. China
| |
Collapse
|
11
|
Lv K, Liu Y, Zheng Y, Dai S, Yin P, Miao H. Long non-coding RNA MALAT1 regulates cell proliferation and apoptosis via miR-135b-5p/GPNMB axis in Parkinson's disease cell model. Biol Res 2021; 54:10. [PMID: 33726823 PMCID: PMC7968316 DOI: 10.1186/s40659-021-00332-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Backgrounds Parkinson’s disease (PD) is a common age-related neurodegenerative disorder worldwide. This research aimed to investigate the effects and mechanism underlying long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in PD. Methods SK-N-SH and SK-N-BE cells were treated with MPP+ to establish the MPP+-stimulated cell model of PD, and MALAT1 expression was determined. Then, the effects of MALAT1 depletion on cell proliferation and apoptosis were determined in the MPP+-stimulated cell model of PD. Besides, the correlations between microRNA-135b-5p (miR-135b-5p) and MALAT1 or glycoprotein nonmetastatic melanoma protein B (GPNMB) in MPP+-stimulated cell model of PD were explored. Results MALAT1 was increasingly expressed and downregulation of MALAT1 promoted cell proliferation while inhibited apoptosis in MPP+-stimulated cells. Besides, miR-135b-5p was a target of MALAT1 and directly targeted to GPNMB. Further investigation indicated that suppression of MALAT1 regulated cell proliferation and apoptosis by miR-135b-5p/GPNMB axis. Conclusion Our findings reveal that MALAT1/miR-135b-5p/GPNMB axis regulated cell proliferation and apoptosis in MPP+-stimulated cell model of PD, providing a potential biomarker and therapeutic target for PD. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00332-8.
Collapse
Affiliation(s)
- Kefeng Lv
- Department of Neurology, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Guangdong Province, 523059, Dongguan, People's Republic of China
| | - Yuhua Liu
- Department of General Practice, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), 3 South Wandao Road, Wanjiang District, 523059, Dongguan, Guangdong Province, People's Republic of China
| | - Yanbing Zheng
- Department of General Practice, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), 3 South Wandao Road, Wanjiang District, 523059, Dongguan, Guangdong Province, People's Republic of China
| | - Shaowen Dai
- Department of General Practice, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), 3 South Wandao Road, Wanjiang District, 523059, Dongguan, Guangdong Province, People's Republic of China
| | - Peifeng Yin
- Department of General Practice, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), 3 South Wandao Road, Wanjiang District, 523059, Dongguan, Guangdong Province, People's Republic of China
| | - Haifeng Miao
- Department of General Practice, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), 3 South Wandao Road, Wanjiang District, 523059, Dongguan, Guangdong Province, People's Republic of China.
| |
Collapse
|
12
|
Niu L, Yang W, Duan L, Wang X, Li Y, Xu C, Liu C, Zhang Y, Zhou W, Liu J, Zhao Q, Hong L, Fan D. Biological Implications and Clinical Potential of Metastasis-Related miRNA in Colorectal Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:42-54. [PMID: 33335791 PMCID: PMC7723777 DOI: 10.1016/j.omtn.2020.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC), ranking as the third commonest cancer, leads to extremely high rates of mortality. Metastasis is the major cause of poor outcome in CRC. When metastasis occurs, 5-year survival rates of patients decrease sharply, and strategies to enhance a patient's lifetime seem limited. MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that are significantly involved in manipulation of CRC malignant phenotypes, including proliferation, invasion, and metastasis. To date, accumulating studies have revealed the mechanisms and functions of certain miRNAs in CRC metastasis. However, there is no systematic discussion about the biological implications and clinical potential (diagnostic role, prognostic role, and targeted therapy potential) of metastasis-related miRNAs in CRC. This review mainly summarizes the recent advances of miRNA-mediated metastasis in CRC. We also discuss the clinical values of metastasis-related miRNAs as potential biomarkers or therapeutic targets in CRC. Moreover, we envisage the future orientation and challenges in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Liaoran Niu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Chengchao Xu
- 94719 Military Hospital, Ji’an 343700, Jiangxi Province, China
| | - Chao Liu
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| |
Collapse
|
13
|
Noncoding RNAs in the Interplay between Tumor Cells and Cancer-Associated Fibroblasts: Signals to Catch and Targets to Hit. Cancers (Basel) 2021; 13:cancers13040709. [PMID: 33572359 PMCID: PMC7916113 DOI: 10.3390/cancers13040709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer aggressiveness is the result of a proficient bidirectional interaction between tumor and stromal cells within the tumor microenvironment, among which a major role is played by the so-called cancer-associated fibroblasts. Upon such interplay, both cancer cells and fibroblasts are reprogrammed to sustain malignancy, with changes in the repertoire of noncoding RNAs, mainly microRNAs and long noncoding RNAs. Such molecules are also exchanged between the two cell types through extracellular vesicles. In this review, we summarize the current knowledge of microRNAs and long noncoding RNAs that act intracellularly or extracellularly to sustain tumor-stroma interplay. We also provide our view regarding the possible clinical utility of such noncoding RNAs as therapeutic target/tools or biomarkers to predict patient outcome or response to specific treatments. Abstract Cancer development and progression are not solely cell-autonomous and genetically driven processes. Dynamic interaction of cancer cells with the surrounding microenvironment, intended as the chemical/physical conditions as well as the mixture of non-neoplastic cells of the tumor niche, drive epigenetic changes that are pivotal for the acquisition of malignant traits. Cancer-associated fibroblasts (CAF), namely fibroblasts that, corrupted by cancer cells, acquire a myofibroblast-like reactive phenotype, are able to sustain tumor features by the secretion of soluble paracrine signals and the delivery extracellular vesicles. In such diabolic liaison, a major role has been ascribed to noncoding RNAs. Defined as RNAs that are functional though not being translated into proteins, noncoding RNAs predominantly act as regulators of gene expression at both the transcriptional and post-transcriptional levels. In this review, we summarize the current knowledge of microRNAs and long noncoding RNAs that act intracellularly in either CAFs or cancer cells to sustain tumor-stroma interplay. We also report on the major role of extracellular noncoding RNAs that are bidirectionally transferred between either cell type. Upon presenting a comprehensive view of the existing literature, we provide our critical opinion regarding the possible clinical utility of tumor-stroma related noncoding RNAs as therapeutic target/tools or prognostic/predictive biomarkers.
Collapse
|
14
|
“Star” miR-34a and CXCR4 antagonist based nanoplex for binary cooperative migration treatment against metastatic breast cancer. J Control Release 2020; 326:615-627. [DOI: 10.1016/j.jconrel.2020.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/14/2023]
|
15
|
Coding the noncoding: 2 years of advances in the field of microRNAs and long noncoding RNAs. Cancer Gene Ther 2020; 28:355-358. [PMID: 32980865 DOI: 10.1038/s41417-020-00236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/08/2022]
|
16
|
Li J, Yan Y, Ang L, Li X, Liu C, Sun B, Lin X, Peng Z, Zhang X, Zhang Q, Wu H, Zhao M, Su C. Extracellular vesicles-derived OncomiRs mediate communication between cancer cells and cancer-associated hepatic stellate cells in hepatocellular carcinoma microenvironment. Carcinogenesis 2020; 41:223-234. [PMID: 31140556 DOI: 10.1093/carcin/bgz096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
Tumor microenvironment (TME) is a critical determinant for hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs) are main interstitial cells in TME and play a vital role in early intrahepatic invasion and metastasis of HCC. The potential mechanism on the interactions between HSCs and HCC cells remains unclear. In this study, the effects of extracellular vesicles (EVs)-derived OncomiRs that mediate communication between HCC cells and cancer-associated hepatic stellate cells (caHSCs) and remold TME were investigated. The results found that the HCC cells-released EVs contained more various OncomiRs, which could activate HSCs (LX2 cells) and transform them to caHSCs, the caHSCs in turn exerted promotion effects on HCC cells through HSCs-released EVs. To further simulate the effects of OncomiRs in EVs on construction of pro-metastatic TME, a group of OncomiRs, miR-21, miR-221 and miR-151 was transfected into HCC cells and LX2 cells. These microRNAs in the EVs from OncomiRs-enhanced cells were demonstrated to have oncogenic effects on HCC cells by upregulating the activities of protein kinase B (AKT)/extracellular signal-regulated kinase (ERK) signal pathways. Equivalent results were also found in HCC xenografted tumor models. The findings suggested that the OncomiR secretion and transference by cancer cells-released EVs can mediate the communication between HCC cells and HSCs. HCC cells and caHSCs, as well as their secreted EVs, jointly construct a pro-metastatic TME suitable for invasion and metastasis of cancer cells, all these TME components form a positive feedback loop to promote HCC progression and metastasis.
Collapse
Affiliation(s)
- Jiang Li
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Yan Yan
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Lin Ang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, Anhui Province, China
| | - Xiaoya Li
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Chunying Liu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Xuejing Lin
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Xiaofeng Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Qin Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Hongping Wu
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Min Zhao
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, Anhui Province, China
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital and National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| |
Collapse
|
17
|
Sereno M, Videira M, Wilhelm I, Krizbai IA, Brito MA. miRNAs in Health and Disease: A Focus on the Breast Cancer Metastatic Cascade towards the Brain. Cells 2020; 9:E1790. [PMID: 32731349 PMCID: PMC7463742 DOI: 10.3390/cells9081790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that mainly act by binding to target genes to regulate their expression. Due to the multitude of genes regulated by miRNAs they have been subject of extensive research in the past few years. This state-of-the-art review summarizes the current knowledge about miRNAs and illustrates their role as powerful regulators of physiological processes. Moreover, it highlights their aberrant expression in disease, including specific cancer types and the differential hosting-metastases preferences that influence several steps of tumorigenesis. Considering the incidence of breast cancer and that the metastatic disease is presently the major cause of death in women, emphasis is put in the role of miRNAs in breast cancer and in the regulation of the different steps of the metastatic cascade. Furthermore, we depict their involvement in the cascade of events underlying breast cancer brain metastasis formation and development. Collectively, this review shall contribute to a better understanding of the uniqueness of the biologic roles of miRNAs in these processes, to the awareness of miRNAs as new and reliable biomarkers and/or of therapeutic targets, which can change the landscape of a poor prognosis and low survival rates condition of advanced breast cancer patients.
Collapse
Affiliation(s)
- Marta Sereno
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
| | - Mafalda Videira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
18
|
Monterde-Cruz L, Ramírez-Salazar EG, Rico-Martínez G, Linares-González LM, Guzmán-González R, Delgado-Cedillo E, Estrada-Villaseñor E, Valdés-Flores M, Velázquez-Cruz R, Hidalgo-Bravo A. MicroRNA expression in relation with clinical evolution of osteosarcoma. Pathol Res Pract 2020; 216:153038. [PMID: 32703501 DOI: 10.1016/j.prp.2020.153038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022]
Abstract
Osteosarcoma is the most common malignant bone tumor. Early diagnosis remains a major challenge, mainly because of the lack of specific biomarkers. We performed miRNAs expression analysis through qPCR in affected and paired healthy bone derived from osteosarcoma patients. Hierarchical clustering using the top ten miRNAs with differential expression showed two main clusters. One integrated by patients with the presence of metastasis or relapse and the other without these complications. Further pathway enrichment analysis reduced to four main miRNAs, hsa-miR-486-3p, hsa-miR-355-5p, hsa-miR-34a-5p and hsa-miR-1228-3p. Afterwards, we compared patients with and without metastasis, the function enrichment analysis along with review of relevant literature, showed that hsa-miR-93-5p and hsa-miR-28-5p were associated with metastasis development. Our results support the relevance of miRNAs in the pathogenesis of osteosarcoma and contribute with evidence regarding the potential role of miRNAs as potential biomarkers. More studies are needed to define the most informative miRNAs in osteosarcoma patients.
Collapse
Affiliation(s)
- Lucero Monterde-Cruz
- Department of Genetics, National Institute of Rehabilitation, Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Z. C. 14389 Mexico City, Mexico
| | - Eric G Ramírez-Salazar
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Periferico Sur 4809, Arenal Tepepan, Z.C. 14610 Mexico City, Mexico; CONACYT-National Institute of Genomic Medicine (INMEGEN). Periferico Sur 4809, Arenal Tepepan, Z.C. 14610 Mexico City, Mexico
| | - Genaro Rico-Martínez
- Department of Genetics, National Institute of Rehabilitation, Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Z. C. 14389 Mexico City, Mexico
| | - Luis Miguel Linares-González
- Department of Genetics, National Institute of Rehabilitation, Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Z. C. 14389 Mexico City, Mexico
| | - Roberto Guzmán-González
- Department of Genetics, National Institute of Rehabilitation, Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Z. C. 14389 Mexico City, Mexico
| | - Ernesto Delgado-Cedillo
- Department of Genetics, National Institute of Rehabilitation, Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Z. C. 14389 Mexico City, Mexico
| | - Eréndira Estrada-Villaseñor
- Department of Genetics, National Institute of Rehabilitation, Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Z. C. 14389 Mexico City, Mexico
| | - Margarita Valdés-Flores
- Department of Genetics, National Institute of Rehabilitation, Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Z. C. 14389 Mexico City, Mexico
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Periferico Sur 4809, Arenal Tepepan, Z.C. 14610 Mexico City, Mexico.
| | - A Hidalgo-Bravo
- Department of Genetics, National Institute of Rehabilitation, Calzada Mexico-Xochimilco 289, Arenal de Guadalupe, Z. C. 14389 Mexico City, Mexico.
| |
Collapse
|
19
|
Xing X, Guo S, Zhang G, Liu Y, Bi S, Wang X, Lu Q. miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. ACTA ACUST UNITED AC 2020; 53:e9106. [PMID: 31994603 PMCID: PMC6984371 DOI: 10.1590/1414-431x20199106] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023]
Abstract
Reperfusion strategies in acute myocardial infarction (AMI) can cause a series of additional clinical damage, defined as myocardial ischemia/reperfusion (I/R) injury, and thus there is a need for effective therapeutic methods to attenuate I/R injury. miR-26a-5p has been proven to be an essential regulator for biological processes in different cell types. Nevertheless, the role of miR-26a-5p in myocardial I/R injury has not yet been reported. We established an I/R injury model in vitro and in vivo. In vitro, we used cardiomyocytes to simulate I/R injury using hypoxia/reoxygenation (H/R) assay. In vivo, we used C57BL/6 mice to construct I/R injury model. The infarct area was examined by TTC staining. The level of miR-26a-5p and PTEN was determined by bioinformatics methods, qRT-PCR, and western blot. In addition, the viability and apoptosis of cardiomyocytes were separately detected by MTT and flow cytometry. The targeting relationship between miR-26a-5p and PTEN was analyzed by the TargetScan website and luciferase reporter assay. I/R and H/R treatment induced myocardial tissue injury and cardiomyocyte apoptosis, respectively. The results showed that miR-26a-5p was down-regulated in myocardial I/R injury. PTEN was found to be a direct target of miR-26a-5p. Furthermore, miR-26a-5p effectively improved viability and inhibited apoptosis in cardiomyocytes upon I/R injury by inhibiting PTEN expression to activate the PI3K/AKT signaling pathway. miR-26a-5p could protect cardiomyocytes against I/R injury by regulating the PTEN/PI3K/AKT pathway, which offers a potential approach for myocardial I/R injury treatment.
Collapse
Affiliation(s)
- Xiaowei Xing
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shuang Guo
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Guanghao Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yusheng Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Shaojie Bi
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Po'uha ST, Le Grand M, Brandl MB, Gifford AJ, Goodall GJ, Khew-Goodall Y, Kavallaris M. Stathmin levels alter PTPN14 expression and impact neuroblastoma cell migration. Br J Cancer 2019; 122:434-444. [PMID: 31806880 PMCID: PMC7000740 DOI: 10.1038/s41416-019-0669-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stathmin mediates cell migration and invasion in vitro, and metastasis in vivo. To investigate stathmin's role on the metastatic process, we performed integrated mRNA-miRNA expression analysis to identify pathways regulated by stathmin. METHODS MiRNA and gene arrays followed by miRNA-target-gene integration were performed on stathmin-depleted neuroblastoma cells (CtrlshRNA vs. Stmn Seq2shRNA). The expression of the predicted target PTPN14 was evaluated by RT-qPCR, western blot and immunohistochemistry. Gene-silencing technology was used to assess the role of PTPN14 on proliferation, migration, invasion and signalling pathway. RESULTS Stathmin levels modulated the expression of genes and miRNA in neuroblastoma cells, leading to a deregulation of migration and invasion pathways. Consistent with gene array data, PTPN14 mRNA and protein expression were downregulated in stathmin- depleted neuroblastoma cells and xenografts. In two independent neuroblastoma cells, suppression of PTPN14 expression led to an increase in cell migration and invasion. PTPN14 and stathmin expression did not act in a feedback regulatory loop in PTPN14- depleted cells, suggesting a complex interplay of signalling pathways. The effect of PTPN14 on YAP pathway activation was cell-type dependent. CONCLUSIONS Our findings demonstrate that stathmin levels can regulate PTPN14 expression, which can modulate neuroblastoma cell migration and invasion.
Collapse
Affiliation(s)
- Sela T Po'uha
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Marion Le Grand
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Miriam B Brandl
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia.,Department of Anatomical Pathology (SEALS), Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Discipline of Medicine and Dept of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Discipline of Medicine and Dept of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia. .,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
21
|
Wu Q, Li B, Li Z, Li J, Sun S, Sun S. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol 2019; 12:95. [PMID: 31500658 PMCID: PMC6734503 DOI: 10.1186/s13045-019-0778-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Adipocytes are one of the primary stromal cells in many tissues, and they are considered to play an active role in the tumor microenvironment. Cancer-associated adipocytes (CAAs) are not only found adjacent to cancer cells, but also communicate with cancer cells through releasing various factors that can mediate local and systemic effects. The adipocyte-cancer cell crosstalk leads to phenotypical and functional changes of both cell types, which can further enhance tumor progression. Indeed, obesity, which is associated with an increase in adipose mass and an alteration of adipose tissue, is becoming pandemic in some countries and it is now considered to be an independent risk factor for cancer progression. In this review, we focus on the potential mechanisms involved with special attention to the adipocyte-cancer cell circle in breast cancer. We envisage that besides having a direct impact on tumor cells, CAAs systemically preconditions the tumor microenvironment by favoring anti-tumor immunity. A better understanding of cancer-associated adipocytes and the key molecular events in the adipocyte-cancer cell crosstalk will provide insights into tumor biology and permit the optimization of therapeutic strategies.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei, People's Republic of China.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Faculty of Medicine, University of Paris Sud-Saclay, Kremlin-Bicêtre, France
| | - Bei Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei, People's Republic of China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei, People's Republic of China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei, People's Republic of China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei, People's Republic of China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
22
|
Zhang Z, Tang D, Wang B, Wang Z, Liu M. Analysis of miRNA-mRNA regulatory network revealed key genes induced by aflatoxin B1 exposure in primary human hepatocytes. Mol Genet Genomic Med 2019; 7:e971. [PMID: 31502424 PMCID: PMC6825861 DOI: 10.1002/mgg3.971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/23/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022] Open
Abstract
Background Aflatoxin B1 (AFB1) exposure is a crucial factor to initiate hepatocellular carcinoma (HCC). However, comprehensive microRNA (miRNA)‐message RNA (mRNA) regulatory network regarding AFB1‐associated HCC is still lacking. This work was aimed to identify miRNA‐mRNA network in primary human hepatocytes after AFB1 exposure. Methods A miRNA expression dataset GSE71540 obtained from the gene expression omnibus (GEO) was used to identify differentially expressed miRNAs (DEMs) after AFB1 exposure using GEO2R. Target genes of these DEMs were identified using TargetScan V_7.2, miRDB, PITA, miRanda, and miRTarBase. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed at Database for Annotation, Visualization and Integrated Discovery (DAVID). miRNA‐mRNA regulatory network was established by analyzing three enriched KEGG pathways significantly correlated with HCC onset and then visualized at CytoScape. Results In this work, nine upregulated and nine downregulated DEMs were identified. Functional enrichment analyses showed that these predicted target genes were significantly associated with cancer development. Analysis of three enriched pathways related to the onset of HCC identified 13 and nine target genes for upregulated DEMs and downregulated DEMs, respectively. Subsequently, the miRNA‐mRNA regulatory networks were constructed. Conclusions In conclusion, miRNA‐mRNA regulatory network was established, which will help to understand the mechanism underlying the AFB1‐induced onset of HCC.
Collapse
Affiliation(s)
- Ziyang Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, P.R. China.,Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Dongyang Tang
- Department of Experimental Management Center, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Bin Wang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, P.R. China.,Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Zhiwei Wang
- Department of Experimental Management Center, Henan Institute of Science and Technology, Xinxiang, P.R. China
| | - Mingjiu Liu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, P.R. China.,Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, P.R. China
| |
Collapse
|
23
|
Liu H, Chen Y, Li Y, Li C, Qin T, Bai M, Zhang Z, Jia R, Su Y, Wang C. miR‑195 suppresses metastasis and angiogenesis of squamous cell lung cancer by inhibiting the expression of VEGF. Mol Med Rep 2019; 20:2625-2632. [PMID: 31322197 PMCID: PMC6691228 DOI: 10.3892/mmr.2019.10496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/29/2019] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that are ~22 nucleotides in length. Accumulating evidence has revealed that miRNAs act as oncogenes or tumor suppressors in various human cancers. In order to investigate the role of miR-195- in squamous cell lung cancer (SQCLC) cells, and to determine the underlying mechanism, the present study utilized RT-qPCR, western blot analysis, luciferase assay, MTT assay, cell migration assay, and in vitro angiogenesis techniques. The results obtained revealed that miR-195-5p acted as a tumor suppressor in SQCLC cells. The expression levels of miR-195 were decreased in two SQCLC cell lines (H520 and SK-Mes-1) compared with a normal lung cell line, and miR-195 directly targeted the 3′-untranslated region of vascular endothelial growth factor (VEGF) in SQCLC cells. Additionally, miR-195 upregulation suppressed the viability and migration of SQCLC cells. Furthermore, miR-195 inhibited the growth and tube formation of endothelial vascular cells. Collectively, the findings indicated that miR-195 downregulated VEGF, and that targeting this miRNA may provide an effective approach to inhibit angiogenesis in tumors.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yulong Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yue Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Chenguang Li
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Tingting Qin
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Ming Bai
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Rui Jia
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yanjun Su
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
24
|
Bian X, Ma K, Zhang C, Fu X. Therapeutic angiogenesis using stem cell-derived extracellular vesicles: an emerging approach for treatment of ischemic diseases. Stem Cell Res Ther 2019; 10:158. [PMID: 31159859 PMCID: PMC6545721 DOI: 10.1186/s13287-019-1276-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ischemic diseases, which are caused by a reduction of blood supply that results in reduced oxygen transfer and nutrient uptake, are becoming the leading cause of disabilities and deaths. Therapeutic angiogenesis is key for the treatment of these diseases. Stem cells have been used in animal models and clinical trials to treat various ischemic diseases. Recently, the efficacy of stem cell therapy has increasingly been attributed to exocrine functions, particularly extracellular vesicles. Extracellular vesicles are thought to act as intercellular communication vehicles to transport informational molecules including proteins, mRNA, microRNAs, DNA fragments, and lipids. Studies have demonstrated that extracellular vesicles promote angiogenesis in cellular experiments and animal models. Herein, recent reports on the use of extracellular vesicles for therapeutic angiogenesis during ischemic diseases are presented and discussed. We believe that extracellular vesicles-based therapeutics will be an ideal treatment method for patients with ischemic diseases.
Collapse
Affiliation(s)
- Xiaowei Bian
- Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.,Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, People's Republic of China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, People's Republic of China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, People's Republic of China.
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, People's Republic of China.
| |
Collapse
|
25
|
Wu Q, Li J, Li Z, Sun S, Zhu S, Wang L, Wu J, Yuan J, Zhang Y, Sun S, Wang C. Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:223. [PMID: 31138258 PMCID: PMC6537177 DOI: 10.1186/s13046-019-1210-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Emerging evidence supports the pivotal roles of adipocytes in breast cancer progression. Tumour induced beige/brown adipose tissue differentiation contributes to the hypermetabolic state of the breast cancer. However, the mediators and mechanisms remain unclear. METHODS Survival probabilities were estimated using the Kaplan-Meier method based on immunohistochemistry results. Biochemical studies were performed to characterize the novel interrelation between breast cancer cells and adipocytes. RESULTS We show that tumour-surrounding adipocytes exhibit an altered phenotype in terms of upregulated beige/brown characteristics and increased catabolism associated with an activated state characterized by the release of metabolites, including free fatty acids, pyruvate, lactate and ketone bodies. Likewise, tumour cells cocultivated with mature adipocytes exhibit metabolic adaptation and an aggressive phenotype in vitro and in vivo. Mechanistically, we show that tumour cells induce beige/brown differentiation and remodel metabolism in resident adipocytes by exosomes from the co-culture system that carry high levels of miRNA-144 and miRNA-126. miRNA-144 promotes beige/brown adipocyte characteristics by downregulating the MAP3K8/ERK1/2/PPARγ axis, and exosomal miRNA-126 remodels metabolism by disrupting IRS/Glut-4 signalling, activating the AMPK/autophagy pathway and stabilizing HIF1α expression in imminent adipocytes. In vivo inhibition of miRNA-144 or miRNA-126 decreases adipocyte-induced tumour growth. CONCLUSIONS These results demonstrate that by inducing beige/brown differentiation and enhancing catabolism in recipient adipocytes, exosomal miRNA-144 and miRNA-126 from the tumour-adipocyte interaction reprogram systemic energy metabolism to facilitate tumour progression.
Collapse
Affiliation(s)
- Qi Wu
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Juanjuan Li
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Zhiyu Li
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Si Sun
- 0000 0004 1758 2270grid.412632.0Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei People’s Republic of China
| | - Shan Zhu
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Lijun Wang
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Juan Wu
- 0000 0004 1758 2270grid.412632.0Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei People’s Republic of China
| | - Jingping Yuan
- 0000 0004 1758 2270grid.412632.0Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei People’s Republic of China
| | - Yimin Zhang
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Shengrong Sun
- 0000 0004 1758 2270grid.412632.0Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060 Hubei Province People’s Republic of China
| | - Changhua Wang
- 0000 0001 2331 6153grid.49470.3eDepartment of Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430060 Hubei Province People’s Republic of China
| |
Collapse
|
26
|
BRM transcriptionally regulates miR-302a-3p to target SOCS5/STAT3 signaling axis to potentiate pancreatic cancer metastasis. Cancer Lett 2019; 449:215-225. [DOI: 10.1016/j.canlet.2019.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
|
27
|
Poloznikov AA, Nikulin SV, Raigorodskaya MP, Fomicheva KA, Zakharova GS, Makarova YA, Alekseev BY. Changes in the Metastatic Properties of MDA-MB-231 Cells after IGFBP6 Gene Knockdown Is Associated with Increased Expression of miRNA Genes Controlling INSR, IGF1R, and CCND1 Genes. Bull Exp Biol Med 2019; 166:641-645. [PMID: 30903488 DOI: 10.1007/s10517-019-04409-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 10/27/2022]
Abstract
Metastatic cascade is associated with the process of epithelial-mesenchymal transition accompanied by changes in cell proliferation, migration, adhesion, and invasiveness mediated by the insulin-like growth factor (IGF) signal pathway. IGFBP6 protein binds IGF and prevents its interaction with receptors. IGFBP6 gene knockdown through RNA-interference inhibits cell migration and increased the rate of proliferation of breast cancer MDA-MB-231 cells. IGFBP6 knockdown cells are characterized by increased expression of MIR100 and MIRLET7A2 genes encoding hsa-miR-100-3p, hsa-miR-100-5p, hsa-let-7a-5p, and hsa-let-7a-2-3p miRNA. The target genes of these microRNAs are IGF2, IGF1R, INSR, and CCND1 associated with IGF signaling pathway and proliferative and migratory activity during the metastatic cascade. A significant decrease in the expression of INSR and CCND1 genes was demonstrated by PCR and microarray analysis.
Collapse
Affiliation(s)
- A A Poloznikov
- A. F. Tsyb Medical Radiological Research Center, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Moscow Region, Russia.
| | | | | | - K A Fomicheva
- A. F. Tsyb Medical Radiological Research Center, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Moscow Region, Russia
| | | | - Yu A Makarova
- A. F. Tsyb Medical Radiological Research Center, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Moscow Region, Russia
| | - B Ya Alekseev
- A. F. Tsyb Medical Radiological Research Center, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Moscow Region, Russia
| |
Collapse
|
28
|
Zhang J, Mao S, Wang L, Zhang W, Zhang Z, Guo Y, Wu Y, Yi F, Yao X. MicroRNA‑154 functions as a tumor suppressor in bladder cancer by directly targeting ATG7. Oncol Rep 2019; 41:819-828. [PMID: 30483807 PMCID: PMC6313062 DOI: 10.3892/or.2018.6879] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/08/2018] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of miR‑154 is usually found in cancer studies; however, the role of miR‑154 has seldom been reported in bladder cancer (BCa). In this study, we observed that miR‑154 expression was significantly downregulated in BCa tissues and cell lines, and was associated with several clinicopathological characteristics, including advanced T stage, lymphatic invasion, and distant metastasis. Low expression level of miR‑154 was associated with poor survival outcomes in BCa patients. Overexpression of miR‑154 led to significant decrease in the proliferation, migration, and invasion of BCa cells, while knockdown of miR‑154 yielded the opposite effect. ATG7 was identified as a direct target of miR‑154. ATG7 expression was negatively correlated with miR‑154 expression in BCa tissues. Silencing of ATG7 achieved a similar effect to miR‑154 overexpression; overexpression of ATG7 reversed the inhibitory effect of miR‑154 on BCa cell proliferation, migration and invasion. A xenograft study revealed that miR‑154 inhibited BCa cell growth in vivo, and suppressed ATG7 expression. Altogether, this study demonstrated that miR‑154 may function as a tumor suppressor in BCa and indicated that miR‑154 may be a potential therapeutic target for BCa patients.
Collapse
Affiliation(s)
- Junfeng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Longsheng Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Ziwei Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yuan Wu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Faxian Yi
- Department of Urology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia 010050, P.R. China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
29
|
miR-135b-5p enhances doxorubicin-sensitivity of breast cancer cells through targeting anterior gradient 2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:26. [PMID: 30665445 PMCID: PMC6341729 DOI: 10.1186/s13046-019-1024-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pro-oncogenic anterior gradient 2 (AGR2) is involved in tumor growth and drug resistance of breast cancer. Mechanisms that regulate expression of AGR2 still need to be elucidated. METHODS In this study, expression levels of AGR2 and miR-135b-5p were analyzed in different breast cancer cell lines as well as in clinical breast cancer tissues. The in vitro and in vivo functional effect of AGR2 and miR-135b-5p were also investigated. A luciferase reporter assay was applied to confirm the interaction between miR-135b-5p and AGR2 mRNA. RESULTS We identified AGR2 as a target of miR-135b-5p. Expression of AGR2 was up-regulated in doxorubicin-resistant breast cancer cells. AGR2 mediated doxorubicin-sensitivity of breast cancer cells both in vitro and in vivo. miR-135b-5p negatively regulated AGR2-expression of breast cancer cells increasing doxorubicin-sensitivity. However, miR-135b-5p was down-regulated in doxorubicin-resistant breast cancer cells as well as during treatment with doxorubicin, which might be a probable reason for over-expression of AGR2. Up-regulation of miR-135b-5p increased doxorubicin-sensitivity of breast cancer cells in vivo. In addition, levels of AGR2 negatively correlated with levels of miR-135b-5p in clinical breast cancer tissue samples. CONCLUSION Our results highlight the potential of miR-135b-5p as a target for treating AGR2-expressing breast cancer with doxorubicin-resistance.
Collapse
|
30
|
Zhou S, He Y, Yang S, Hu J, Zhang Q, Chen W, Xu H, Zhang H, Zhong S, Zhao J, Tang J. The regulatory roles of lncRNAs in the process of breast cancer invasion and metastasis. Biosci Rep 2018; 38:BSR20180772. [PMID: 30217944 PMCID: PMC6165837 DOI: 10.1042/bsr20180772] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and principal cause of death among females worldwide. Invasion and metastasis are major causes which influence the survival and prognosis of BC. Therefore, to understand the molecule mechanism underlying invasion and metastasis is paramount for developing strategies to improve survival and prognosis in BC patients. Recent studies have reported that long non-coding RNAs (lncRNAs) play critical roles in the regulation of BC invasion and metastasis through a variety of molecule mechanisms that endow cells with an aggressive phenotype. In this article, we focused on the function of lncRNAs on BC invasion and metastasis through participating in epithelial-to-mesenchymal transition, strengthening cancer stem cells generation, serving as competing endogenous lncRNAs, influencing multiple signaling pathways as well as regulating expressions of invasion-metastasis related factors, including cells adhesion molecules, extracellular matrix, and matrix metallo-proteinases. The published work described has provided a better understanding of the mechanisms underpinning the contribution of lncRNAs to BC invasion and metastasis, which may lay the foundation for the development of new strategies to prevent BC invasion and metastasis.
Collapse
Affiliation(s)
- Siying Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, P.R. China
| | - Yunjie He
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Sujin Yang
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jiahua Hu
- The Fourth Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Qian Zhang
- The First Clinical School of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Wei Chen
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Hanzi Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Heda Zhang
- Department of General Surgery, School of Medicine, Southeast University, 87 Ding Jia Qiao, Nanjing 210009, P.R. China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210029, P.R. China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, P.R. China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Xianlin Road 138, Nanjing 210023, P.R. China
| |
Collapse
|
31
|
Liu S, Tian Y, Zhu C, Yang X, Sun Q. High miR-718 Suppresses Phosphatase and Tensin Homolog (PTEN) Expression and Correlates to Unfavorable Prognosis in Gastric Cancer. Med Sci Monit 2018; 24:5840-5850. [PMID: 30131483 PMCID: PMC6116637 DOI: 10.12659/msm.909527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Phosphatase and tensin homolog (PTEN) is a kind of phosphatase which has been demonstrated to suppress progression of gastric cancer. Many micro-RNAs (miRNAs), such as miR-106b, miR-93, and miR-200c, could inhibit expression of PTEN in cell lines; and many miRNAs including miR-21, miR-22, miR-18a, and miR-222 are related to the progression and prognosis of gastric cancer. However, among these miRNAs, the clinical significance of miR-718 has not yet been elucidated. MATERIAL AND METHODS The expression of PTEN and miR-718 in 141 gastric cancer tissues were detected by immunohistochemistry and quantitative real-time PCR respectively. The correlation between PTEN, miR-718, and the clinicopathological factors was analyzed by χ² test. The prognostic significance of PTEN and miR-718 was evaluated by univariate and multivariate analysis. Luciferase reporter assay was performed to evaluate the regulation of PTEN by miR-718. The effect of miR-718 on gastric cancer proliferation and invasion was investigated by MTT assay and Transwell assay. RESULTS Low expression of PTEN and high expression of miR-718 were both significantly associated with unfavorable prognosis, and both were identified as biomarkers predicting poorer prognosis of patients with gastric cancer. Increased miR-718 expression could decrease PTEN expression, thus enhancing phosphatidylinositide 3-kinases/protein kinase B (PI3K/Akt) signaling. Moreover, the abilities of proliferation and invasion of gastric cells transfected with miR-718 were promoted significantly compared with those transfected with control miRNA. CONCLUSIONS Low expression of PTEN and increased expression of miR-718 in gastric cancer tissues were both independent unfavorable prognostic factors of gastric cancer. Upregulation of miR-718 could increase PI3K/Akt signaling by directly downregulating PTEN, thus promoting the proliferation and invasion of gastric cancer cells.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| | - Ying Tian
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| | - Chanchan Zhu
- Department of Pathology, Medical School of Shandong University, Jinan, Shandong, China (mainland)
| | - Xiaoqing Yang
- Department of Pathology, Qianfoshan Hospital, Jinan, Shandong, China (mainland)
| | - Qing Sun
- Department of Pathology, Qianfoshan Hospital, Jinan, Shandong, China (mainland)
| |
Collapse
|
32
|
Wang B, Yin M, Cheng C, Jiang H, Jiang K, Shen Z, Ye Y, Wang S. Decreased expression of miR‑490‑3p in colorectal cancer predicts poor prognosis and promotes cell proliferation and invasion by targeting RAB14. Int J Oncol 2018; 53:1247-1256. [PMID: 29916545 DOI: 10.3892/ijo.2018.4444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/16/2018] [Indexed: 11/06/2022] Open
Abstract
Growing evidence indicates a potential role for miR‑490‑3p in tumorigenesis. However, its function in colorectal carcinoma (CRC) remains undefined. In this study, miR‑490‑3p was markedly downregulated in fifty colorectal cancer tissue samples compared with the corresponding adjacent non‑cancerous specimens, by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of miR‑490‑3p were closely associated with tumor differentiation and distant metastasis. In addition, both Kaplan-Meier and multivariate analyses indicated CRC patients with elevated miR‑490‑3p amounts had prolonged overall survival. Overexpression of miR‑490‑3p markedly reduced proliferation, colony formation and invasion in CRC cells by enhancing apoptosis and promoting G2/M phase arrest. Furthermore, ectopic expression of miR‑490‑3p resulted in decreased expression of RAB14, which was directly targeted by miR‑490‑3p, as shown by the dual-luciferase reporter gene assay. Finally, in a nude mouse model, miR‑490‑3p overexpression significantly suppressed the growth of CRC cells. The above results indicated that miR‑490‑3p might constitute a prognostic indicator and a novel molecular target for miRNA-based CRC therapy.
Collapse
Affiliation(s)
- Bo Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Mujun Yin
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Cheng Cheng
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei 066000, P.R. China
| | - Hongpeng Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Shan Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
33
|
Lai Y, Zhao L, Hu J, Quan J, Chen P, Xu J, Guan X, Lai Y, Ni L. microRNA‑181a‑5p functions as an oncogene in renal cell carcinoma. Mol Med Rep 2018; 17:8510-8517. [PMID: 29693121 DOI: 10.3892/mmr.2018.8899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/23/2018] [Indexed: 11/06/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common urinary tumors. Previous studies have demonstrated that microRNA (miR)‑181a‑5p has an important role in numerous types of cancer. However, the function of miR‑181a‑5p in RCC remains unknown. In the present study, the expression levels of miR‑181a‑5p in RCC tissues and cell lines were investigated using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis. The results of the RT‑qPCR analyses suggested that the expression of miR‑181a‑5p was upregulated in RCC tissues and cells lines compared with adjacent normal renal tissues and normal renal cell lines. Furthermore, the effect of miR‑181a‑5p on cell proliferation, migration, invasion and apoptosis was investigated in the present study. Overexpression of miR‑181a‑5p was revealed to suppress the apoptosis of 786‑O and ACHN cells, in addition to enhancing the proliferation, migration and invasion abilities of 786‑O and ACHN cells in vitro, thus suggesting that miR‑181a‑5p may function as an oncogene in RCC. However, further studies are required to investigate the underlying mechanism of miR‑181a‑5p and its potential role as a biomarker for early detection and prognosis, in addition to as a therapeutic target in RCC.
Collapse
Affiliation(s)
- Yulin Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Liwen Zhao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jing Quan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Peijie Chen
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jinling Xu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xin Guan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Liangchao Ni
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
34
|
Patel H, Nilendu P, Jahagirdar D, Pal JK, Sharma NK. Modulating secreted components of tumor microenvironment: A masterstroke in tumor therapeutics. Cancer Biol Ther 2018; 19:3-12. [PMID: 29219656 PMCID: PMC5790373 DOI: 10.1080/15384047.2017.1394538] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/07/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022] Open
Abstract
The microenvironment in which cancer resides plays an important role in regulating cancer survival, progression, malignancy and drug resistance. Tumor microenvironment (TME) consists of heterogeneous number and types of cellular and non-cellular components that vary in relation to tumor phenotype and genotype. In recent, non-cellular secreted components of microenvironmental heterogeneity have been suggested to contain various growth factors, cytokines, RNA, DNA, metabolites, structural matrix and matricellular proteins. These non-cellular components have been indicated to orchestrate numerous ways to support cancer survival and progression by providing metabolites, energy, growth signals, evading immune surveillance, drug resistance environment, metastatic and angiogenesis cues. Thus, switching action from pro-cancer to anti-cancer activities of these secreted components of TME has been considered as a new avenue in cancer therapeutics and drug resistance. In this report, we summarize the recent pre-clinical and clinical evidences to emphasize the importance of non-cellular components of TME in achieving precision therapeutics and biomarker study.
Collapse
Affiliation(s)
- Himadri Patel
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Pritish Nilendu
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Jayanta K. Pal
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
35
|
Chen G, Wang D, Zhao X, Cao J, Zhao Y, Wang F, Bai J, Luo D, Li L. miR-155-5p modulates malignant behaviors of hepatocellular carcinoma by directly targeting CTHRC1 and indirectly regulating GSK-3β-involved Wnt/β-catenin signaling. Cancer Cell Int 2017; 17:118. [PMID: 29234238 PMCID: PMC5721693 DOI: 10.1186/s12935-017-0469-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/20/2017] [Indexed: 01/28/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) remains one of the most lethal cancers. MicroRNA-155 (miR-155) and collagen triple helix repeat containing 1 (CTHRC1) were found to be involved in hepatocarcinogenesis, but their detailed functions in HCC are unclear. Here, we aimed to investigate the underlying role of miR-155-5p and CTHRC1 in HCC. Methods miR-155-5p and CTHRC1 expression levels were detected by qRT-PCR, IHC and WB in HCC patients and cell lines. Dual-luciferase assay, qRT-PCR and WB were used to validate the target interaction between miR-155-5p and CTHRC1. Biological behaviors, including apoptosis, cell cycle progression, and cell proliferation, invasion and migration, were measured by flow cytometry, CCK-8 assay and Transwell tests. A xenograft model was established to examine the effects of miR-155-5p and CTHRC1 on tumor formation. WB was finally utilized to identify the role of GSK-3β-involved Wnt/β-catenin signaling in HCC growth and metastasis. Results Our results showed that miR-155-5p and CTHRC1 were down-regulated and up-regulated, respectively, in HCC patients and cell lines. Dual-luciferase assay verified that CTHRC1 was the direct target of miR-155-5p. Moreover, elevated miR-155-5p expression promoted apoptosis but suppressed cell cycle progression and cell proliferation, invasion and migration in vitro and facilitated tumor formation in vivo; elevated CTHRC1 expression abolished these biological effects. Additionally, miR-155-5p overexpression increased metastasis- and anti-apoptosis-related protein expression and decreased pro-apoptosis-related protein expression, while forced CTHRC1 expression conserved the expression of these proteins. Conclusion Altogether, our data suggested that miR-155-5p modulated the malignant behaviors of HCC by targeting CTHRC1 and regulating GSK-3β-involved Wnt/β-catenin signaling; thereby, miR-155-5p and CTHRC1 might be promising therapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Gang Chen
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Dongdong Wang
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Xiongqi Zhao
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Jun Cao
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Yingpeng Zhao
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Fan Wang
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Jianhua Bai
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Ding Luo
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| | - Li Li
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, No. 504 Qinnian Road, Kunming, 650034 Yunnan China
| |
Collapse
|
36
|
In vivo validation of metastasis-regulating microRNA-766 in human triple-negative breast cancer cells. Lab Anim Res 2017; 33:256-263. [PMID: 29046702 PMCID: PMC5645605 DOI: 10.5625/lar.2017.33.3.256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the second most common cancer and the most frequent cancer in women worldwide. Recent improvements in early detection and effective adjuvant chemotherapies have improved the survival of breast cancer patients. Even with initial disease remission, one-third of all breast cancer patients will relapse with distant metastasis. Breast cancer metastasis is largely an incurable disease and the main cause of death among breast cancer patients. Cancer metastasis is comprised of complex processes that are usually not controllable by intervention of a single molecular target. As a single microRNA (miRNA) can affect the aggressiveness of breast cancer cells by concurrently modulating multiple pathway effectors, a metastasis-regulating miRNA would represent a good disease target candidate. In this study, we evaluated the functional capacity of a newly defined human metastasis-related miRNA, miR-766, which was previously identified by comparing a patient-derived xenograft primary tumor model and a metastasis model. Compared to vector-transfected control cells, miR-766-overexpressed triple-negative breast cancer cells exhibited similar primary tumor growth in the orthotopic xenograft model. In contrast, tumor sphere formation and Matrigel invasion were significantly decreased in miR-766-overexpressed breast cancer cells compared with control cancer cells. In addition, lung metastasis was dramatically reduced in miR-766-overexpressed breast cancer cells compared with control cells. Thus, miR-766 affected the distant metastasis process to a greater extent than cancer cell proliferation and primary tumor growth, and may represent a future therapeutic target to effectively control fatal breast cancer metastasis.
Collapse
|
37
|
Wang Y, Wang Q, Song J. Inhibition of autophagy potentiates the proliferation inhibition activity of microRNA-7 in human hepatocellular carcinoma cells. Oncol Lett 2017; 14:3566-3572. [PMID: 28927113 PMCID: PMC5588049 DOI: 10.3892/ol.2017.6573] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are important molecules that are able to regulate multiple cellular processes in cancer cells. miR-7 has been previously identified as a tumor suppressive miRNA in several types of cancer. The aim of the present study was to investigate whether miR-7 is able to regulate autophagy in hepatocellular carcinoma (HCC) cells. It was identified that miR-7 was significantly downregulated in tumor tissues compared with adjacent normal tissues. Overexpression of miR-7 inhibited cell proliferative activity, which was partially reversed by miR-7 inhibitor. In addition, overexpression of miR-7 significantly induced an increasen in autophagic activity, and luciferase activity assay and western blot analysis identified that mammalian target of rapamycin (mTOR) was a direct target of miR-7. In addition, inhibition of autophagy by 3-methyladenine resulted in a marked enhancement of the proliferation inhibition effect of miR-7. In conclusion, miR-7 was identified to induce proliferation inhibition and autophagy in HCC cells by targeting mTOR, and inhibition of autophagy may be utilized to enhance the antitumor activity of miR-7.
Collapse
Affiliation(s)
- Yanna Wang
- Department of Infectious Diseases, Yantai Hospital For Infectious Diseases, Yantai, Shandong 264001, P.R. China
| | - Qiaoling Wang
- Department of Infectious Diseases, Yantai Hospital For Infectious Diseases, Yantai, Shandong 264001, P.R. China
| | - Jiqing Song
- Nursing Department of Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| |
Collapse
|
38
|
Abdel-Hafiz HA. Epigenetic Mechanisms of Tamoxifen Resistance in Luminal Breast Cancer. Diseases 2017; 5:E16. [PMID: 28933369 PMCID: PMC5622332 DOI: 10.3390/diseases5030016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is one of the most common cancers and the second leading cause of cancer death in the United States. Estrogen receptor (ER)-positive cancer is the most frequent subtype representing more than 70% of breast cancers. These tumors respond to endocrine therapy targeting the ER pathway including selective ER modulators (SERMs), selective ER downregulators (SERDs) and aromatase inhibitors (AIs). However, resistance to endocrine therapy associated with disease progression remains a significant therapeutic challenge. The precise mechanisms of endocrine resistance remain unclear. This is partly due to the complexity of the signaling pathways that influence the estrogen-mediated regulation in breast cancer. Mechanisms include ER modifications, alteration of coregulatory function and modification of growth factor signaling pathways. In this review, we provide an overview of epigenetic mechanisms of tamoxifen resistance in ER-positive luminal breast cancer. We highlight the effect of epigenetic changes on some of the key mechanisms involved in tamoxifen resistance, such as tumor-cell heterogeneity, ER signaling pathway and cancer stem cells (CSCs). It became increasingly recognized that CSCs are playing an important role in driving metastasis and tamoxifen resistance. Understanding the mechanism of tamoxifen resistance will provide insight into the design of novel strategies to overcome the resistance and make further improvements in breast cancer therapeutics.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Department of Medicine/Endocrinology, School of Medicine, University of Colorado, Ms 8106 PO Box 6511, 12801 E 17th Avenue, Aurora, Denver, CO 80010, USA; Tel.: +1-303-724-1013; Fax: +1-303-724-3920.
| |
Collapse
|
39
|
Skvortsova II. Special issue: Progress in biological understanding of cancer metastasis. Semin Cancer Biol 2017; 44:1-2. [PMID: 28536032 DOI: 10.1016/j.semcancer.2017.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ira-Ida Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Dept. of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstr. 35, A-602 Innsbruck, Austria.
| |
Collapse
|