1
|
Serafin Couto Vieira D, Otto Walter L, Cunha da Silva ME, de Oliveira Silva L, Costa HZ, Cardoso CC, Schmitt FCDL, Santos-Silva MC. Bulk-lysis protocols as a sensitive method for investigation of circulating CK19 cells in the peripheral blood of patients with breast cancer by flow cytometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40423804 DOI: 10.1039/d5ay00295h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Invasive Breast Carcinoma (IBC) is a heterogeneous group of tumours with varying responses to treatment. Proteins such as Cytokeratin 19 (CK19) play a crucial role in the prognostic evaluation of patients, demonstrating significant roles in breast tumours and metastatic progression, and are described as biomarkers used for the detection of disseminated cells in lymph nodes or distant organs in clinically metastasis-free patients (cM0). Thus, the objective of this study was to establish a methodology for investigating circulating CK19+ breast cancer cells (CTCs) in peripheral blood to detect the risk of metastasis early. The study included a total of 62 patients who were treated at the University Hospital of Santa Catarina. The patients were divided into two groups based on the radiological diagnosis of BI-RADS®. The control group (n = 15) included patients with BI-RADS® 3 and 4a, whose malignancy risk was equal to or less than 10%. The IBC group (n = 46) comprised patients with BI-RADS® 4b, 4c and 5, whose malignancy risk was greater than 10%. The sample preparation was carried out using the bulk-lysis technique to concentrate the peripheral blood sample. For the evaluation of CTCs, the panel was defined using the expression of CD45, a pan-leukocyte antigen not expressed in mammary cells, along with two markers present only in circulating metastatic cells and not in leukocytes, CK19 and Pan-CK. The samples were acquired using a FACSCanto II flow cytometer, equipped with FACSDiva 8.0 software, until tube drying was complete. Data analysis was conducted using Infinicyt 2.0 software. The results obtained in this study show that out of the total cases of IBC analyzed (n = 47), 6.38% (n = 3) presented CTCs detected by flow cytometry, correlating with the presence of metastases identified by imaging methods (cM1), indicating the efficiency of flow cytometry for the research of neoplastic emboli in peripheral blood. Thus, the development and standardization of flow cytometry tests can offer faster, more sensitive, and precise results, complementing the diagnosis and monitoring of IBC patients.
Collapse
Affiliation(s)
- Daniella Serafin Couto Vieira
- Experimental Oncology and Hemopathies Laboratory, Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil.
- Pathology Department, Health Sciences Center, Federal University of Santa Catarina, 88036-800, Florianopolis, SC, Brazil
- Pathology Laboratory Unit, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, 88036-800, Florianopolis, SC, Brazil
| | - Laura Otto Walter
- Experimental Oncology and Hemopathies Laboratory, Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil.
| | - Maria Eduarda Cunha da Silva
- Experimental Oncology and Hemopathies Laboratory, Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil.
| | - Lisandra de Oliveira Silva
- Experimental Oncology and Hemopathies Laboratory, Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil.
| | - Heloísa Zorzi Costa
- Clinical Analysis Laboratory Unit, Flow Cytometry Service, University Hospital of the Federal University of Santa Catarina, Florianopolis, Brazil
| | - Chandra Chiappin Cardoso
- Clinical Analysis Laboratory Unit, Flow Cytometry Service, University Hospital of the Federal University of Santa Catarina, Florianopolis, Brazil
| | | | - Maria Cláudia Santos-Silva
- Experimental Oncology and Hemopathies Laboratory, Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil.
| |
Collapse
|
2
|
Rzhevskiy AS, Sagitova GR, Karashaeva TA, Morozov AO, Fatyanova AS, Kazantseva VV, Joosse SA, Zvyagin AV, Warkini ME. A comprehensive review and meta-analysis of CTC isolation methods in breast cancer. Crit Rev Oncol Hematol 2025; 206:104579. [PMID: 39615710 DOI: 10.1016/j.critrevonc.2024.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/08/2024] Open
Abstract
The application of circulating tumor cells (CTCs) as diagnostic and prognostic markers in oncology is gaining increasing importance in clinical practice. Currently, various methods exist for detecting CTCs in patients' biological fluids. This systematic review aimed to compare the efficacy of different techniques for isolating and detecting CTCs from blood, against the FDA-cleared CellSearch® technology, in breast cancer patients. We performed a systematic literature search using two databases (PubMed and the Cochrane Library) with the following terms: ("Circulating tumor cells" OR CTC) AND "breast cancer", covering the period from 2004 to April 2023. The primary outcome measured was the sensitivity, specificity, and overall accuracy of various CTC enrichment methods in comparison with the CellSearch® System. Secondary outcomes included the prognostic value of CTCs in evaluating response to treatment based on survival rates. Generally, a high level of agreement between CellSearch and other methods was observed in isolating CTCs from patients' blood with both metastatic and early-stage disease. Studies asserting the superiority of new methods over CellSearch frequently used clinically unvalidated cut-off thresholds for their patient cohorts. Additionally, these studies sometimes included different nonoverlapping patient cohorts and lacked a standardized chemotherapy treatment protocol, which could affect the quantitative changes in CTC. It is evident that methods simultaneously composed of physical and immunomagnetic approaches for CTC isolation significantly surpass CellSearch, which relies solely on the expression of specific markers on the CTCs' surface. The count of CTCs has been established as a predictive marker in terms of clinically important parameters namely progression-free survival (PFS) and overall survival (OS). The CTC-count value was significantly correlated with PFS and OS rates.
Collapse
Affiliation(s)
- Alexey S Rzhevskiy
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia; Faculty of Computer Science, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Guzel R Sagitova
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Tamilla A Karashaeva
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Andrey O Morozov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Anastasia S Fatyanova
- Department of Oncology, Radiotherapy and Reconstructive Surgery, Institution of Clinical Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Vlada V Kazantseva
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany; Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Andrei V Zvyagin
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia; Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354340, Russia.
| | - Majid Ebrahimi Warkini
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia; School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Colciago RR, De Santis MC, Giandini C, Carnevale MG, Di Cosimo S. Treatment of oligometastatic breast cancer: The role of patient selection. Breast 2025; 79:103839. [PMID: 39561464 PMCID: PMC11754133 DOI: 10.1016/j.breast.2024.103839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
Up to 90 % of death from solid tumors are caused by metastases. By 2040, breast cancer (BC) is predicted to increase to over 3 million new cases. Additionally, with the personalization and intensification of BC follow-up, many patients will relapse with oligometastatic disease (OMD). Over the past decades, advances in treatment planning, image guidance, target position reproducibility, and online tracking, along with a compelling radiobiological rationale, have led to the implementation of Stereotactic Body Radiation Therapy (SBRT). This has become a valid ablative treatment option for OMD patients. However, there are still concerns about which patients benefit the most from ablative treatment. In this review, we will analyze the literature regarding SBRT for OMD in BC patients. We aim to present the current data on its effectiveness and define the optimal tailored scenarios for SBRT outcomes.
Collapse
Affiliation(s)
| | - Maria Carmen De Santis
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | - Carlotta Giandini
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Maria Grazia Carnevale
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Serena Di Cosimo
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| |
Collapse
|
4
|
Shi J, Duan Y. Knowledge-map and research trends of circulating tumor cells in breast cancer: a scientometric analysis. Discov Oncol 2024; 15:506. [PMID: 39340703 PMCID: PMC11438760 DOI: 10.1007/s12672-024-01385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
Assessing circulating tumor cells (CTCs) in early-stage breast cancer patients can help identify relapse risk for timely interventions. Molecular analysis of CTCs can reveal vulnerabilities for personalized treatment options in metastatic breast cancer. This study aims to summarize CTCs in breast cancer research understanding and evaluate research trends. Extracted from the Web of Science Core Collection, publications on CTCs in breast cancer studies spanning from January 1, 2008, to December 21, 2023, were included. Co-authorships, references, and keywords were analyzed using Bibliometrix R packages and VOSviewer software. References and keywords burst detection were conducted with CiteSpace, and BICOMB was utilized to generate high-frequency keyword layouts. Biclustering analysis of the binary co-keyword matrix was performed using gCLUTO. 1747 articles focusing on CTCs in breast cancer were identified. The USA and the University of Texas MD Anderson Cancer Center demonstrated the highest productivity at the national and institutional levels, respectively. The journal "CANCERS" had the highest publication outputs on this subject. Pantel K emerged as the foremost author with the highest publication and co-citation counts. Analysis of co-keywords unveiled five prominent research areas concerning CTCs in breast cancer. The prognostic and predictive roles of CTCs in breast cancer have substantial implications for clinical practice. Nevertheless, precise assessment of CTCs, encompassing its quantities and attributes through advanced technologies, and its role in detecting minimal residual disease in breast cancer, continue to pose notable challenges. In conclusion, recent advancements and trends in CTCs research in breast cancer are examined through scientometric analysis in this study. The results provide valuable insights for the formulation of novel approaches in CTCs research, emphasizing the current research frontiers.
Collapse
Affiliation(s)
- Jinan Shi
- Department of Medical Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yin Duan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Hsieh RW, Symonds LK, Siu J, Cohen SA. Identification of circulating tumor DNA as a biomarker for diagnosis and response to therapies in cancer patients. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 391:43-93. [PMID: 39939078 DOI: 10.1016/bs.ircmb.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The sampling of circulating biomarkers provides an opportunity for non-invasive evaluation and monitoring of cancer activity. In modern day practice, this has typically been in the form of circulating tumor DNA (ctDNA) detected in plasma. The field of ctDNA has been a burgeoning technology, with prominent applications for blood-based cancer screening and in disease status assessment, especially after curative-intent surgery to evaluate for minimal residual disease (MRD). Clinical applications for the latter show an incredibly high sensitivity in certain cancer types with a need for additional studies to determine how much clinical decision-making should be adapted based on ctDNA results and which cancer types, stages, and treatments are best informed by ctDNA results. This chapter provides an overview of ctDNA detection as tool for cancer screening, detecting MRD, and/or molecularly characterizing a cancer, highlighting the rapidly amassing research as a prognostic biomarker and emerging data on ctDNA as a predictive biomarker.
Collapse
Affiliation(s)
- Ronan W Hsieh
- Division of Hematology/Oncology, University of Washington, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Lynn K Symonds
- Division of Hematology/Oncology, University of Washington, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Jason Siu
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States
| | - Stacey A Cohen
- Division of Hematology/Oncology, University of Washington, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States.
| |
Collapse
|
6
|
Liu X, Jia Y, Zheng C. Recent progress in Surface-Enhanced Raman Spectroscopy detection of biomarkers in liquid biopsy for breast cancer. Front Oncol 2024; 14:1400498. [PMID: 39040452 PMCID: PMC11260621 DOI: 10.3389/fonc.2024.1400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women globally and a leading cause of cancer-related mortality. However, current detection methods, such as X-rays, ultrasound, CT scans, MRI, and mammography, have their limitations. Recently, with the advancements in precision medicine and technologies like artificial intelligence, liquid biopsy, specifically utilizing Surface-Enhanced Raman Spectroscopy (SERS), has emerged as a promising approach to detect breast cancer. Liquid biopsy, as a minimally invasive technique, can provide a temporal reflection of breast cancer occurrence and progression, along with a spatial representation of overall tumor information. SERS has been extensively employed for biomarker detection, owing to its numerous advantages such as high sensitivity, minimal sample requirements, strong multi-detection ability, and controllable background interference. This paper presents a comprehensive review of the latest research on the application of SERS in the detection of breast cancer biomarkers, including exosomes, circulating tumor cells (CTCs), miRNA, proteins and others. The aim of this review is to provide valuable insights into the potential of SERS technology for early breast cancer diagnosis.
Collapse
Affiliation(s)
- Xiaobei Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yining Jia
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| | - Chao Zheng
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, China
- Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, China
| |
Collapse
|
7
|
Afzal MZ, Vahdat LT. Evolving Management of Breast Cancer in the Era of Predictive Biomarkers and Precision Medicine. J Pers Med 2024; 14:719. [PMID: 39063972 PMCID: PMC11278458 DOI: 10.3390/jpm14070719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is the most common cancer among women in the world as well as in the United States. Molecular and histological differentiation have helped clinicians optimize treatments with various therapeutics, including hormonal therapy, chemotherapy, immunotherapy, and radiation therapy. Recently, immunotherapy has become the standard of care in locally advanced triple-negative breast cancer and an option across molecular subtypes for tumors with a high tumor mutation burden. Despite the advancements in personalized medicine directing the management of localized and advanced breast cancers, the emergence of resistance to these therapies is the leading cause of death among breast cancer patients. Therefore, there is a critical need to identify and validate predictive biomarkers to direct treatment selection, identify potential responders, and detect emerging resistance to standard therapies. Areas of active scientific and clinical research include novel personalized and predictive biomarkers incorporating tumor microenvironment, tumor immune profiling, molecular characterization, and histopathological differentiation to predict response and the potential emergence of resistance.
Collapse
Affiliation(s)
- Muhammad Zubair Afzal
- Medical Oncology, Comprehensive Breast Program, Dartmouth Cancer Center, Lebanon, NH 03755, USA
| | - Linda T. Vahdat
- Medical Oncology and Hematology (Interim), Dartmouth Cancer Center, Lebanon, NH 03755, USA;
| |
Collapse
|
8
|
Lane RE, Korbie D, Khanna KK, Mohamed A, Hill MM, Trau M. Defining the relationship between cellular and extracellular vesicle (EV) content in breast cancer via an integrative multi-omic analysis. Proteomics 2024; 24:e2300089. [PMID: 38168906 DOI: 10.1002/pmic.202300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Much recent research has been dedicated to exploring the utility of extracellular vesicles (EVs) as circulating disease biomarkers. Underpinning this work is the assumption that the molecular cargo of EVs directly reflects the originating cell. Few attempts have been made, however, to empirically validate this on the -omic level. To this end, we have performed an integrative multi-omic analysis of a panel of breast cancer cell lines and corresponding EVs. Whole transcriptome analysis validated that the cellular transcriptome remained stable when cultured cells are transitioned to low serum or serum-free medium for EV collection. Transcriptomic profiling of the isolated EVs indicated a positive correlation between transcript levels in cells and EVs, including disease-associated transcripts. Analysis of the EV proteome verified that HER2 protein is present in EVs, however neither the estrogen (ER) nor progesterone (PR) receptor proteins are detected regardless of cellular expression. Using multivariate analysis, we derived an EV protein signature to infer cellular patterns of ER and HER2 expression, though the ER protein could not be directly detected. Integrative analyses affirmed that the EV proteome and transcriptome captured key phenotypic hallmarks of the originating cells, supporting the potential of EVs for non-invasive monitoring of breast cancers.
Collapse
Affiliation(s)
- Rebecca E Lane
- Australian Institute for Bioengineering and Nanotechnology, Centre for Personalised Nanomedicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Darren Korbie
- Australian Institute for Bioengineering and Nanotechnology, Centre for Personalised Nanomedicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology, Centre for Personalised Nanomedicine, The University of Queensland, St Lucia, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
9
|
Xu J, Gao H, Guan X, Meng J, Ding S, Long Q, Yi W. Circulating tumor DNA: from discovery to clinical application in breast cancer. Front Immunol 2024; 15:1355887. [PMID: 38745646 PMCID: PMC11091288 DOI: 10.3389/fimmu.2024.1355887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Breast cancer (BC) stands out as the cancer with the highest incidence of morbidity and mortality among women worldwide, and its incidence rate is currently trending upwards. Improving the efficiency of breast cancer diagnosis and treatment is crucial, as it can effectively reduce the disease burden. Circulating tumor DNA (ctDNA) originates from the release of tumor cells and plays a pivotal role in the occurrence, development, and metastasis of breast cancer. In recent years, the widespread application of high-throughput analytical technology has made ctDNA a promising biomarker for early cancer detection, monitoring minimal residual disease, early recurrence monitoring, and predicting treatment outcomes. ctDNA-based approaches can effectively compensate for the shortcomings of traditional screening and monitoring methods, which fail to provide real-time information and prospective guidance for breast cancer diagnosis and treatment. This review summarizes the applications of ctDNA in various aspects of breast cancer, including screening, diagnosis, prognosis, treatment, and follow-up. It highlights the current research status in this field and emphasizes the potential for future large-scale clinical applications of ctDNA-based approaches.
Collapse
Affiliation(s)
- Jiachi Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Xinyu Guan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Jiahao Meng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Shirong Ding
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, China
| |
Collapse
|
10
|
Zavarykina TM, Lomskova PK, Pronina IV, Khokhlova SV, Stenina MB, Sukhikh GT. Circulating Tumor DNA Is a Variant of Liquid Biopsy with Predictive and Prognostic Clinical Value in Breast Cancer Patients. Int J Mol Sci 2023; 24:17073. [PMID: 38069396 PMCID: PMC10706922 DOI: 10.3390/ijms242317073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This paper introduces the reader to the field of liquid biopsies and cell-free nucleic acids, focusing on circulating tumor DNA (ctDNA) in breast cancer (BC). BC is the most common type of cancer in women, and progress with regard to treatment has been made in recent years. Despite this, there remain a number of unresolved issues in the treatment of BC; in particular, early detection and diagnosis, reliable markers of response to treatment and for the prediction of recurrence and metastasis, especially for unfavorable subtypes, are needed. It is also important to identify biomarkers for the assessment of drug resistance and for disease monitoring. Our work is devoted to ctDNA, which may be such a marker. Here, we describe its main characteristics and potential applications in clinical oncology. This review considers the results of studies devoted to the analysis of the prognostic and predictive roles of various methods for the determination of ctDNA in BC patients. Currently known epigenetic changes in ctDNA with clinical significance are reviewed. The possibility of using ctDNA as a predictive and prognostic marker for monitoring BC and predicting the recurrence and metastasis of cancer is also discussed, which may become an important part of a precision approach to the treatment of BC.
Collapse
Affiliation(s)
- Tatiana M. Zavarykina
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow 119334, Russia;
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| | - Polina K. Lomskova
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow 119334, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
| | - Svetlana V. Khokhlova
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| | - Marina B. Stenina
- “N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of the Russian Federation, Moscow 115522, Russia;
| | - Gennady T. Sukhikh
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| |
Collapse
|
11
|
Tan Q, Chi Y, Su M, Zhou J, Zhou D, Zheng F, Man X, Sun S, Huang J, Li H. Potential predictive value of circulating tumor DNA (ctDNA) mutations for the efficacy of immune checkpoint inhibitors in advanced triple-negative breast cancer. Front Genet 2023; 14:1125970. [PMID: 37007962 PMCID: PMC10060982 DOI: 10.3389/fgene.2023.1125970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Background: In recent years, tumor immunotherapy has become a viable treatment option for triple negative breast cancer (TNBC). Among these, immune checkpoint inhibitors (ICIs) have demonstrated good efficacy in advanced TNBC patients with programmed death-ligand 1 (PD-L1) positive expression. However, only 63% of PD-L1-positive individuals showed any benefit from ICIs. Therefore, finding new predictive biomarkers will aid in identifying patients who are likely to benefit from ICIs. In this study, we used liquid biopsies and next-generation sequencing (NGS) to dynamically detect changes in circulating tumor DNA (ctDNA) in the blood of patients with advanced TNBC treated with ICIs and focused on its potential predictive value.Methods: From May 2018 to October 2020, patients with advanced TNBC treated with ICIs at Shandong Cancer Hospital were included prospectively. Patient blood samples were obtained at the pretreatment baseline, first response evaluation, and disease progression timepoints. Furthermore, 457 cancer-related genes were evaluated by NGS, and patients’ ctDNA mutations, gene mutation rates, and other indicators were determined and coupled with clinical data for statistical analysis.Results: A total of 11 TNBC patients were included in this study. The overall objective response rate (ORR) was 27.3%, with a 6.1-month median progression-free survival (PFS) (95% confidence interval: 3.877–8.323 months). Of the 11 baseline blood samples, 48 mutations were found, with the most common mutation types being frame shift indels, synonymous single-nucleotide variations (SNVs), frame indel missenses, splicing, and stop gains. Additionally, univariate Cox regression analysis revealed that advanced TNBC patients with one of 12 mutant genes (CYP2D6 deletion and GNAS, BCL2L1, H3F3C, LAG3, FGF23, CCND2, SESN1, SNHG16, MYC, HLA-E, and MCL1 gain) had a shorter PFS with ICI treatment (p < 0.05). To some extent, dynamic changes of ctDNA might indicate the efficacy of ICIs.Conclusion: Our data indicate that ICI efficacy in patients with advanced TNBC may be predicted by 12 mutant ctDNA genes. Additionally, dynamic alterations in peripheral blood ctDNA might be used to track the effectiveness of ICI therapy in those with advanced TNBC.
Collapse
Affiliation(s)
- Qiaorui Tan
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yajing Chi
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Medicine, Nankai University, Tianjin, China
| | - Mu Su
- Berry Oncology Corporation, Beijing, China
| | | | - Dongdong Zhou
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fangchao Zheng
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaochu Man
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shujuan Sun
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Huang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Huihui Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Huihui Li,
| |
Collapse
|
12
|
Yang Y, Li L, Tian W, Qiao Z, Qin Q, Su L, Li P, Chen W, Zhao H. A nomogram for predicting the HER2 status of circulating tumor cells and survival analysis in HER2-negative breast cancer. Front Oncol 2022; 12:943800. [PMID: 36620609 PMCID: PMC9811813 DOI: 10.3389/fonc.2022.943800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background In breast cancer patients with HER2-negative tumors (tHER2-), HER2-positive CTCs (cHER2+) were associated with promising efficacy of HER2-targeted therapy, but controversy has persisted over its prognostic effect. We developed a model including clinicopathologic parameters/blood test variables to predict cHER2 status and evaluated the prognostic value of cHER2+ in tHER2- patients. Methods cHER2+ was detected, blood test results and clinicopathological characteristics were combined, and a nomogram was constructed to predict cHER2 status in tHER2- patients according to logistic regression analysis. The nomogram was evaluated by C-index values and calibration curve. Kaplan-Meier curves, log-rank tests, and Cox regression analyses were performed to evaluate the prognostic value of cHER2 status. Results TNM stage, white blood cells (WBCs), neutrophils (NEUs), uric acid (UA), De Ritis ratio [aspartate transaminase (AST)/alanine transaminase (ALT)], and high-density lipoprotein (HDL) were found to be associated with cHER2 status in tHER2- patients in univariate logistic regression analysis, in which UA and De Ritis ratio remained significant in multivariate logistic regression analysis. A model combining these six variables was constructed, the C-index was 0.745 (95% CI: 0.630-0.860), and the calibration curve presented a perfect predictive consistency. In survival analysis, patients of the subgroups "with cHER2+/UA-low" (p = 0.015) and "with cHER2+/De Ritis ratio - high" (p = 0.006) had a significantly decreased disease-free survival (DFS). Conclusions Our nomogram, based on TNM stage, WBC, NEU, UA, De Ritis ratio, and HDL, may excellently predict the cHER2 status of tHER2- patients. Incorporation with UA and De Ritis ratio may enhance the prognostic value of cHER2 status.
Collapse
Affiliation(s)
- Yuqin Yang
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China,Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Liudan Li
- Department of Breast Surgery, Zhuhai Maternity and Child Health Hospital, Zhuhai, Guangdong, China
| | - Wenjing Tian
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Zhen Qiao
- Department of Breast Surgery, Zhuhai Maternity and Child Health Hospital, Zhuhai, Guangdong, China
| | - Qi Qin
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Liqian Su
- Precision Medicine Center of Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Peiqiu Li
- Department of Nephrology, The Fifth Hospital Affiliated of Sun Yat-sen University Zhuhai, Guangdong, China
| | - Weirong Chen
- Department of Breast Surgery, Zhuhai Maternity and Child Health Hospital, Zhuhai, Guangdong, China,*Correspondence: Hong Zhao, ; Weirong Chen,
| | - Hong Zhao
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China,*Correspondence: Hong Zhao, ; Weirong Chen,
| |
Collapse
|
13
|
Luo Q, Li J, Su X, Tan Q, Zhou F, Xie S. COL11A1 serves as a biomarker for poor prognosis and correlates with immune infiltration in breast cancer. Front Genet 2022; 13:935860. [PMID: 36160004 PMCID: PMC9500398 DOI: 10.3389/fgene.2022.935860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the malignant tumor with the highest incidence rate at present, and its incidence rate ranks first in the female population. COL11A1 is an important component of collagen XI and is considered to play an important role in a variety of connective tissue diseases. Recent studies have shown that COL11A1 is associated with the occurrence and development of many kinds of malignant tumors. However, its prognostic value in breast cancer and its correlation with immune cell infiltration in tumor tissue are not clear. In this paper, we reveal the prognostic value of COL11A1 in breast cancer and its tumor immune-related function through in-depth bioinformatics analysis. The expression of COL11A1 is abnormally upregulated in breast cancer and is significantly related to the poor prognosis of breast cancer. In the analysis of the clinical characteristics of the patients, we found that the expression level of COLL11A1 was closely related to lymph node metastasis, PAM50 (Prediction Analysis of Microarray 50) expression, clinical stage and so on. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) all suggest that COL11A1 is related to tumor immunity. Further study found that the COL11A1 expression was significantly correlated with the degree of immune infiltration and the expression of a variety of immune cell markers in tumor tissue. More importantly, COL11A1 can affect the prognosis of breast cancer patients by participating in the regulation of tumor immune infiltration. Therefore, we believe that COL11A1 is a very potential target for diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Qi Luo
- Department of Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Biological Targeting Laboratory of Breast Cancer, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Outpatient, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jinsui Li
- Department of Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Biological Targeting Laboratory of Breast Cancer, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaohan Su
- Department of Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Biological Targeting Laboratory of Breast Cancer, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiao Tan
- Department of Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Biological Targeting Laboratory of Breast Cancer, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fangfang Zhou
- Department of Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Biological Targeting Laboratory of Breast Cancer, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Anatomy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shaoli Xie
- Department of Academician (expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Biological Targeting Laboratory of Breast Cancer, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- *Correspondence: Shaoli Xie, , orcid.org/0000-0003-4512-2725
| |
Collapse
|
14
|
Lou X, Qin Y, Xu X, Yu X, Ji S. Spatiotemporal heterogeneity and clinical challenge of pancreatic neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188782. [PMID: 36028148 DOI: 10.1016/j.bbcan.2022.188782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
Abstract
During the course of pancreatic neuroendocrine tumors (NETs), they generally become more heterogeneous with individual cells exhibiting distinct molecular fingerprints. This heterogeneity manifests itself through an unequal distribution of genetically-variant, tumor cell subpopulations within disease locations (i.e., spatial heterogeneity) or changes in the genomic landscape over time (i.e., temporal heterogeneity); these characteristics complicate clinical diagnosis and treatment. Effective, feasible tumor heterogeneity detection and eradication methods are essential to overcome the clinical challenges of pancreatic NETs. This review explores the molecular fingerprints of pancreatic NETs and the spectrum of tumoral heterogeneity. We then describe the challenges of assessing heterogeneity by liquid biopsies and imaging modalities and the therapeutic challenges for pancreatic NETs. In general, navigating these challenges, refining approaches for translational research, and ultimately improving patient care are available once we have a better understanding of intratumoral spatiotemporal heterogeneity.
Collapse
Affiliation(s)
- Xin Lou
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Qin
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xiaowu Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Liu Z, Han Y, Dang Q, Xu H, Zhang Y, Duo M, Lv J, Li H, Kong Y, Han X. Roles of circulating tumor DNA in PD-1/PD-L1 immune checkpoint Inhibitors: Current evidence and future directions. Int Immunopharmacol 2022; 111:109173. [PMID: 35998502 DOI: 10.1016/j.intimp.2022.109173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022]
Abstract
Circulating tumor DNA (ctDNA) sequencing holds considerable promise for early diagnosis and detection of surveillance and minimal residual disease. Blood ctDNA monitors specific cancers by detecting the alterations found in cancer cells, such as apoptosis and necrosis. Due to the short half-life, ctDNA reflects the actual burden of other treatments on tumors. In addition, ctDNA might be preferable to monitor tumor development and treatment compared with invasive tissue biopsy. ctDNA-based liquid biopsy brings remarkable strength to targeted therapy and precision medicine. Notably, multiple ctDNA analysis platforms have been broadly applied in clinical immunotherapy. Through targeted sequencing, early variations in ctDNA could predict response to immune checkpoint inhibitor (ICI). Several studies have demonstrated a correlation between ctDNA kinetics and anti-PD1 antibodies. The need for further research and development remains, although this biomarker holds significant prospects for early cancer detection. This review focuses on describing the basis of ctDNA and its current utilities in oncology and immunotherapy, either for clinical management or early detection, highlighting its advantages and inherent limitations.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| | - Yilin Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengjie Duo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jinxiang Lv
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huanyun Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ying Kong
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
16
|
Wu HJ, Chu PY. Current and Developing Liquid Biopsy Techniques for Breast Cancer. Cancers (Basel) 2022; 14:2052. [PMID: 35565189 PMCID: PMC9105073 DOI: 10.3390/cancers14092052] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and leading cause of cancer mortality among woman worldwide. The techniques of diagnosis, prognosis, and therapy monitoring of breast cancer are critical. Current diagnostic techniques are mammography and tissue biopsy; however, they have limitations. With the development of novel techniques, such as personalized medicine and genetic profiling, liquid biopsy is emerging as the less invasive tool for diagnosing and monitoring breast cancer. Liquid biopsy is performed by sampling biofluids and extracting tumor components, such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free mRNA (cfRNA) and microRNA (miRNA), proteins, and extracellular vehicles (EVs). In this review, we summarize and focus on the recent discoveries of tumor components and biomarkers applied in liquid biopsy and novel development of detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and microfluidic devices.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| |
Collapse
|
17
|
Keup C, Kimmig R, Kasimir-Bauer S. Combinatorial Power of cfDNA, CTCs and EVs in Oncology. Diagnostics (Basel) 2022; 12:870. [PMID: 35453918 PMCID: PMC9031112 DOI: 10.3390/diagnostics12040870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
Liquid biopsy is a promising technique for clinical management of oncological patients. The diversity of analytes circulating in the blood useable for liquid biopsy testing is enormous. Circulating tumor cells (CTCs), cell-free DNA (cfDNA) and extracellular vesicles (EVs), as well as blood cells and other soluble components in the plasma, were shown as liquid biopsy analytes. A few studies directly comparing two liquid biopsy analytes showed a benefit of one analyte over the other, while most authors concluded the benefit of the additional analyte. Only three years ago, the first studies to examine the value of a characterization of more than two liquid biopsy analytes from the same sample were conducted. We attempt to reflect on the recent development of multimodal liquid biopsy testing in this review. Although the analytes and clinical purposes of the published multimodal studies differed significantly, the additive value of the analytes was concluded in almost all projects. Thus, the blood components, as liquid biopsy reservoirs, are complementary rather than competitive, and orthogonal data sets were even shown to harbor synergistic effects. The unmistakable potential of multimodal liquid biopsy testing, however, is dampened by its clinical utility, which is yet to be proven, the lack of methodical standardization and insufficiently mature reimbursement, logistics and data handling.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
18
|
Kavan S, Kruse TA, Vogsen M, Hildebrandt MG, Thomassen M. Heterogeneity and tumor evolution reflected in liquid biopsy in metastatic breast cancer patients: a review. Cancer Metastasis Rev 2022; 41:433-446. [PMID: 35286542 DOI: 10.1007/s10555-022-10023-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is a spatially and temporally dynamic disease in which differently evolving genetic clones are responsible for progression and clinical outcome. We review tumor heterogeneity and clonal evolution from studies comparing primary tumors and metastasis and discuss plasma circulating tumor DNA as a powerful real-time approach for monitoring the clonal landscape of breast cancer during treatment and recurrence. We found only a few early studies exploring clonal evolution and heterogeneity through analysis of multiregional tissue biopsies of different progression steps in comparison with circulating tumor DNA (ctDNA) from blood plasma. The model of linear progression seemed to be more often reported than the model of parallel progression. The results show complex routes to metastasis, however, and plasma most often reflected metastasis more than primary tumor. The described patterns of evolution and the polyclonal nature of breast cancer have clinical consequences and should be considered during patient diagnosis and treatment selection. Current studies focusing on the relevance of clonal evolution in the clinical setting illustrate the role of liquid biopsy as a noninvasive biomarker for monitoring clonal progression and response to treatment. In the clinical setting, circulating tumor DNA may be an ideal support for tumor biopsies to characterize the genetic landscape of the metastatic disease and to improve longitudinal monitoring of disease dynamics and treatment effectiveness through detection of residual tumor after resection, relapse, or metastasis within a particular patient.
Collapse
Affiliation(s)
- Stephanie Kavan
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marianne Vogsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Malene G Hildebrandt
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Centre for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Centre for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark
| |
Collapse
|
19
|
Da Col G, Del Ben F, Bulfoni M, Turetta M, Gerratana L, Bertozzi S, Beltrami AP, Cesselli D. Image Analysis of Circulating Tumor Cells and Leukocytes Predicts Survival and Metastatic Pattern in Breast Cancer Patients. Front Oncol 2022; 12:725318. [PMID: 35223462 PMCID: PMC8866934 DOI: 10.3389/fonc.2022.725318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background The purpose of the present work was to test whether quantitative image analysis of circulating cells can provide useful clinical information targeting bone metastasis (BM) and overall survival (OS >30 months) in metastatic breast cancer (MBC). Methods Starting from cell images of epithelial circulating tumor cells (eCTC) and leukocytes (CD45pos) obtained with DEPArray, we identified the most significant features and applied single-variable and multi-variable methods, screening all combinations of four machine-learning approaches (Naïve Bayes, Logistic regression, Decision Trees, Random Forest). Results Best predictive features were circularity (OS) and diameter (BM), in both eCTC and CD45pos. Median difference in OS was 15 vs. 43 (months), p = 0.03 for eCTC and 19 vs. 36, p = 0.16 for CD45pos. Prediction for BM showed low accuracy (64%, 53%) but strong positive predictive value PPV (79%, 91%) for eCTC and CD45, respectively. Best machine learning model was Naïve Bayes, showing 46 vs 11 (months), p <0.0001 for eCTC; 12.5 vs. 45, p = 0.0004 for CD45pos and 11 vs. 45, p = 0.0003 for eCTC + CD45pos. BM prediction reached 91% accuracy with eCTC, 84% with CD45pos and 91% with combined model. Conclusions Quantitative image analysis and machine learning models were effective methods to predict survival and metastatic pattern, with both eCTC and CD45pos containing significant and complementary information.
Collapse
Affiliation(s)
- Giacomo Da Col
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Fabio Del Ben
- Department of Medicine, University of Udine, Udine, Italy
| | - Michela Bulfoni
- Institute of Pathology, University Hospital of Udine (ASUFC), Udine, Italy
| | - Matteo Turetta
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Lorenzo Gerratana
- Department of Medicine, University of Udine, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Serena Bertozzi
- Department of Surgery, AOU "S. Maria della Misericordia", Udine, Italy
| | | | - Daniela Cesselli
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Pathology, University Hospital of Udine (ASUFC), Udine, Italy
| |
Collapse
|
20
|
Unveiling the Potential of Liquid Biopsy in HER2-Positive Breast Cancer Management. Cancers (Basel) 2022; 14:cancers14030587. [PMID: 35158855 PMCID: PMC8833720 DOI: 10.3390/cancers14030587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Breast cancer (BC) is the most prevailing cancer in women worldwide. Amongst the different BC subtypes, human epidermal growth factor receptor 2 (HER2)-positive tumours are characterised by an overexpression of the HER2 membrane receptor. Nowadays, HER2-status assessment relies on immunohistochemical methodologies in the tumour tissue, which could be complemented by novel methodologies to improve the clinical management of these patients. In this regard, liquid biopsy is an easy, rapid, and minimally invasive tool to obtain circulating tumour components from body fluids. Herein, by reviewing the published studies, we aim to decipher the clinical validity of liquid biopsy in both early and metastatic HER2-positive BC. Abstract Invasive breast cancer (BC) is the most common cancer in women with a slightly increasing yearly incidence. BC immunohistochemical characterisation is a crucial tool to define the intrinsic nature of each tumour and personalise BC patients’ clinical management. In this regard, the characterisation of human epidermal growth factor receptor 2 (HER2) status guides physicians to treat with therapies tailored to this membrane receptor. Standardly, a tumour solid biopsy is therefore required, which is an invasive procedure and has difficulties to provide the complete molecular picture of the tumour. To complement these standard-of-care approaches, liquid biopsy is a validated methodology to obtain circulating tumour components such as circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) from body fluids in an easy-to-perform minimal-invasive manner. However, its clinical validity in cancer is still to be demonstrated. This review focusses on the utilisation of both ctDNA and CTCs in early and metastatic HER2-positive BC tumours. We discuss recently published studies deciphering the capacity of liquid biopsy to determine the response to neoadjuvant and adjuvant therapies as well as to predict patients’ outcomes.
Collapse
|
21
|
Sant M, Bernat-Peguera A, Felip E, Margelí M. Role of ctDNA in Breast Cancer. Cancers (Basel) 2022; 14:310. [PMID: 35053474 PMCID: PMC8773730 DOI: 10.3390/cancers14020310] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is currently classified by immunohistochemistry. However, technological advances in the detection of circulating tumor DNA (ctDNA) have made new options available for diagnosis, classification, biological knowledge, and treatment selection. Breast cancer is a heterogeneous disease and ctDNA can accurately reflect this heterogeneity, allowing us to detect, monitor, and understand the evolution of the disease. Breast cancer patients have higher levels of circulating DNA than healthy subjects, and ctDNA can be used for different objectives at different timepoints of the disease, ranging from screening and early detection to monitoring for resistance mutations in advanced disease. In early breast cancer, ctDNA clearance has been associated with higher rates of complete pathological response after neoadjuvant treatment and with fewer recurrences after radical treatments. In metastatic disease, ctDNA can help select the optimal sequencing of treatments. In the future, thanks to new bioinformatics tools, the use of ctDNA in breast cancer will become more frequent, enhancing our knowledge of the biology of tumors. Moreover, deep learning algorithms may also be able to predict breast cancer evolution or treatment sensitivity. In the coming years, continued research and the improvement of liquid biopsy techniques will be key to the implementation of ctDNA analysis in routine clinical practice.
Collapse
Affiliation(s)
- Marta Sant
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain
| | - Adrià Bernat-Peguera
- Badalona Applied Research Group in Oncology (B-ARGO), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Eudald Felip
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain
- Badalona Applied Research Group in Oncology (B-ARGO), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Mireia Margelí
- Medical Oncology Department, Catalan Institute of Oncology-Badalona, Hospital Germans Trias i Pujol (HGTiP), 08916 Badalona, Spain
- Badalona Applied Research Group in Oncology (B-ARGO), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
22
|
Miranda F, Prazeres H, Mendes F, Martins D, Schmitt F. Resistance to endocrine therapy in HR + and/or HER2 + breast cancer: the most promising predictive biomarkers. Mol Biol Rep 2021; 49:717-733. [PMID: 34739691 DOI: 10.1007/s11033-021-06863-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023]
Abstract
Breast cancer is the most common cancer in women. It is a heterogeneous disease, encompassing different biological subtypes that differ in histological features, outcomes, clinical behaviour and different molecular subtypes. Therapy has progressed substantially over the past years with a reduction both for locoregional and systemic therapy. Endocrine therapies have considerably reduced cancer recurrence and mortality. Despite the major diagnostic and therapeutic innovations, resistance to therapy has become a main challenge, especially in metastatic breast cancer, and became a major factor limiting the use of endocrine therapeutic agents in ER positive breast cancers. Approximately 50% of patients with ER positive metastatic disease achieve a complete or partial response with endocrine therapy. However, in the remaining patients, the benefit is limited due to resistance, intrinsic or acquired, resulting in disease progression and poor outcome.Tumour heterogeneity as well as acquired genetic changes and therapeutics pressure have been involved in the endocrine therapy resistance. Nowadays, targeted sequencing of genes involved in cancer has provided insights about genomic tumour evolution throughout treatment and resistance driver mutations. Several studies have described multiple alterations in receptor tyrosine kinases, signalling pathways such as Phosphoinositide-3-kinase-protein kinase B/Akt/mTOR (PI3K/Akt/mTOR) and Mitogen-activated protein kinase (MAPK), cell cycle machinery and their implications in endocrine treatment failure.One of the current concern in cancer is personalized therapy. The focus has been the discovery of new potentially predictive biomarkers capable to identify reliably the most appropriate therapy regimen and which patients will experience disease relapse. The major concern is also to avoid overtreatment/undertreatment and development of resistance.This review focuses on the most promising predictive biomarkers of resistance in estrogen receptor-positive breast cancer and the emerging role of circulating free-DNA as a powerful tool for longitudinal monitoring of tumour molecular profile throughout treatment.
Collapse
Affiliation(s)
- Flávia Miranda
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal
| | - Hugo Prazeres
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,U-Monitor Lda, Porto, Portugal.,Department of Molecular Pathology, Portuguese Institute of Oncology, Coimbra, Portugal
| | - Fernando Mendes
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,European Association for Professions in Biomedical Sciences, Brussels, Belgique
| | - Diana Martins
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado, 7006, 3046-854, Coimbra, Portugal. .,i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal. .,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Coimbra, Portugal. .,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal. .,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| | - Fernando Schmitt
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
23
|
Rossi T, Gallerani G, Martinelli G, Maltoni R, Fabbri F. Circulating Tumor Cells as a Tool to Untangle the Breast Cancer Heterogeneity Issue. Biomedicines 2021; 9:biomedicines9091242. [PMID: 34572427 PMCID: PMC8466266 DOI: 10.3390/biomedicines9091242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Breast cancer (BC) is a disease characterized by high degrees of heterogeneity at morphologic, genomic, and genetic levels, even within the same tumor mass or among patients. As a consequence, different subpopulations coexist and less represented clones may have a selective advantage, significantly influencing the outcome of BC patients. Circulating tumor cells (CTCs) represent a rare population of cells with a crucial role in metastatic cascade, and in recent years have represented a fascinating alternative to overcome the heterogeneity issue as a “liquid biopsy”. However, besides the raw enumeration of these cells in advanced epithelial tumors, there are no CTC-based assays applied in the clinical practice to improve personalized medicine. In this review, we report the latest findings in the field of CTCs for intra-tumoral heterogeneity unmasking in BC, supporting the need to deepen their analysis to investigate their role in metastatic process and include the molecular characterization in the clinical practice. In the future, CTCs will be helpful in monitoring patients during treatment, as well as to better address therapeutic strategies.
Collapse
Affiliation(s)
- Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.G.); (F.F.)
- Correspondence: ; Tel.: +39-0549-73-9982
| | - Giulia Gallerani
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.G.); (F.F.)
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Roberta Maltoni
- Healthcare Administration, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.G.); (F.F.)
| |
Collapse
|
24
|
Strati A, Zavridou M, Kallergi G, Politaki E, Kuske A, Gorges TM, Riethdorf S, Joosse SA, Koch C, Bohnen AL, Mueller V, Koutsodontis G, Kontopodis E, Poulakaki N, Psyrri A, Mavroudis D, Georgoulias V, Pantel K, Lianidou ES. A Comprehensive Molecular Analysis of in Vivo Isolated EpCAM-Positive Circulating Tumor Cells in Breast Cancer. Clin Chem 2021; 67:1395-1405. [PMID: 34322698 DOI: 10.1093/clinchem/hvab099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/13/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Circulating tumor cell (CTC) analysis is highly promising for liquid biopsy-based molecular diagnostics. We undertook a comprehensive molecular analysis of in vivo isolated CTCs in breast cancer (BrCa). METHODS In vivo isolated CTCs from 42 patients with early and 23 patients with metastatic breast cancer (MBC) were prospectively collected and analyzed for gene expression, DNA mutations, and DNA methylation before and after treatment. 19 healthy donor (HD) samples were analyzed as a control group. In identical blood draws, CTCs were enumerated using CellSearch® and characterized by direct IF staining. RESULTS All 19 HD samples were negative for CK8, CK18, CK19, ERBB2, TWIST1, VEGF, ESR1, PR, and EGFR expression, while CD44, CD24, ALDH1, VIM, and CDH2 expression was normalized to B2M (reference gene). At least one gene was expressed in 23/42 (54.8%) and 8/13 (61.5%) CTCs in early BrCa before and after therapy, and in 20/23 (87.0%) and 5/7 (71.4%) MBC before and after the first cycle of therapy. PIK3CA mutations were detected in 11/42 (26.2%) and 3/13 (23.1%) in vivo isolated CTCs in early BrCa before and after therapy, and in 11/23 (47.8%) and 2/7 (28.6%) MBC, respectively. ESR1 methylation was detected in 5/32 (15.7%) and 1/10 (10.0%) CTCs in early BrCa before and after therapy, and in 3/15(20.0%) MBC before the first line of therapy. The comprehensive molecular analysis of CTC revealed a higher sensitivity in relation to CellSearch or IF staining when based on creatine kinase selection. CONCLUSIONS In vivo-CTC isolation in combination with a comprehensive molecular analysis at the gene expression, DNA mutation, and DNA methylation level comprises a highly powerful approach for molecular diagnostic applications using CTCs.
Collapse
Affiliation(s)
- Areti Strati
- Department of Chemistry, Analysis of Circulating Tumor Cells Laboratory, University of Athens, Greece
| | - Martha Zavridou
- Department of Chemistry, Analysis of Circulating Tumor Cells Laboratory, University of Athens, Greece
| | - Galatea Kallergi
- Laboratory of Τumor Cell Biology, School of Medicine, University of Crete, Heraklion, Crete, Greece.,Division of Genetics, Cell, and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Eleni Politaki
- Laboratory of Τumor Cell Biology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Andra Kuske
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias M Gorges
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Koch
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna-Lena Bohnen
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volkmar Mueller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - George Koutsodontis
- Oncology Unit, Second Department of Internal Medicine, Attikon University Hospital, Haidari, Greece
| | - Emmanouil Kontopodis
- Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
| | | | - Amanda Psyrri
- Oncology Unit, Second Department of Internal Medicine, Attikon University Hospital, Haidari, Greece
| | - Dimitris Mavroudis
- Laboratory of Τumor Cell Biology, School of Medicine, University of Crete, Heraklion, Crete, Greece.,Department of Medical Oncology, University General Hospital of Heraklion, Crete, Greece
| | - Vasilis Georgoulias
- Laboratory of Τumor Cell Biology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Evi S Lianidou
- Department of Chemistry, Analysis of Circulating Tumor Cells Laboratory, University of Athens, Greece
| |
Collapse
|
25
|
Morris Z, Dohopolski M, Rahimi A, Timmerman R. Future Directions in the Use of SAbR for the Treatment of Oligometastatic Cancers. Semin Radiat Oncol 2021; 31:253-262. [PMID: 34090653 DOI: 10.1016/j.semradonc.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The role of local therapy as a sole therapy or part of a combined approach in treating metastatic cancer continues to evolve. The most obvious requirements for prudent implementation of local therapies like stereotactic ablative radiotherapy (SAbR) to become mainstream in treating oligometastases are (1) Clear guidance as to what particular patients might benefit, and (2) Confirmation of improvements in outcome after such treatments via clinical trials. These future directional requirements are non-negotiable. However, innovation and research offer many more opportunities to understand and improve therapy. Identifying candidates and personalizing their therapy can be afforded via proteomic, genomic and epigenomic characterization techniques. Such molecular profiling along with liquid biopsy opportunities will both help select best therapies and facilitate ongoing monitoring of response. Technologies both to find targets and help deliver less-toxic therapy continue to improve and will be available in the marketplace. These technologies include molecular-based imaging (eg, PET-PSMA), FLASH ultra-high dose rate platforms, Grid therapy, PULSAR adaptive dosing, and MRI/PET guided linear accelerators. Importantly, a treatment approach beyond oligometastastic could evolve including a rationale for using SAbR in the oligoprogressive, oligononresponsive, oligobulky and oligolethal settings as well as expansion beyond oligo- toward even plurimetastastic disease. In any case, lessons learned and experiences required by the implementation of using SAbR in oligometastatic cancer will be revisited.
Collapse
Affiliation(s)
- Zachary Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Michael Dohopolski
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Asal Rahimi
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
26
|
Ortolan E, Appierto V, Silvestri M, Miceli R, Veneroni S, Folli S, Pruneri G, Vingiani A, Belfiore A, Cappelletti V, Vismara M, Dell'Angelo F, De Cecco L, Bianchi GV, de Braud FG, Daidone MG, Di Cosimo S. Blood-based genomics of triple-negative breast cancer progression in patients treated with neoadjuvant chemotherapy. ESMO Open 2021; 6:100086. [PMID: 33743331 PMCID: PMC8010400 DOI: 10.1016/j.esmoop.2021.100086] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Background As neoadjuvant chemotherapy (NAC) is increasingly used in triple-negative breast cancer (TNBC), we investigated the value of circulating tumor DNA (ctDNA) for patient monitoring prior, during, and after NAC, and circulating tumor cells (CTCs) for disease characterization at clinical progression. Materials and methods Forty-two TNBC patients undergoing NAC were prospectively enrolled. Primary tumor mutations identified by targeted-gene sequencing were validated and tracked in 168 plasma samples longitudinally collected at multiple time-points by droplet digital polymerase chain reaction. At progression, plasma DNA underwent direct targeted-gene assay, and CTCs were collected and analyzed for copy number alterations (CNAs) by low-pass whole genome sequencing. Results ctDNA detection after NAC was associated with increased risk of relapse, with 2-year event-free survival estimates being 44.4% [95% confidence interval (CI) 21.4%-92.3%] versus 77.4% (95% CI 57.8%-100%). ctDNA prognostic value remained worthy even after adjusting for age, residual disease, systemic inflammatory indices, and Ki-67 [hazard ratio (HR) 1.91; 95% CI 0.51-7.08]. During follow-up, ctDNA was undetectable in non-recurrent cases with the unique exception of one showing a temporary peak over eight samples. Conversely, ctDNA was detected in 8/11 recurrent cases, and predated the clinical diagnosis up to 13 months. Notably, recurrent cases without ctDNA developed locoregional, contralateral, and bone-only disease. At clinical progression, CTCs presented chromosome 10 and 21q CNAs whose network analysis showed connected modules including HER/PI3K/Ras/JAK signaling and immune response. Conclusion ctDNA is not only associated with but is also predictive of prognosis in TNBC patients receiving NAC, and represents an exploitable tool, either alone or with CTCs, for personalized TNBC management. ctDNA was detected in 77% of early-stage TNBC patients undergoing neoadjuvant chemotherapy. Patients with still detectable ctDNA after NAC were more than twice as likely to relapse as those with undetectable levels. Detection of ctDNA during follow-up antedated clinical overt metastases up to 13 months. ctDNA was undetectable in all but one non-recurrent patient with a temporary peak in only 1 of 8 samples tested. CTCs of progressing cases lacked epithelial surface markers and showed therapeutically exploitable molecular features.
Collapse
Affiliation(s)
- E Ortolan
- Biomarkers Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - V Appierto
- Biomarkers Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Silvestri
- Biomarkers Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - R Miceli
- Clinical Epidemiology and Trial Organization Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - S Veneroni
- Biomarkers Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - S Folli
- Breast Cancer Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - G Pruneri
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A Vingiani
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A Belfiore
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - V Cappelletti
- Biomarkers Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Vismara
- Biomarkers Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - F Dell'Angelo
- Biomarkers Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - L De Cecco
- Integrated Biology Platform, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - G V Bianchi
- Department of Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - F G de Braud
- Department of Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M G Daidone
- Biomarkers Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - S Di Cosimo
- Biomarkers Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
27
|
Chen X, Gao Y, Zhang G, Li B, Ma T, Ma Y, Wang X. Bevacizumab Plays a double-edged role in Neoadjuvant Therapy for Non-metastatic Breast Cancer: A Systemic Review and Meta-Analysis. J Cancer 2021; 12:2643-2653. [PMID: 33854624 PMCID: PMC8040714 DOI: 10.7150/jca.53303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/04/2021] [Indexed: 12/04/2022] Open
Abstract
The anti-angiogenic drug Bevacizumab (Bev) is engaged in neoadjuvant therapy for non-metastatic breast cancer (NMBC). However, whether neoadjuvant Bev providing a greater benefit to patients is debatable. Our study aimed to review Bev's role in Neoadjuvant therapy (NAT) in NMBC and identify predictive markers associated with its efficacy by systemic review and meta-analysis. Eligible trials were retrieved from the Pubmed, Embase, and Cochrane Library, and random or fixed effects models were applied to synthesize data. Power of pCR to predict DFS or OS was evaluated by nonlinear mixed effect model. In NMBC, Bev significantly improved the rate of patients achieving pCR, but this benefit discontinued in DFS or OS. Biomarkers such as PAM50 intrinsic subtype, VEGF overexpression, regulation of VEGF signaling pathway, hypoxia-related genes, BRCA1/2 mutation, P53 mutation and immune phenotype can be used to predict Bev-inducing pCR and/or DFS/OS. Unfortunately, although patients with pCR survived longer than those without pCR when ignoring the use of Bev, but patients achieving pCR with Bev might survive shorter than those achieving pCR without Bev. Subgroup analyses found Bev prolonged patients' OS when given pre- and post-surgery. Lastly, adding Bev increased adverse effects. Overall, Bev offered limited effect for patients with NMBC in an unscreened population. However, in biomarkers - identified subgroup, Bev could be promising to ameliorate the prognosis of specific patients with NMBC.
Collapse
Affiliation(s)
- XinJie Chen
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China.,Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No.23 Back Road of Art Gallery, Dongcheng District, Beijing, 100010, China
| | - Yu Gao
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China.,Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No.23 Back Road of Art Gallery, Dongcheng District, Beijing, 100010, China
| | - GanLin Zhang
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No.23 Back Road of Art Gallery, Dongcheng District, Beijing, 100010, China
| | - BingXue Li
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China.,Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No.23 Back Road of Art Gallery, Dongcheng District, Beijing, 100010, China
| | - TingTing Ma
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No.23 Back Road of Art Gallery, Dongcheng District, Beijing, 100010, China
| | - YunFei Ma
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No.23 Back Road of Art Gallery, Dongcheng District, Beijing, 100010, China
| | - XiaoMin Wang
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No.23 Back Road of Art Gallery, Dongcheng District, Beijing, 100010, China
| |
Collapse
|
28
|
Huang H, Li H. Tumor heterogeneity and the potential role of liquid biopsy in bladder cancer. Cancer Commun (Lond) 2020; 41:91-108. [PMID: 33377623 PMCID: PMC7896752 DOI: 10.1002/cac2.12129] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease that characterized by genomic instability and a high mutation rate. Heterogeneity in tumor may partially explain the diversity of responses to targeted therapies and the various clinical outcomes. A combination of cytology and cystoscopy is the standard methodology for BC diagnosis, prognosis, and disease surveillance. However, genomics analyses of single tumor‐biopsy specimens may underestimate the mutational burden of heterogeneous tumors. Liquid biopsy, as a promising technology, enables analysis of tumor components in the bodily fluids, such as blood and urine, at multiple time points and provides a minimally invasive approach that can track the evolutionary dynamics and monitor tumor heterogeneity. In this review, we describe the multiple faces of BC heterogeneity at the genomic and transcriptional levels and how they affect clinical care and outcomes. We also summarize the outcomes of liquid biopsy in BC, which plays a potential role in revealing tumor heterogeneity. Finally, we discuss the challenges that must be addressed before liquid biopsy can be widely used in clinical treatment.
Collapse
Affiliation(s)
- Hai‐Ming Huang
- Department of Clinical LaboratoryPeking University First HospitalBeijing100034P. R. China
| | - Hai‐Xia Li
- Department of Clinical LaboratoryPeking University First HospitalBeijing100034P. R. China
| |
Collapse
|
29
|
Talaat IM, Hachim MY, Hachim IY, Ibrahim RAER, Ahmed MAER, Tayel HY. Bone marrow mammaglobin-1 (SCGB2A2) immunohistochemistry expression as a breast cancer specific marker for early detection of bone marrow micrometastases. Sci Rep 2020; 10:13061. [PMID: 32747636 PMCID: PMC7400628 DOI: 10.1038/s41598-020-70012-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Despite all the advances in the management of breast cancer (BC), patients with distance metastasis are still considered incurable with poor prognosis. For that reason, early detection of the metastatic lesions is crucial to improve patients' life span as well as quality of life. Many markers were proposed to be used as biomarkers for metastatic BC lesions, however many of them lack organ specificity. This highlights the need for novel markers that are more specific in detecting disseminated BC lesions. Here, we investigated mammaglobin-1 expression as a potential and specific marker for metastatic BC lesions using our patient cohort consisting of 30 newly diagnosed BC patients. For all patients, bone marrow (BM) aspiration, BM biopsy stained by H&E and BM immunohistochemically stained for mammaglobin-1 were performed. In addition, the CA15-3 in both serum and bone marrow plasma was also evaluated for each patient. Indeed, mammaglobin-1 immuno-staining was able to detect BM micrometastases in 16/30 patients (53.3%) compared to only 5/30 patients (16.7%) in BM biopsy stained by H&E and no cases detected by BM aspirate (0%). In addition, our results showed a trend of association between mammaglobin-1 immunoreactivity and the serum and BM plasma CA15-3. Further validation was done using large publicly available databases. Our results showed that mammaglobin-1 gene expression to be specifically upregulated in BC patients' samples compared to normal tissue as well as samples from other cancers. Moreover, our findings also showed mammaglobin-1 expression to be a marker of tumour progression presented as lymph nodes involvement and distant metastasis. These results provide an initial evidence for the use of mammaglobin-1 (SCGB2A2) immunostaining in bone marrow as a tool to investigate early BM micrometastases in breast cancer.
Collapse
Affiliation(s)
- Iman Mamdouh Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, P.O. Box: 27272, Sharjah, UAE.
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Mahmood Yaseen Hachim
- College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Ibrahim Yaseen Hachim
- Clinical Sciences Department, College of Medicine, University of Sharjah, P.O. Box: 27272, Sharjah, UAE.
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.
| | | | - Mohamed Abd El Rahman Ahmed
- Clinical Pathology Department, Military Medical Academy, Alexandria Armed Forces Hospital, Alexandria, Egypt
| | - Hanan Yehia Tayel
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Shan Z, Liu L, Shen J, Hao H, Zhang H, Lei L, Liu F, Wang Z. Enhanced UV Resistance Role of Death Domain-Associated Protein in Human MDA-MB-231 Breast Cancer Cells by Regulation of G2 DNA Damage Checkpoint. Cell Transplant 2020; 29:963689720920277. [PMID: 32662684 PMCID: PMC7586275 DOI: 10.1177/0963689720920277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose: Death domain–associated protein (DAXX) is a multifunctional nuclear protein involved in apoptosis, transcription, deoxyribonucleic acid damage response, and tumorigenesis. However, the role of DAXX in breast cancer development and progression remains elusive. In this study, we examined the expression patterns and function of DAXX in human breast cancer samples and cell lines. Methods: Immunohistochemistry was used to analyze the expression and localization patterns of DAXX. Additionally, we investigated whether DAXX played an intrinsic role in the cellular response to damage induced by ultraviolet (UV) irradiation in MDA-MB-231 breast cancer cells (isolated at M D Anderson from a pleural effusion of a patient with invasive ductal carcinoma). Results: Our results showed that nucleus size, chromatin organization, and DAXX localization were altered in breast cancer tissues compared with those in control tissues. Compared with cytoplasmic and nuclear expression in benign breast tissues, DAXX was colocalized with promyelocytic leukemia in nuclei with a granular distribution. Endogenous DAXX messenger ribonucleic acid levels were upregulated upon UV radiation in MDA-MB-231 cells. DAXX-deficient cells tended to be more sensitive to irradiation than control cells. Conversely, DAXX-overexpressing cells exhibited reduced phosphorylated histone H2AX (γ-H2AX) accumulation, increased cell survival, and resistance to UV-induced damage. The protective effects of DAXX may be related to the activation of the ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (ATM-CHK2)-cell division cycle 25c (CDC25c) signaling pathways in Gap2/Mitosis (G2/M) checkpoint and ultimately cell cycle arrest at G2/M phase. Conclusions: Taken together, these results suggested that DAXX may be an essential component in breast cancer initiation, malignant progression, and radioresistance.
Collapse
Affiliation(s)
- Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, China.,Both the authors contributed equally to this article
| | - Li Liu
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang, China.,Both the authors contributed equally to this article
| | - Jingling Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Haiyue Hao
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Honghong Zhang
- Blood Transfusion Department of Sunshine Union Hospital, Weifang, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Feng Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhipeng Wang
- Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Terkelsen T, Russo F, Gromov P, Haakensen VD, Brunak S, Gromova I, Krogh A, Papaleo E. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Breast Cancer Res 2020; 22:73. [PMID: 32605588 PMCID: PMC7329449 DOI: 10.1186/s13058-020-01295-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Studies on tumor-secreted microRNAs point to a functional role of these in cellular communication and reprogramming of the tumor microenvironment. Uptake of tumor-secreted microRNAs by neighboring cells may result in the silencing of mRNA targets and, in turn, modulation of the transcriptome. Studying miRNAs externalized from tumors could improve cancer patient diagnosis and disease monitoring and help to pinpoint which miRNA-gene interactions are central for tumor properties such as invasiveness and metastasis. Methods Using a bioinformatics approach, we analyzed the profiles of secreted tumor and normal interstitial fluid (IF) microRNAs, from women with breast cancer (BC). We carried out differential abundance analysis (DAA), to obtain miRNAs, which were enriched or depleted in IFs, from patients with different clinical traits. Subsequently, miRNA family enrichment analysis was performed to assess whether any families were over-represented in the specific sets. We identified dysregulated genes in tumor tissues from the same cohort of patients and constructed weighted gene co-expression networks, to extract sets of co-expressed genes and co-abundant miRNAs. Lastly, we integrated miRNAs and mRNAs to obtain interaction networks and supported our findings using prediction tools and cancer gene databases. Results Network analysis showed co-expressed genes and miRNA regulators, associated with tumor lymphocyte infiltration. All of the genes were involved in immune system processes, and many had previously been associated with cancer immunity. A subset of these, BTLA, CXCL13, IL7R, LAMP3, and LTB, was linked to the presence of tertiary lymphoid structures and high endothelial venules within tumors. Co-abundant tumor interstitial fluid miRNAs within this network, including miR-146a and miR-494, were annotated as negative regulators of immune-stimulatory responses. One co-expression network encompassed differences between BC subtypes. Genes differentially co-expressed between luminal B and triple-negative breast cancer (TNBC) were connected with sphingolipid metabolism and predicted to be co-regulated by miR-23a. Co-expressed genes and TIF miRNAs associated with tumor grade were BTRC, CHST1, miR-10a/b, miR-107, miR-301a, and miR-454. Conclusion Integration of IF miRNAs and mRNAs unveiled networks associated with patient clinicopathological traits, and underlined molecular mechanisms, specific to BC sub-groups. Our results highlight the benefits of an integrative approach to biomarker discovery, placing secreted miRNAs within a biological context.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Francesco Russo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Vilde Drageset Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Anders Krogh
- Unit of Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Liao H, Li H. Advances in the Detection Technologies and Clinical Applications of Circulating Tumor DNA in Metastatic Breast Cancer. Cancer Manag Res 2020; 12:3547-3560. [PMID: 32547192 PMCID: PMC7244344 DOI: 10.2147/cmar.s249041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) represents the most commonly diagnosed cancer among females worldwide. Although targeted therapy has greatly improved the efficacy of treating BC, a large proportion of BC patients eventually develop recurrence or metastasis. Traditional invasive tumor tissue biopsy is short of comprehensiveness in tumor assessment due to heterogeneity. Liquid biopsy, an attractive non-invasive approach mainly including circulating tumor cell and circulating tumor DNA (ctDNA), has been widely utilized in a variety of cancers with the advances of sequencing technologies in recent years. The ctDNA that is found circulating in body fluids refers to DNA released from tumor cells and has shown clinical utility in metastatic breast cancer (MBC). With the results of genomic variants detection, ctDNA could be used to predict clinical outcomes, monitor disease progression, and guide treatment for patients with MBC. Moreover, the drug resistance problem may be addressed by ctDNA detection. In this review, we summarized the technological developments and clinical applications of ctDNA in MBC.
Collapse
Affiliation(s)
- Hao Liao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, People's Republic of China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, People's Republic of China
| |
Collapse
|
33
|
Prognostic value of HER2 status on circulating tumor cells in advanced-stage breast cancer patients with HER2-negative tumors. Breast Cancer Res Treat 2020; 181:679-689. [PMID: 32367460 DOI: 10.1007/s10549-020-05662-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/29/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Discordance between HER2 expression in tumor tissue (tHER2) and HER2 status on circulating tumor cells (cHER2) has been reported. It remains largely underexplored whether patients with tHER2-/cHER2+ can benefit from anti-HER2 targeted therapies. METHODS cHER2 status was determined in 105 advanced-stage patients with tHER2- breast tumors. Association between cHER2 status and progression-free survival (PFS) was analyzed by univariate and multivariate Cox models and survival differences were compared by Kaplan-Meier method. RESULTS Compared to the patients with low-risk cHER2 (cHER2+ < 2), those with high-risk cHER2 (cHER2+ ≥ 2) had shorter survival time and an increased risk for disease progression (hazard ratio [HR] 2.16, 95% confidence interval [CI] 1.20-3.88, P = 0.010). Among the patients with high-risk cHER2, those who received anti-HER2 targeted therapies had improved PFS compared with those who did not (HR 0.30, 95% CI 0.10-0.92, P = 0.035). In comparison, anti-HER2 targeted therapy did not affect PFS among those with low-risk cHER2 (HR 0.70, 95% CI 0.36-1.38, P = 0.306). Similar results were obtained after adjusting covariates. A longitudinal analysis of 67 patients with cHER2 detected during follow-ups found that those whose cHER2 status changed from high-risk at baseline to low-risk at first follow-up exhibited a significantly improved survival compared to those whose cHER2 remained high-risk (median PFS: 11.7 weeks vs. 2.0 weeks, log-rank P = 0.001). CONCLUSION In advanced-stage breast cancer patients with tHER2- tumors, cHER2 status has the potential to guide the use of anti-HER2 targeted therapy in patients with high-risk cHER2.
Collapse
|
34
|
Multimodal Targeted Deep Sequencing of Circulating Tumor Cells and Matched Cell-Free DNA Provides a More Comprehensive Tool to Identify Therapeutic Targets in Metastatic Breast Cancer Patients. Cancers (Basel) 2020; 12:cancers12051084. [PMID: 32349306 PMCID: PMC7281124 DOI: 10.3390/cancers12051084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Cell-free DNA (cfDNA) and circulating tumor cells (CTCs) exhibit great potential for therapy management in oncology. We aimed to establish a multimodal liquid biopsy strategy that is usable with minimized blood volume to deconvolute the genomic complexity of metastatic breast cancer. CTCs were isolated from 10ml blood of 18 hormone receptor-positive and human epidermal growth factor receptor 2-negative (HER2-) metastatic breast cancer patients. cfDNA was isolated from plasma generated after CTC depletion and targeted sequencing analyses were conducted. PIK3CA and ESR1 variants were less common in CTC gDNA, while ERBB2 variants were only detected in CTC gDNA. A total of 62% of all cfDNA variants were recovered in the matched CTC gDNA, while 72% of all variants were unique in either cfDNA (14 variants) or CTC gDNA (104 variants). The percentage of patients with no detectable cfDNA variants or CTC gDNA variants was 17%/11%, but a combined analysis identified variants in 94% of all patients. In univariate and multivariate regression models, ESR1 variants in cfDNA and CTC gDNA correlated significantly with survival. We suggest a coordinated analysis of both fractions in order to provide a comprehensive genomic footprint that may contribute to identifying the most suitable therapy for each individual.
Collapse
|
35
|
Ren AH, Fiala CA, Diamandis EP, Kulasingam V. Pitfalls in Cancer Biomarker Discovery and Validation with Emphasis on Circulating Tumor DNA. Cancer Epidemiol Biomarkers Prev 2020; 29:2568-2574. [PMID: 32277003 DOI: 10.1158/1055-9965.epi-20-0074] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
Despite significant investment of funds and resources, few new cancer biomarkers have been introduced to the clinic in the last few decades. Although many candidates produce promising results in the laboratory, deficiencies in sensitivity, specificity, and predictive value make them less than desirable in a patient setting. This review will analyze these challenges in detail as well as discuss false discovery, problems with reproducibility, and tumor heterogeneity. Circulating tumor DNA (ctDNA), an emerging cancer biomarker, is also analyzed, particularly in the contexts of assay specificity, sensitivity, fragmentation, lead time, mutant allele fraction, and clinical relevance. Emerging artificial intelligence technologies will likely be valuable tools in maximizing the clinical utility of ctDNA which is often found in very small quantities in patients with early-stage tumors. Finally, the implications of challenging false discoveries are examined and some insights about improving cancer biomarker discovery are provided.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Annie H Ren
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Clare A Fiala
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Kutasovic JR, McCart Reed AE, Sokolova A, Lakhani SR, Simpson PT. Morphologic and Genomic Heterogeneity in the Evolution and Progression of Breast Cancer. Cancers (Basel) 2020; 12:E848. [PMID: 32244556 PMCID: PMC7226487 DOI: 10.3390/cancers12040848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
: Breast cancer is a remarkably complex and diverse disease. Subtyping based on morphology, genomics, biomarkers and/or clinical parameters seeks to stratify optimal approaches for management, but it is clear that every breast cancer is fundamentally unique. Intra-tumour heterogeneity adds further complexity and impacts a patient's response to neoadjuvant or adjuvant therapy. Here, we review some established and more recent evidence related to the complex nature of breast cancer evolution. We describe morphologic and genomic diversity as it arises spontaneously during the early stages of tumour evolution, and also in the context of treatment where the changing subclonal architecture of a tumour is driven by the inherent adaptability of tumour cells to evolve and resist the selective pressures of therapy.
Collapse
Affiliation(s)
- Jamie R. Kutasovic
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Anna Sokolova
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Peter T. Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
| |
Collapse
|
37
|
Preoperative detection of KRAS G12D mutation in ctDNA is a powerful predictor for early recurrence of resectable PDAC patients. Br J Cancer 2020; 122:857-867. [PMID: 31969677 PMCID: PMC7078253 DOI: 10.1038/s41416-019-0704-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background About 25–37% of resectable pancreatic ductal adenocarcinoma (PDAC) had a great chance of early recurrence after radical resection, which is mainly due to preoperative micrometastasis. We herein demonstrated the profiles of ctDNA in resectable PDAC and use of ctDNA to identify patients with potential micrometastasis. Methods A total of 113 and 44 resectable PDACs were enrolled in discovery and validation cohorts, separately. A panel containing 50 genes was used to screen ctDNA by an NGS-based assessment with high specificity. Results In the discovery cohort, the overall detection rate was 38.05% (43/113). Among positive ctDNA, KRAS mutation had the highest detection rate (23.01%, 26/113), while the others were <5%. Survival analysis showed that plasma KRAS mutations, especially KRAS G12D mutation, had significant association with OS and RFS of resectable PDAC. Plasma KRAS G12D mutation showed a strong correlation with early distant metastasis. In the validation cohort, survival analysis showed similar association between plasma KRAS G12D mutation and poor outcomes. Conclusions This study demonstrated that plasma KRAS mutations, especially KRAS G12D mutation, served as a useful predictive biomarker for prognosis of resectable PDAC. More importantly, due to high correlation with micrometastasis, preoperative detection of plasma KRAS G12D mutation helps in optimising surgical selection of resectable PDAC.
Collapse
|
38
|
Costa C, Dávila-Ibáñez AB. Methodology for the Isolation and Analysis of CTCs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:45-59. [PMID: 32304079 DOI: 10.1007/978-3-030-35805-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The majority of deaths related to breast cancer are caused by metastasis. Understanding the process of metastasis is key to achieve a reduction on breast cancer mortality. Currently, liquid biopsies are gaining attention in this regard. Circulating tumor cells (CTCs), an important component of liquid biopsies, are cells shed from primary tumor that disseminate to blood circulation being responsible of distal metastasis. Hence, the study CTCs is a promising alternative to monitor the progress of metastasis disease and can be used for early diagnosis of cancers as well as for earlier assessment of cancer recurrence and therapy efficacy. Despite their clinical interest, CTC analysis is not recommended by oncology guidelines so far. The main reason is that there is no gold standard technology for CTCs isolation and most of the current technologies are not yet validated for clinical use. In this chapter we will focus on the most relevant technologies for CTC isolation based on their properties and depending on whether it is a positive or negative selection. We also describe each technology based on its potential use and its relevance in breast cancer. The chapter also contains a future perspective including the challenges and requirements of CTC detection.
Collapse
Affiliation(s)
- Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| | - Ana B Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
39
|
Sánchez-Calderón D, Pedraza A, Mancera Urrego C, Mejía-Mejía A, Montealegre-Páez AL, Perdomo S. Analysis of the Cost-Effectiveness of Liquid Biopsy to Determine Treatment Change in Patients with Her2-Positive Advanced Breast Cancer in Colombia. CLINICOECONOMICS AND OUTCOMES RESEARCH 2020; 12:115-122. [PMID: 32104023 PMCID: PMC7025648 DOI: 10.2147/ceor.s220726] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/26/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Breast cancer is highly prevalent worldwide and leads to high health-care costs. HER2-positive subtype represents 30% of all breast cancers and is associated with a poor prognosis. Patients treated with anti-HER2 therapies frequently develop resistance and require pharmacological treatment change. Liquid biopsy is a minimally invasive and an easily accessible technique, with high sensitivity and specificity, to detect molecular treatment resistance even before the onset of clinical manifestations and can thus be used to reduce unnecessary anti-HER2 treatment costs. OBJECTIVE To evaluate the cost-effectiveness of using liquid biopsy (ctDNA detection) to determine treatment change in women with HER2-positive advanced breast cancer in Colombia. METHODOLOGY We performed an economic evaluation using decision tree modeling and deterministic analyses based on literature search for first and second lines of treatment (trastuzumab, pertuzumab, docetaxel, and TDM1); resistance; outcomes; and sensitivity and specificity of tests detecting molecular resistance. The effectiveness was measured using quality-adjusted life year (QALY) score, and costs were obtained from databases with national validity, suppliers, the Colombian Drug Price Information System (SISMED), and local studies. RESULTS The use of liquid biopsy (ctDNA detection) with conventional treatment was more expensive and less effective than conventional treatment without liquid biopsy (US $177,985.35 and 0.533889206 QALY, respectively). The incremental cost with liquid biopsy was US $7,333.17 and the incremental effectiveness was 0.00042256 QALY relative to the conventional method. CONCLUSION Including liquid biopsy in the treatment of HER2-positive advanced breast cancer was considered currently inapplicable in Colombia because it was not cost effective. Our results open a window of opportunity to improve the development and implementation of ctDNA testing in Colombia, potentially reducing current costs. More evidence is required on the utility of this test, depending on the financial capacity of Colombia and other countries.
Collapse
Affiliation(s)
| | | | | | | | - Ana Lorena Montealegre-Páez
- Institute of Nutrition, Genetics, and Metabolism Research, Faculty of Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Sandra Perdomo
- Institute of Nutrition, Genetics, and Metabolism Research, Faculty of Medicine, Universidad El Bosque, Bogotá, Colombia
- Correspondence: Sandra Perdomo International Agency for Research on Cancer (IARC), Lyon, FranceTel +33 07 7895 5680 Email
| |
Collapse
|
40
|
Ta W, Zhang Y, Zhang S, Sun P. LncRNA ANCR downregulates hypoxia‑inducible factor 1α and inhibits the growth of HPV‑negative cervical squamous cell carcinoma under hypoxic conditions. Mol Med Rep 2019; 21:413-419. [PMID: 31746351 DOI: 10.3892/mmr.2019.10792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/01/2019] [Indexed: 11/05/2022] Open
Abstract
Long non‑coding RNA (lncRNA) anti‑differentiation non‑coding RNA (ANCR) has been reported to participate in numerous types of malignancies. The present study aimed to investigate the function of lncRNA ANCR in cervical squamous cell carcinoma (CSCC). The expression of ANCR in the cervical tissues (tumor tissues in patients with CSCC) and serum of patients with CSCC in addition to healthy female controls was detected using reverse transcription‑quantitative polymerase chain reaction. Diagnostic values of ANCR expression in cervical tissue and serum for CSCC were determined using receiver operating characteristic curve analysis. LncRNA ANCR and hypoxia‑inducible factor 1α (HIF‑1α) expression vectors were constructed and transfected into CSCC cell lines, and cell proliferation under normal O2 and hypoxic conditions (8% O2) was detected using a Cell Counting kit‑8 assay. Expression of HIF‑1α was determined using western blot analysis. It was observed that ANCR was downregulated in human papillomavirus (HPV)‑negative patients with CSCC compared with in normal female cases and HPV‑positive patients with CSCC in cervical tissues and in the serum, and the downregulation of ANCR effectively distinguished HPV‑negative patients with CSCC from healthy controls. ANCR overexpression inhibited the proliferation of HPV‑negative CSCC cells under hypoxic conditions, whilst HIF‑1α overexpression reversed this effect. ANCR overexpression inhibited HIF‑1α expression in HPV‑negative CSCC cells, while HIF‑1α overexpression exhibited no significant effect on ANCR expression. It was therefore concluded that ANCR may inhibit the growth of HPV‑negative cervical squamous cell carcinoma under hypoxic conditions by downregulating HIF‑1α.
Collapse
Affiliation(s)
- Weiwei Ta
- Department of Tumor Radiotherapy, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yao Zhang
- Department of Tumor Radiotherapy, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shangdi Zhang
- Clinical Laboratory, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Pengfei Sun
- Department of Tumor Radiotherapy, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
41
|
Jin KT, Chen XY, Lan HR, Wang SB, Ying XJ, Abdi SM, Wang W, Hu ZM, Mou XZ. Current progress in the clinical use of circulating tumor cells as prognostic biomarkers. Cancer Cytopathol 2019; 127:739-749. [PMID: 31589381 DOI: 10.1002/cncy.22189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
The process of metastasis is characterized by the shedding of tumor cells into the bloodstream, where they are transported to other parts of the body to seed new tumors. These cells, known as circulating tumor cells (CTCs), have the potential to reveal much about an individual cancer case, and theoretically can aid in the prediction of outcomes and design of precision treatments. Recent advances in technology now allow for the robust and reproducible characterization of CTCs from a simple blood draw. Both the number of circulating cells and important molecular characteristics correlated with clinical phenotypes such as drug resistance can be obtained and used for real-time prognostic analysis. Molecular characterization can provide a snapshot of the activity of the main tumor (serving as a "liquid biopsy") and early warnings concerning changes such as the development of resistance, and aid in predicting the efficacy of different therapeutic approaches for treatment optimization. Herein, the authors review the current clinical use of CTCs as prognostic biomarkers for several different cancers. The quantification of CTCs can lead to more accurate staging and decision making regarding options such as adjuvant chemotherapy.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiao-Jiang Ying
- Department of Colorectal Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Siyad Mohamed Abdi
- Department of Colorectal Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Wei Wang
- Department of Colorectal Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Zhi-Ming Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
42
|
Bang-Christensen SR, Pedersen RS, Pereira MA, Clausen TM, Løppke C, Sand NT, Ahrens TD, Jørgensen AM, Lim YC, Goksøyr L, Choudhary S, Gustavsson T, Dagil R, Daugaard M, Sander AF, Torp MH, Søgaard M, Theander TG, Østrup O, Lassen U, Hamerlik P, Salanti A, Agerbæk MØ. Capture and Detection of Circulating Glioma Cells Using the Recombinant VAR2CSA Malaria Protein. Cells 2019; 8:E998. [PMID: 31466397 PMCID: PMC6769911 DOI: 10.3390/cells8090998] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 01/04/2023] Open
Abstract
Diffuse gliomas are the most common primary malignant brain tumor. Although extracranial metastases are rarely observed, recent studies have shown the presence of circulating tumor cells (CTCs) in the blood of glioma patients, confirming that a subset of tumor cells are capable of entering the circulation. The isolation and characterization of CTCs could provide a non-invasive method for repeated analysis of the mutational and phenotypic state of the tumor during the course of disease. However, the efficient detection of glioma CTCs has proven to be challenging due to the lack of consistently expressed tumor markers and high inter- and intra-tumor heterogeneity. Thus, for this field to progress, an omnipresent but specific marker of glioma CTCs is required. In this article, we demonstrate how the recombinant malaria VAR2CSA protein (rVAR2) can be used for the capture and detection of glioma cell lines that are spiked into blood through binding to a cancer-specific oncofetal chondroitin sulfate (ofCS). When using rVAR2 pull-down from glioma cells, we identified a panel of proteoglycans, known to be essential for glioma progression. Finally, the clinical feasibility of this work is supported by the rVAR2-based isolation and detection of CTCs from glioma patient blood samples, which highlights ofCS as a potential clinical target for CTC isolation.
Collapse
Affiliation(s)
- Sara R Bang-Christensen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
- VarCT Diagnostics, 2200 Copenhagen, Denmark
| | - Rasmus S Pedersen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Marina A Pereira
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Thomas M Clausen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Caroline Løppke
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Nicolai T Sand
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Theresa D Ahrens
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Amalie M Jørgensen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Yi Chieh Lim
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Louise Goksøyr
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Tobias Gustavsson
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Robert Dagil
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, and Vancouver Prostate Centre, BC V6H 3Z6 Vancouver, Canada
| | - Adam F Sander
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Mathias H Torp
- Centre for Genomic Medicine, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Max Søgaard
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, 2970 Hørsholm, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Olga Østrup
- Centre for Genomic Medicine, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Oncology, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Petra Hamerlik
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark.
| | - Mette Ø Agerbæk
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark.
| |
Collapse
|
43
|
Zeng L, Deng X, Zhong J, Yuan L, Tao X, Zhang S, Zeng Y, He G, Tan P, Tao Y. Prognostic value of biomarkers EpCAM and αB-crystallin associated with lymphatic metastasis in breast cancer by iTRAQ analysis. BMC Cancer 2019; 19:831. [PMID: 31443698 PMCID: PMC6708189 DOI: 10.1186/s12885-019-6016-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
Background Metastasis is responsible for the majority of deaths in a variety of cancer types, including breast cancer. Although several factors or biomarkers have been identified to predict the outcome of patients with breast cancer, few studies have been conducted to identify metastasis-associated biomarkers. Methods Quantitative iTRAQ proteomics analysis was used to detect differentially expressed proteins between lymph node metastases and their paired primary tumor tissues from 23 patients with metastatic breast cancer. Immunohistochemistry was performed to validate the expression of two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins in 190 paraffin-embedded tissue samples. These four proteins were further analyzed for their correlation with clinicopathological features in 190 breast cancer patients. Results We identified 637 differentially regulated proteins (397 upregulated and 240 downregulated) in lymph node metastases compared with their paired primary tumor tissues. Data are available via ProteomeXchange with identifier PXD013931. Furthermore, bioinformatics analysis using GEO profiling confirmed the difference in the expression of EpCAM between metastases and primary tumors tissues. Two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins were associated with the progression of breast cancer. Obviously, EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. We further identified αB-crystallin as an independent biomarker to predict lymph node metastasis and the outcome of breast cancer patients. Conclusion We have identified that EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. αB-crystallin, a stress-related protein that has recently been shown to be important for cell invasion and survival, was identified as a potential prognostic biomarker to predict the outcome of breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s12885-019-6016-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China.
| | - Jingmin Zhong
- Department of Pathology, Union Hospital, Tongji Medical College, HuaZhong University of Science and Technology, WuHan, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaojun Tao
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Sai Zhang
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zeng
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Guangchun He
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Pingping Tan
- Department of Pathology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
44
|
Roberts CM, Cardenas C, Tedja R. The Role of Intra-Tumoral Heterogeneity and Its Clinical Relevance in Epithelial Ovarian Cancer Recurrence and Metastasis. Cancers (Basel) 2019; 11:E1083. [PMID: 31366178 PMCID: PMC6721439 DOI: 10.3390/cancers11081083] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecologic cancer, due in large part to recurrent tumors. Recurrences tend to have metastasized, mainly in the peritoneal cavity and developed resistance to the first line chemotherapy. Key to the progression and ultimate lethality of ovarian cancer is the existence of extensive intra-tumoral heterogeneity (ITH). In this review, we describe the genetic and epigenetic changes that have been reported to give rise to different cell populations in ovarian cancer. We also describe at length the contributions made to heterogeneity by both linear and parallel models of clonal evolution and the existence of cancer stem cells. We dissect the key biological signals from the tumor microenvironment, both directly from other cell types in the vicinity and soluble or circulating factors. Finally, we discuss the impact of tumor heterogeneity on the choice of therapeutic approaches in the clinic. Variability in ovarian tumors remains a major barrier to effective therapy, but by leveraging future research into tumor heterogeneity, we may be able to overcome this barrier and provide more effective, personalized therapy to patients.
Collapse
Affiliation(s)
- Cai M Roberts
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlos Cardenas
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Roslyn Tedja
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
45
|
Cunningham CE, MacAuley MJ, Yadav G, Vizeacoumar FS, Freywald A, Vizeacoumar FJ. Targeting the CINful genome: Strategies to overcome tumor heterogeneity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:77-91. [PMID: 30817936 DOI: 10.1016/j.pbiomolbio.2019.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 01/21/2023]
Abstract
Genomic instability, and more specifically chromosomal instability (CIN), arises from a number of processes that are defective in cancer, such as aberrant mitotic cell division, replication stress, defective DNA damage repair, and ineffective telomere maintenance. CIN is an emerging hallmark of cancer that contributes to tumor heterogeneity through increased rates of genetic alterations. As genetic heterogeneity within a single tumor and between tumors is a key challenge leading to treatment failures, this brings to question, whether therapeutic approaches should aim at the genetic diversity or a specific mutation present within these tumors. Answering this question will determine the future of personalized targeted therapies. Here we discuss, how the genetic diversity associated with CIN in tumor cells can be used as a therapeutic advantage and targeted by exploiting the genetic concepts of synthetic lethality and synthetic dosage lethality. Given that a number of CIN-related pathways work together to fix the DNA damage within our genome and ensure proper segregation of chromosomes, we specifically focus on the genetic interactions amongst these pathways and their potential therapeutic applicability in cancer. We also discuss, how tumor genetic heterogeneity can be targeted in emerging immunotherapeutic approaches.
Collapse
Affiliation(s)
- Chelsea E Cunningham
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada
| | - Mackenzie J MacAuley
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada
| | - Garima Yadav
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada
| | - Frederick S Vizeacoumar
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada
| | - Andrew Freywald
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada.
| | - Franco J Vizeacoumar
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada; Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, S7N 5E5, Canada.
| |
Collapse
|
46
|
Keup C, Mach P, Aktas B, Tewes M, Kolberg HC, Hauch S, Sprenger-Haussels M, Kimmig R, Kasimir-Bauer S. RNA Profiles of Circulating Tumor Cells and Extracellular Vesicles for Therapy Stratification of Metastatic Breast Cancer Patients. Clin Chem 2018; 64:1054-1062. [DOI: 10.1373/clinchem.2017.283531] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/27/2018] [Indexed: 12/16/2022]
Abstract
Abstract
BACKGROUND
Liquid biopsies are discussed to provide surrogate markers for therapy stratification and monitoring. We compared messenger RNA (mRNA) profiles of circulating tumor cells (CTCs) and extracellular vesicles (EVs) in patients with metastatic breast cancer (MBC) to estimate their utility in therapy management.
METHODS
Blood was collected from 35 hormone receptor-positive/HER2-negative patients with MBC at the time of disease progression and at 2 consecutive staging time points. CTCs were isolated from 5 mL of blood by positive immunomagnetic selection, and EVs from 4 mL of plasma by a membrane affinity-based procedure. mRNA was reverse transcribed, preamplified, and analyzed for 18 genes by multimarker quantitative polymerase chain reaction (qPCR) assays. RNA profiles were normalized to healthy donor controls (n = 20), and results were correlated with therapy outcome.
RESULTS
There were great differences in mRNA profiles of EVs and CTCs, with only 5% (21/403) of positive signals identical in both fractions. Transcripts involved in the PI3K signaling pathway were frequently overexpressed in CTCs, and AURKA, PARP1, and SRC signals appeared more often in EVs. Of all patients, 40% and 34% showed ERBB2 and ERBB3 signals, respectively, in CTCs, which was significantly associated with disease progression (P = 0.007). Whereas MTOR signals in CTCs significantly correlated with response (P = 0.046), signals in EVs indicated therapy failure (P = 0.011). The presence of AURKA signals in EVs seemed to be a marker for the indication of unsuccessful treatment of bone metastasis.
CONCLUSIONS
These results emphasize the potential of CTCs and EVs for therapy monitoring and the need for critical evaluation of the implementation of any liquid biopsy in clinical practice.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University Hospital of Essen, Germany
| | - Bahriye Aktas
- Department of Gynecology and Obstetrics, University Hospital of Essen, Germany
- Department of Gynecology, University Hospital of Leipzig, Germany
| | - Mitra Tewes
- Department of Internal Medicine (Cancer Research), University Hospital of Essen, Germany
| | | | | | | | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Germany
| | | |
Collapse
|
47
|
Zedan AH, Hansen TF, Assenholt J, Pleckaitis M, Madsen JS, Osther PJS. microRNA expression in tumour tissue and plasma in patients with newly diagnosed metastatic prostate cancer. Tumour Biol 2018; 40:1010428318775864. [PMID: 29775158 DOI: 10.1177/1010428318775864] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the most common cancer among men in the western world. Clinical practice is continuously challenged by the pitfalls of the available diagnostic tools. microRNAs may represent promising biomarkers in many types of human cancers, including prostate cancer. The aim of this study was to investigate microRNA expression in tumour tissue and matched plasma in a cohort of patients with primary metastatic prostate cancer. The relative expression of 12 microRNAs was assessed in diagnostic needle biopsies from the prostate and matched plasma samples in two prospective cohorts (screening cohorts) comprising 21 patients with metastatic prostate cancer and 25 control patients. An independent validation cohort of plasma samples was collected prospectively from 149 newly diagnosed patients with local/locally advanced prostate cancer. Analyses were performed using real-time polymerase chain reaction. miRNA-93 showed a significant negative correlation between expression in tumour tissue and plasma in patients with metastatic prostate cancer. Furthermore, the plasma level of miRNA-93 significantly decreased after treatment in patients with local/locally advanced prostate cancer compared to baseline plasma level. The expression of six microRNAs (let-7b, miRNA-34a, -125b, -143, -145 and -221) was downregulated, and three microRNAs (miRNA-21, -25 and miRNA-93) were upregulated in tumour tissue compared to benign prostate tissue. In plasma, six microRNAs were upregulated (miRNA-21, -125b, -126, -141, -143 and -375), while let-7b was downregulated in patients with metastatic prostate cancer compared to the control cohort. In the metastatic prostate cancer cohort, the expression of four microRNAs (miRNA-125b, -126, -143 and -221), and miRNA-141 in tissue was associated with Gleason score and prostate-specific antigen, respectively. The expression of miRNA-93 in tumour tissue was correlated with matched plasma levels and showed a significant decrease in plasma level after intervention in local prostate cancer. Differential expression between tumour and benign prostate was detected for several microRNAs in both tissue and plasma.
Collapse
Affiliation(s)
- Ahmed Hussein Zedan
- 1 Urological Research Center, Department of Urology, Vejle Hospital, Vejle, Denmark.,2 Oncological Department, Vejle Hospital, Vejle, Denmark.,3 Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Torben Frøstrup Hansen
- 2 Oncological Department, Vejle Hospital, Vejle, Denmark.,3 Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Jannie Assenholt
- 4 Department of Biochemistry and Immunology, Vejle Hospital, Vejle, Denmark
| | | | - Jonna Skov Madsen
- 3 Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.,4 Department of Biochemistry and Immunology, Vejle Hospital, Vejle, Denmark
| | - Palle Jörn Sloth Osther
- 1 Urological Research Center, Department of Urology, Vejle Hospital, Vejle, Denmark.,3 Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
48
|
Nasrazadani A, Thomas RA, Oesterreich S, Lee AV. Precision Medicine in Hormone Receptor-Positive Breast Cancer. Front Oncol 2018; 8:144. [PMID: 29780747 PMCID: PMC5945817 DOI: 10.3389/fonc.2018.00144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/19/2018] [Indexed: 01/07/2023] Open
Abstract
In recent decades, breast cancer has become largely manageable due to successes with hormone receptor targeting. Hormone receptor-positive tumors have favorable outcomes in comparison to estrogen receptor (ESR1, ER)/progesterone receptor-negative tumors given the targetable nature of these tumors, as well as their inherently less aggressive character. Nonetheless, treatment resistance is frequently encountered due to a variety of mechanisms, including ESR1 mutations and loss of ER expression. A new era of precision medicine utilizes a range of methodologies to allow real-time analysis of individual genomic signatures in metastases and liquid biopsies with the goal of finding clinically actionable targets. Preliminary studies have shown improved progression-free survival and overall survival with implementation of this information for clinical decision making. In this review, we will discuss the opportunities and challenges in integrating precision medicine through next-generation genomic sequencing into the management of breast cancer.
Collapse
Affiliation(s)
- Azadeh Nasrazadani
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Roby A Thomas
- Department of Medicine, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Steffi Oesterreich
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, PA, United States
| | - Adrian V Lee
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, PA, United States
| |
Collapse
|
49
|
Multisite tumor sampling enhances the detection of intratumor heterogeneity at all different temporal stages of tumor evolution. Virchows Arch 2017; 472:187-194. [DOI: 10.1007/s00428-017-2223-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/01/2017] [Accepted: 08/20/2017] [Indexed: 12/11/2022]
|
50
|
Skvortsova II. Special issue: Progress in biological understanding of cancer metastasis. Semin Cancer Biol 2017; 44:1-2. [PMID: 28536032 DOI: 10.1016/j.semcancer.2017.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ira-Ida Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Dept. of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Anichstr. 35, A-602 Innsbruck, Austria.
| |
Collapse
|