1
|
Huang Q, Jing Y, Xiong L, Li L, Feng J, Cheng J. The interplay between driver mutation and oxidative stress in colorectal cancer: from pathogenesis to therapeutics. J Transl Med 2025; 23:635. [PMID: 40490762 DOI: 10.1186/s12967-025-06640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/23/2025] [Indexed: 06/11/2025] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by genetic mutations and environmental factors, especially oxidative stress. Driver mutations are pivotal in CRC initiation and progression and alter key signaling pathways involved in cell proliferation, apoptosis, and genomic stability. Concurrently, oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, plays a crucial role in CRC development by promoting DNA damage, lipid peroxidation, and redox signaling dysregulation. The molecular mechanisms linking driver mutations and oxidative stress pathways underscore their collective or antagonistic impact on CRC heterogeneity, therapeutic responses, and clinical outcomes. Insights into mutation-specific vulnerabilities and redox modulation offer promising avenues for targeted therapies and personalized medicine approaches in CRC treatment. Here, we discuss the intricate interplay between driver mutations and oxidative stress, highlight emerging trends, and propose future research directions to advance our understanding of CRC pathogenesis and optimize therapeutic interventions.
Collapse
Affiliation(s)
- Qi Huang
- Department of Anorectal Surgery, The People's Hospital of Leshan, Leshan, 614000, China
| | - Yuan Jing
- Department of Medical Records, The People's Hospital of Leshan, Leshan, 614000, China
| | - Lihua Xiong
- Department of Dermatology, Cheng Du Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, 610500, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Jingjuan Feng
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jian Cheng
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
2
|
Ahmed AY, Uthirapathy S, Oghenemaro EF, M RM, Kumawat R, Mustafa YF, Kariem M, Kadhim AJ, Sharma S, Kumar MR. The SOX gene superfamily in oncogenesis: unraveling links to ncRNAs, key pathways, chemoresistance, and gene editing approaches. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04229-1. [PMID: 40392306 DOI: 10.1007/s00210-025-04229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
While drug resistance remains the leading cause of treatment failure, chemotherapy continues to be a crucial aspect of cancer therapy. Long noncoding RNAs (lncRNAs) regulate gene expression through various methods, including transcriptional, translational, chromatin remodeling, and epigenetic mechanisms. The SRY-related high mobility group box (HMGB) family contains 20 transcription factors with a well-recognized HMG domain, and an inappropriate regulation of SOX family members is associated with many of the phenotypes of cancer, such as tumor invasion, metastasis, proliferation, apoptosis, epithelial-mesenchymal transition, stemness, and drug resistance. This association arises because SOX family members can regulate cell fate decisions. While many articles have reported on the functionalities and activities of the SOX family, it is not clear their involvement in the tumor immune microenvironment (TIME) and the seeming contrast they can have on tumors. This study elucidates the relationship between the SOX family and ncRNAs, specifically emphasizing lncRNAs. This review article highlights the potential roles of the SOX family in cancer. It presents new therapeutic options for treating cancer, outlining the physiological roles of the SOX family and the various roles they have in tumors.
Collapse
Affiliation(s)
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, PMB 1, Abraka, Delta State, Nigeria
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rohit Kumawat
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| |
Collapse
|
3
|
Saloni, Sachan M, Rahul, Verma RS, Patel GK. SOXs: Master architects of development and versatile emulators of oncogenesis. Biochim Biophys Acta Rev Cancer 2025; 1880:189295. [PMID: 40058508 DOI: 10.1016/j.bbcan.2025.189295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Transcription factors regulate a variety of events and maintain cellular homeostasis. Several transcription factors involved in embryonic development, has been shown to be closely associated with carcinogenesis when deregulated. Sry-like high mobility group box (SOX) proteins are potential transcription factors which are evolutionarily conserved. They regulate downstream genes to determine cell fate, via various signaling pathways and cellular processes essential for tissue and organ development. Dysregulation of SOXs has been reported to promote or suppress tumorigenesis by modulating cellular reprogramming, growth, proliferation, angiogenesis, metastasis, apoptosis, immune modulation, lineage plasticity, maintenance of the stem cell pool, therapy resistance and cancer relapse. This review provides a crucial understanding of the molecular mechanism by which SOXs play multifaceted roles in embryonic development and carcinogenesis. It also highlights their potential in advancing therapeutic strategies aimed at targeting SOXs and their downstream effectors in various malignancies.
Collapse
Affiliation(s)
- Saloni
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Rahul
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rama Shanker Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Girijesh Kumar Patel
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
4
|
Xie CT, Zhang HL, Li Y, Li Q, Wen YX, Liu JY, Han F. Single-cell RNA-seq and pathological phenotype reveal the functional atlas and precise roles of Sox30 in testicular cell development and differentiation. Cell Death Dis 2025; 16:110. [PMID: 39971903 PMCID: PMC11840104 DOI: 10.1038/s41419-025-07442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Sox30 has recently been demonstrated to be a key regulator of spermatogenesis. However, the precise roles of Sox30 in the testis remain largely unclear. Here, the specific functions of Sox30 in testicular cells were determined by single-cell sequencing and confirmed via pathological analyses. Sox30 loss appears to damage all testicular cells to different extents. Sox30 chiefly drives the differentiation of primary spermatocytes. Sox30 deficiency causes spermatocyte arrest at the early phase of meiosis I, with nearly no normally developing second spermatocytes and three new spermatocyte -subclusters emerging. In addition, Sox30 seems to play important roles in the mature phenotypes of Sertoli and Leydig cells, and the proliferation and differentiation of spermatogonia. The developmental trajectory of germ cells begins with spermatogonia and splits into two different spermatocyte branches, with Sox30-null spermatocytes and wild-type spermatocytes placed at divergent ends. An opposite developmental trajectory of spermatocyte subclusters is observed, followed by incomplete development of spermatid subclusters in Sox30-null mice. Sox30 deficiency clearly alters the intercellular cross-talk of major testicular cells and dysregulates the transcription factor networks primarily involved in cell proliferation and differentiation. Mechanistically, Sox30 appears to have similar terminal functions that are involved mainly in spermatogenic development and differentiation among major testicular cells, and Sox30 performs these similar crucial roles through preferential regulation of different signalling pathways. Our study describes the exact functions of Sox30 in testicular cell development and differentiation and highlights the primary roles of Sox30 in the early meiotic phase of germ cells.
Collapse
Affiliation(s)
- Cheng-Ting Xie
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Hui-Lian Zhang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Yi Li
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Qian Li
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Yi-Xian Wen
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - Fei Han
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Chongqing, 400016, China.
| |
Collapse
|
5
|
Wang H, Hu Y, Lu H, Wu Z, Zhang Y. Association between SOX gene family expression, DNA methylation, and miRNA regulation in lung adenocarcinoma progression. Discov Oncol 2025; 16:188. [PMID: 39954219 PMCID: PMC11829875 DOI: 10.1007/s12672-025-01892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
OBJECTIVE To analyze the expression of the SOX gene family in lung adenocarcinoma and its impact on the prognosis of lung adenocarcinoma patients using tumor databases. METHODS The cBioPortal database was used to retrieve and analyze the mutation frequencies and variants of 10 genes in the SOX gene family in lung adenocarcinoma tissues. Using clinical information from the Kaplan-Meier plotter database, the potential prognostic values of 10 genes in the SOX gene family in lung adenocarcinoma patients were further explored. The UALCAN database and TCGA database were used to obtain the expression of methylation of SOX gene family members and compare the mRNA expression of 10 genes in lung adenocarcinoma tissues and paracancerous tissues, respectively. The miRCancer database was intersected with miRTarBase, ENCORI, and miRWalk databases to find the lung adenocarcinoma-related miRNAs that regulate the SOX gene family. RESULTS Most members in the SOX gene family had expansion mutation, but SOX15 had a deletion mutation. Upregulation of SOX8 and SOX17 is associated with improved outcomes in LUAD patients (HR < 1, log-rank P < 0.05), whereas high expression of SOX3, SOX5, SOX6, SOX12, SOX14, SOX15, SOX18, and SRY correlates with poor prognosis in LUAD patients (HR > 1, log-rank P < 0.05). The mRNA expression of SOX3 and SOX15 was significantly higher in LUAD tissues compared to adjacent normal tissues, while SOX5, SOX6, SOX12, SOX17, SOX18, and SRY were lower in LUAD tissues than in adjacent normal tissues (P < 0.05). Moreover, SOX3, SOX5, SOX8, SOX14, SOX17 and SOX18 showed hypermethylation, while SOX15 showed hypomethylation in LUAD tissues (P < 0.05). Furthermore, hsa-miR-1-3p and miR-499a-5p were positively correlated with SOX5 (r = 0.272, P = 3.87 × 10-10) and SOX6 (r = 0.109, P = 1.34 × 10-2), respectively. CONCLUSION The SOX gene family is closely implicated in the onset and progression of lung adenocarcinoma, of which most members may be used as prognostic marker genes for patients.
Collapse
Affiliation(s)
- Haidao Wang
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| | - Yiming Hu
- Fujian Medical University, Fuzhou, 350108, Fujian, China
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Haibin Lu
- Fujian Medical University, Fuzhou, 350108, Fujian, China
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhijie Wu
- Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Yixiang Zhang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| |
Collapse
|
6
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy MAF, Alsaadi SB, Abosaoda MK. A cutting-edge investigation of the multifaceted role of SOX family genes in cancer pathogenesis through the modulation of various signaling pathways. Funct Integr Genomics 2025; 25:6. [PMID: 39753912 DOI: 10.1007/s10142-024-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/14/2025]
Abstract
This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression. In brain, lung, and colorectal cancers, SOX types like SOX2, SOX3, and SOX4 promote the migration, proliferation, and angiogenesis of cancer cells. Conversely, in pancreatic, gastric, and breast cancers, SOX types, including SOX1, SOX9, and SOX17 inhibit various cancer cell activities such as proliferation and invasion. This thorough investigation enhances our understanding of the SOX family's complex role in cancer, establishing a foundation for future research and potential therapeutic strategies targeting these versatile transcription factors.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - M A Farag Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
7
|
Yang T, Dong Y, Wang G, Guan X. SOX13-mediated transcription of LRP11 enhances malignant properties of tumor cells and CD8 + T cell inactivation in breast cancer through the β-catenin/PD-L1 axis. Cell Signal 2024; 124:111383. [PMID: 39243917 DOI: 10.1016/j.cellsig.2024.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND High expression of low-density lipoprotein receptor related protein 11 (LRP11) has been associated with unfavorable prognosis of breast cancer (BC). This study explores the exact roles of LRP11 in BC progression and investigates the associated mechanism. METHODS LRP11 expression in BC tissues and cells was determined by immunohistochemistry or RT-qPCR. LRP11 upregulation was induced in two human BC cell lines to investigate its impact on cell proliferation, migration, and invasion. Its regulation on immune activity was assessed by detecting PD-L1 protein levels and generating a co-culture system of cancer cells and CD8+ T cells. Mouse allograft tumor models were generated to analyze the function of LRP11 in tumorigenesis and immune activity in vivo. Gain-of-function assays of SRY-box transcription factor 13 (SOX13) were performed to investigate its function in development and immunosuppression of BC. RESULTS LRP11 was found to be highly expressed in BC tissues and cells, presenting an association with unfavorable prognosis of patients. Artificial upregulation of LRP11 in BC cells triggered malignant properties of cells, enhancing β-catenin-mediated transcriptional activation of PD-L1, thus decreasing immune activity of the co-cultured CD8+ T cells. Consistently, LRP11 upregulation in mouse 4 T1 cells and promoted tumorigenesis and immune evasion in mice. SOX13 was found to bind the LRP11 promoter for transcriptional activation. Upregulation of SOX13 similarly promoted growth of BC cells and immunosuppression, with its oncogenic effects blocked by the additional LRP11 knockdown. CONCLUSION This study demonstrates that SOX13 is responsible for LRP11 transcription activation, leading to increased malignant phenotype of BC cells and diminished activity CD8+ T cells. This evidence highlights SOX13 and LRP11 as promising novel therapeutic targets to reduce malignant phenotype of BC cells and overcome immunosuppression.
Collapse
Affiliation(s)
- Tingting Yang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Yi Dong
- The Second Breast Surgery Department, Jilin Cancer Hospital, Changchun 130012, Jilin, PR China
| | - Guoxiang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China
| | - Xin Guan
- Breast Surgery Department, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, PR China.
| |
Collapse
|
8
|
Dong D, Yu X, Xu J, Yu N, Liu Z, Sun Y. Cellular and molecular mechanisms of gastrointestinal cancer liver metastases and drug resistance. Drug Resist Updat 2024; 77:101125. [PMID: 39173439 DOI: 10.1016/j.drup.2024.101125] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Distant metastases and drug resistance account for poor survival of patients with gastrointestinal (GI) malignancies such as gastric cancer, pancreatic cancer, and colorectal cancer. GI cancers most commonly metastasize to the liver, which provides a unique immunosuppressive tumour microenvironment to support the development of a premetastatic niche for tumor cell colonization and metastatic outgrowth. Metastatic tumors often exhibit greater resistance to drugs than primary tumors, posing extra challenges in treatment. The liver metastases and drug resistance of GI cancers are regulated by complex, intertwined, and tumor-dependent cellular and molecular mechanisms that influence tumor cell behavior (e.g. epithelial-to-mesenchymal transition, or EMT), tumor microenvironment (TME) (e.g. the extracellular matrix, cancer-associated fibroblasts, and tumor-infiltrating immune cells), tumor cell-TME interactions (e.g. through cytokines and exosomes), liver microenvironment (e.g. hepatic stellate cells and macrophages), and the route and mechanism of tumor cell dissemination (e.g. circulating tumor cells). This review provides an overview of recent advances in the research on cellular and molecular mechanisms that regulate liver metastases and drug resistance of GI cancers. We also discuss recent advances in the development of mechanism-based therapy for these GI cancers. Targeting these cellular and molecular mechanisms, either alone or in combination, may potentially provide novel approaches to treat metastatic GI malignancies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Yu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
9
|
Guo YZ, Cui HY, Cai MY, Wang D, Deng WP, Hu CP. SOX9 promotes hypoxic pulmonary hypertension through stabilization of DPP4 in pulmonary artery smooth muscle cells. Exp Cell Res 2024; 442:114254. [PMID: 39276964 DOI: 10.1016/j.yexcr.2024.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Pulmonary hypertension (PH) is a progressive cardiopulmonary disorder characterized by pulmonary vascular remodeling (PVR), primarily due to the excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). This study aimed to investigate the role and molecular mechanism of SOX9 in hypoxic PH in rats. The findings revealed that SOX9 was upregulated in the pulmonary arteries and PASMCs of hypoxia-exposed rats. SOX9 knockdown inhibited hypoxia-induced proliferation and migration of PASMCs, reduced PVR, and subsequently alleviated hypoxia-induced PH in rats, suggesting that SOX9 plays a critical role in PH. Further investigation demonstrated that SOX9 interacted with DPP4, preventing its ubiquitin degradation in hypoxia-exposed PASMCs. DPP4 knockdown inhibited hypoxia-induced PASMC proliferation and migration, and administration of the DPP4 inhibitor sitagliptin (5 mg/kg) significantly reduced PVR and alleviated hypoxia-induced PH in rats, indicating that SOX9 contributes to PH by stabilizing DPP4. The results also showed that hypoxia induced YAP1 expression and dephosphorylation, leading to YAP1 nuclear localization. YAP1 knockdown promoted the degradation of HIF-1α in hypoxia-exposed PASMCs and inhibited hypoxia-induced proliferation and migration of PASMCs. Additionally, HIF-1α, as a transcription factor, promoted SOX9 expression by binding to the SOX9 promoter in hypoxia-exposed PASMCs. In conclusion, hypoxia promotes the proliferation and migration of PASMCs through the regulation of the YAP1/HIF-1α/SOX9/DPP4 signaling pathway, leading to PH in rats. These findings suggest that SOX9 may serve as a potential prognostic marker and therapeutic target for PH.
Collapse
MESH Headings
- Animals
- Male
- Rats
- Cell Hypoxia
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Dipeptidyl Peptidase 4/metabolism
- Dipeptidyl Peptidase 4/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Signal Transduction
- SOX9 Transcription Factor/metabolism
- SOX9 Transcription Factor/genetics
- Vascular Remodeling
- YAP-Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Yan-Zi Guo
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Han-Yu Cui
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Ming-Yuan Cai
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Di Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Wei-Ping Deng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, 410078, China.
| |
Collapse
|
10
|
Cao Q, Gao Y, Zhou C, Yan Y, Yu J, Wang P, Zhang B, Sun L. Intervention of epithelial mesenchymal transition against colon cancer cell growth and metastasis based on SOX21/POU4F2/Hedgehog signaling axis. Life Sci 2024; 352:122905. [PMID: 38992573 DOI: 10.1016/j.lfs.2024.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
AIMS Colon cancer poses a major threat to human health and a heavy burden on the national economy. As a member of the SOX transcription factor family, SRY-box transcription factor 21 (SOX21) is associated with various cancers, but its mechanism of action in colon cancer remains unclear. This study focused on the molecular mechanisms of transcription factor SOX21 in proliferation and metastasis of colon cancer cells. MAIN METHODS We analyzed SOX21 expression level and its impact on survival in colon cancer patients by bioinformatics analysis. We used public databases for gene correlation, GSEA enrichment analysis. Cell function experiments (colony formation assay, wound healing assay, Transwell migration and invasion assay) were utilized to determine the impact of SOX21 silencing and over-expression on cell proliferation and metastasis. The luciferase reporter assay, CUT&RUN-qPCR assay and Methylation Specific PCR were used to explore SOX21-POU class 4 homeobox 2 (POU4F2) molecular interactions. The molecular mechanisms were verified by Quantitative real-time PCR and Western blot analysis. KEY FINDINGS SOX21 is highly expressed and affects the overall survival of colon cancer patients. SOX21 can attenuates POU4F2 methylation state by binding with it. In addition, this interaction facilitate its transcriptional activation of Hedgehog pathway, mediates epithelial-mesenchymal transition (EMT), consequently promoting the proliferation and metastasis of colon cancer cells. SIGNIFICANCE Our study reveals that SOX21 is an oncogenic molecule and suggests its regulatory role in colon carcinogenesis and progression, providing new insights into the treatment of this disease.
Collapse
Affiliation(s)
- Qiaochang Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yangyang Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Chenxi Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yici Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Jieru Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Peipei Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Bo Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
11
|
Shang T, Jiang T, Cui X, Pan Y, Feng X, Dong L, Wang H. Diverse functions of SOX9 in liver development and homeostasis and hepatobiliary diseases. Genes Dis 2024; 11:100996. [PMID: 38523677 PMCID: PMC10958229 DOI: 10.1016/j.gendis.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2024] Open
Abstract
The liver is the central organ for digestion and detoxification and has unique metabolic and regenerative capacities. The hepatobiliary system originates from the foregut endoderm, in which cells undergo multiple events of cell proliferation, migration, and differentiation to form the liver parenchyma and ductal system under the hierarchical regulation of transcription factors. Studies on liver development and diseases have revealed that SRY-related high-mobility group box 9 (SOX9) plays an important role in liver embryogenesis and the progression of hepatobiliary diseases. SOX9 is not only a master regulator of cell fate determination and tissue morphogenesis, but also regulates various biological features of cancer, including cancer stemness, invasion, and drug resistance, making SOX9 a potential biomarker for tumor prognosis and progression. This review systematically summarizes the latest findings of SOX9 in hepatobiliary development, homeostasis, and disease. We also highlight the value of SOX9 as a novel biomarker and potential target for the clinical treatment of major liver diseases.
Collapse
Affiliation(s)
- Taiyu Shang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Tianyi Jiang
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Xiaowen Cui
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Yufei Pan
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
| | - Xiaofan Feng
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Liwei Dong
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
| | - Hongyang Wang
- School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
- National Center for Liver Cancer, The Naval Medical University, Shanghai 201805, China
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, The Second Military Medical University, Shanghai 200438, China
- Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University & Ministry of Education, Shanghai 200438, China
| |
Collapse
|
12
|
Ye P, Gu R, Zhu H, Chen J, Han F, Nie X. SOX family transcription factors as therapeutic targets in wound healing: A comprehensive review. Int J Biol Macromol 2023; 253:127243. [PMID: 37806414 DOI: 10.1016/j.ijbiomac.2023.127243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The SOX family plays a vital role in determining the fate of cells and has garnered attention in the fields of cancer research and regenerative medicine. It also shows promise in the study of wound healing, as it actively participates in the healing processes of various tissues such as skin, fractures, tendons, and the cornea. However, our understanding of the mechanisms behind the SOX family's involvement in wound healing is limited compared to its role in cancer. Gaining insight into its role, distribution, interaction with other factors, and modifications in traumatized tissues could provide valuable new knowledge about wound healing. Based on current research, SOX2, SOX7, and SOX9 are the most promising members of the SOX family for future interventions in wound healing. SOX2 and SOX9 promote the renewal of cells, while SOX7 enhances the microvascular environment. The SOX family holds significant potential for advancing wound healing research. This article provides a comprehensive review of the latest research advancements and therapeutic tools related to the SOX family in wound healing, as well as the potential benefits and challenges of targeting the SOX family for wound treatment.
Collapse
Affiliation(s)
- Penghui Ye
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Rifang Gu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China
| | - Huan Zhu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jitao Chen
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
13
|
Cao M, Lai P, Liu X, Liu F, Qin Y, Tu P, Wang Y. ATF5 promotes malignant T cell survival through the PI3K/AKT/mTOR pathway in cutaneous T cell lymphoma. Front Immunol 2023; 14:1282996. [PMID: 38223508 PMCID: PMC10786347 DOI: 10.3389/fimmu.2023.1282996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024] Open
Abstract
Backgrounds Cutaneous T cell lymphoma (CTCL) is a non-Hodgkin lymphoma characterized by skin infiltration of malignant T cells. The biological overlap between malignant T cells and their normal counterparts has brought obstacles in identifying tumor-specific features and mechanisms, limiting current knowledge of CTCL pathogenesis. Transcriptional dysregulation leading to abnormal gene expression profiles contributes to the initiation, progression and drug resistance of cancer. Therefore, we aimed to identify tumor-specific transcription factor underlying CTCL pathology. Methods We analyzed and validated the differentially expressed genes (DEGs) in malignant T cells based on single-cell sequencing data. Clinical relevance was evaluated based on progression-free survival and time to next treatment. To determine the functional importance, lentivirus-mediated gene knockdown was conducted in two CTCL cell lines Myla and H9. Cell survival was assessed by examining cell viability, colony-forming ability, in-vivo tumor growth in xenograft models, apoptosis rate and cell-cycle distribution. RNA sequencing was employed to investigate the underlying mechanisms. Results Activating transcription factor 5 (ATF5) was overexpressed in malignant T cells and positively correlated with poor treatment responses in CTCL patients. Mechanistically, ATF5 promoted the survival of malignant T cells partially through the PI3K/AKT/mTOR pathway, and imparted resistance to endoplasmic reticulum (ER) stress-induced apoptosis. Conclusions These findings revealed the tumor-specific overexpression of the transcription factor ATF5 with its underlying mechanisms in promoting tumor survival in CTCL, providing new insight into the understanding of CTCL's pathology.
Collapse
Affiliation(s)
- Mengzhou Cao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Pan Lai
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiangjun Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yao Qin
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
14
|
Li C, Cheng B, Yang X, Tong G, Wang F, Li M, Wang X, Wang S. SOX8 promotes tumor growth and metastasis through FZD6-dependent Wnt/β-catenin signaling in colorectal carcinoma. Heliyon 2023; 9:e22586. [PMID: 38046159 PMCID: PMC10686890 DOI: 10.1016/j.heliyon.2023.e22586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
SOX8 plays an important role in several physiological processes. Its expression is negatively associated with overall survival in patients with colorectal carcinoma (CRC), suggesting SOX8 is a potential prognostic factor for this disease. However, the role of SOX8 in CRC remains largely unknown. In this study, our data showed that SOX8 expression was upregulated in CRC cell lines and tumor tissues. Stable knockdown of SOX8 in CRC cell lines dramatically reduced cell proliferation, migration, and invasion. Furthermore, the knockdown of SOX8 decreased the phospho-GSK3β level and suppressed Frizzled-6 (FZD6) transcription; restoration of FZD6 expression partially abolished the effect of SOX8 on Wnt/β-catenin signaling and promote CRC cell proliferation. In conclusion, our findings suggested that SOX8 served as an oncogene in CRC through the activation of FZD6-dependent Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Chen Li
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Boran Cheng
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xiaodong Yang
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Gangling Tong
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Fen Wang
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Mengqing Li
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xiangyu Wang
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Shubin Wang
- Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| |
Collapse
|
15
|
Kuo CY, Hsu YC, Liu CL, Li YS, Chang SC, Cheng SP. SOX4 is a pivotal regulator of tumorigenesis in differentiated thyroid cancer. Mol Cell Endocrinol 2023; 578:112062. [PMID: 37673293 DOI: 10.1016/j.mce.2023.112062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The SOX family consists of about 20 transcription factors involved in embryonic development, reprogramming, and cell fate determination. In this study, we demonstrated that SOX4 was significantly upregulated in differentiated thyroid cancer. Immunohistochemical analysis revealed that high SOX4 expression was associated with papillary histology, extrathyroidal extension, lymph node metastasis, and advanced disease stage. Patients whose tumors exhibited high SOX4 expression had a shorter recurrence-free survival, though significance was lost in multivariate Cox regression analysis. SOX4 silencing in thyroid cancer cells slowed cell growth, attenuated clonogenicity, and suppressed anoikis resistance. Additionally, SOX4 knockdown impeded xenograft tumor growth in nude mice. Knockdown of SOX4 expression was accompanied by reduced phosphorylation of AKT and ERK. Furthermore, CRABP2 expression correlated with SOX4 expression, and SOX4 silencing decreased CRABP2 expression and its downstream effectors such as integrin β1 and β4. These results indicate that SOX4 has both prognostic and therapeutic implications in differentiated thyroid cancer, and targeting SOX4 may modulate tumorigenic processes in the thyroid.
Collapse
Affiliation(s)
- Chi-Yu Kuo
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ying-Syuan Li
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shao-Chiang Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Kolenda T, Graczyk Z, Żarska B, Łosiewski W, Smolibowski M, Wartecki A, Kozłowska-Masłoń J, Guglas K, Florczak A, Kazimierczak U, Teresiak A, Lamperska K. SRY-Related Transcription Factors in Head and Neck Squamous Cell Carcinomas: In Silico Based Analysis. Curr Issues Mol Biol 2023; 45:9431-9449. [PMID: 38132438 PMCID: PMC10742289 DOI: 10.3390/cimb45120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer and the fifth cause of cancer-related deaths worldwide with a poor 5-year survival. SOX family genes play a role in the processes involved in cancer development such as epithelial-mesenchymal transition (EMT), the maintenance of cancer stem cells (CSCs) and the regulation of drug resistance. We analyzed the expression of SOX2-OT, SOX6, SOX8, SOX21, SOX30 and SRY genes in HNSCC patients using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, to assess their biological role and their potential utility as biomarkers. We demonstrated statistically significant differences in expression between normal and primary tumor tissues for SOX6, SOX8, SOX21 and SOX30 genes and pointed to SOX6 as the one that met the independent diagnostic markers criteria. SOX21 or SRY alone, or the panel of six SRY-related genes, could be used to estimate patient survival. SRY-related genes are positively correlated with immunological processes, as well as with keratinization and formation of the cornified envelope, and negatively correlated with DNA repair and response to stress. Moreover, except SRY, all analyzed genes were associated with a different tumor composition and immunological profiles. Based on validation results, the expression of SOX30 is higher in HPV(+) patients and is associated with patients' survival. SRY-related transcription factors have vast importance in HNSCC biology. SOX30 seems to be a potential biomarker of HPV infection and could be used as a prognostic marker, but further research is required to fully understand the role of SOX family genes in HNSCC.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Zuzanna Graczyk
- Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland (A.W.); (A.F.)
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Barbara Żarska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland (A.W.); (A.F.)
| | - Wojciech Łosiewski
- Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland (A.W.); (A.F.)
| | - Mikołaj Smolibowski
- Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland (A.W.); (A.F.)
| | - Adrian Wartecki
- Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland (A.W.); (A.F.)
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Anna Florczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland (A.W.); (A.F.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Garbary 15, 61-688 Poznan, Poland
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland (A.W.); (A.F.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Garbary 15, 61-688 Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| |
Collapse
|
17
|
Yang Y, Gomez N, Infarinato N, Adam RC, Sribour M, Baek I, Laurin M, Fuchs E. The pioneer factor SOX9 competes for epigenetic factors to switch stem cell fates. Nat Cell Biol 2023; 25:1185-1195. [PMID: 37488435 PMCID: PMC10415178 DOI: 10.1038/s41556-023-01184-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/08/2023] [Indexed: 07/26/2023]
Abstract
During development, progenitors simultaneously activate one lineage while silencing another, a feature highly regulated in adult stem cells but derailed in cancers. Equipped to bind cognate motifs in closed chromatin, pioneer factors operate at these crossroads, but how they perform fate switching remains elusive. Here we tackle this question with SOX9, a master regulator that diverts embryonic epidermal stem cells (EpdSCs) into becoming hair follicle stem cells. By engineering mice to re-activate SOX9 in adult EpdSCs, we trigger fate switching. Combining epigenetic, proteomic and functional analyses, we interrogate the ensuing chromatin and transcriptional dynamics, slowed temporally by the mature EpdSC niche microenvironment. We show that as SOX9 binds and opens key hair follicle enhancers de novo in EpdSCs, it simultaneously recruits co-factors away from epidermal enhancers, which are silenced. Unhinged from its normal regulation, sustained SOX9 subsequently activates oncogenic transcriptional regulators that chart the path to cancers typified by constitutive SOX9 expression.
Collapse
Affiliation(s)
- Yihao Yang
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Nicholas Gomez
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Allen Institute for Cell Sciences, Seattle, WA, USA
| | - Nicole Infarinato
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- PRECISIONscientia, Yardley, PA, USA
| | - Rene C Adam
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Megan Sribour
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Inwha Baek
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- Kyung Hee University, Seoul, South Korea
| | - Mélanie Laurin
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
- CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
18
|
Zhang D, Cui X, Li Y, Wang R, Wang H, Dai Y, Ren Q, Wang L, Zheng G. Sox13 and M2-like leukemia-associated macrophages contribute to endogenous IL-34 caused accelerated progression of acute myeloid leukemia. Cell Death Dis 2023; 14:308. [PMID: 37149693 PMCID: PMC10164149 DOI: 10.1038/s41419-023-05822-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Interleukin 34 (IL-34) mainly plays physiologic and pathologic roles through the sophisticated multi-ligand signaling system, macrophage colony-stimulating factor (M-CSF, CSF-1)/IL-34-CSF-1R axis, which exhibits functional redundancy, tissue-restriction and diversity. This axis is vital for the survival, differentiation and function of monocytic lineage cells and plays pathologic roles in a broad range of diseases. However, the role of IL-34 in leukemia has not been established. Here MLL-AF9 induced mouse acute myeloid leukemia (AML) model overexpressing IL-34 (MA9-IL-34) was used to explore its role in AML. MA9-IL-34 mice exhibited accelerated disease progression and short survival time with significant subcutaneous infiltration of AML cells. MA9-IL-34 cells showed increased proliferation. In vitro colony forming assays and limiting dilution transplantation experiments demonstrated that MA9-IL-34 cells had elevated leukemia stem cell (LSC) levels. Gene expression microarray analysis revealed a panel of differential expressed genes including Sex-determining region Y (SRY)-box 13 (Sox13). Furthermore, a positive correlation between the expressions of IL-34 and Sox13 was detected human datasets. Knockdown of Sox13 rescued the enhanced proliferation, high LSC level and subcutaneous infiltration in MA9-IL-34 cells. Moreover, more leukemia-associated macrophages (LAMs) were detected in MA9-IL-34 microenvironment. Additionally, those LAMs showed M2-like phenotype since they expressed high level of M2-associated genes and had attenuated phagocytic potential, suggesting that LAMs should also contribute to IL-34 caused adverse phenotypes. Therefore, our findings uncover the intrinsic and microenvironmental mechanisms of IL-34 in AML and broadens the knowledge of M-CSF/IL-34-CSF-1R axis in malignancies.
Collapse
Affiliation(s)
- Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoxi Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yifei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Rong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yibo Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
19
|
Zhang J, Wang Z, Zhao H, Wei Y, Zhou Y, Zhang S, Zhao J, Li X, Lin Y, Liu K. The roles of the SOX2 protein in the development of esophagus and esophageal squamous cell carcinoma, and pharmacological target for therapy. Biomed Pharmacother 2023; 163:114764. [PMID: 37100016 DOI: 10.1016/j.biopha.2023.114764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
SOX2 is a transcription factor belonging to the SOX gene family, whose activity has been associated with the maintenance of the stemness and self-renewal of embryonic stem cells (ESCs), as well as the induction of differentiated cells into induced pluripotent stem cells (iPSCs). Moreover, accumulating studies have shown that SOX2 is amplified in various cancers, notably in esophageal squamous cell carcinoma (ESCC). In addition, SOX2 expression is linked to multiple malignant processes, including proliferation, migration, invasion, and drug resistance. Taken together, targeting SOX2 might shed light on novel approaches for cancer therapy. In this review, we aim to summarize the current knowledge regarding SOX2 in the development of esophagus and ESCC. We also highlight several therapeutic strategies for targeting SOX2 in different cancer types, which can provide new tools to treat cancers possessing abnormal levels of SOX2 protein.
Collapse
Affiliation(s)
- Jiaying Zhang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Life Science, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Zhuo Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Hongzhou Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Yuxuan Wei
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Yijian Zhou
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Shihui Zhang
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam 999077, Hong Kong, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Jing Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Xinxin Li
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China
| | - Yong Lin
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam 999077, Hong Kong, China; Fujian Health College, Fuzhou, Fujian, 350101, China.
| | - Kuancan Liu
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; Fujian Health College, Fuzhou, Fujian, 350101, China.
| |
Collapse
|
20
|
Ahmad A, Rashid S, Chaudhary AA, Alawam AS, Alghonaim MI, Raza SS, Khan R. Nanomedicine as potential cancer therapy via targeting dysregulated transcription factors. Semin Cancer Biol 2023; 89:38-60. [PMID: 36669712 DOI: 10.1016/j.semcancer.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Cancer as a disease possess quite complicated pathophysiological implications and is among the prominent causes of morbidity and mortality on global scales. Anti-cancer chemotherapy, surgery, and radiation therapy are some of the present-day conventional treatment options. However, these therapeutic paradigms own several retreats, including lack of specificity, non-targeted toxicological implications, inefficient drug delivery to targeted cells, and emergence of cancer resistance, ultimately causing ineffective cancer management. Owing to the advanced and better biophysical characteristic features and potentiality for the tailoring and customizations and in several fashions, nanotechnology can entirely transubstantiate the cancer identification and its managements. Additionally, nanotechnology also renders several answers to present-day mainstream limitations springing-up in anti-cancer therapeutics. Nanocarriers, owing to their outstanding physicochemical features including but not limited to their particle size, surface morphological features viz. shape etc., have been employed in nanomedicinal platforms for targeting various transcription factors leading to worthy pharmacological outcomes. This transcription targeting activates the wide array of cellular and molecular events like antioxidant enzyme-induction, apoptotic cell death, cell-cycle arrest etc. These outcomes are obtained after the activation or inactivation of several transcription factors and cellular pathways. Further, nanoformulations have been precisely calibrated and functionalized with peculiar targeting groups for improving their efficiency to deliver the drug-payload to specified and targeted cancerous cells and tissues. This review undertakes an extensive, across-the-board and all-inclusive approach consisting of various studies encompassing different types of tailored and customized nanoformulations and nanomaterials designed for targeting the transcription factors implicated in the process of carcinogenesis, tumor-maturation, growth and metastasis. Various transcription factors viz. nuclear factor kappa (NF-κB), signal transducer and activators of transcription (STAT), Cmyc and Twist-related protein 1 (TWIST1) along with several types of nanoparticles targeting these transcription factors have been summarized here. A section has also been dedicated to the different types of nanoparticles targeting the hypoxia inducing factors. Efforts have been made to summarize several other transcription factors implicated in various stages of cancer development, growth, progression and invasion, and their targeting with different kinds of nanomedicinal agents.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdullah S Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammad Ibrahim Alghonaim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow 226003, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
21
|
Chen G, Chen Y, Xu R, Zhang G, Zou X, Wu G. Impact of SOX2 function and regulation on therapy resistance in bladder cancer. Front Oncol 2022; 12:1020675. [PMID: 36465380 PMCID: PMC9709205 DOI: 10.3389/fonc.2022.1020675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2024] Open
Abstract
Bladder cancer (BC) is a malignant disease with high rates of recurrence and mortality. It is mainly classified as non-muscle-invasive BC and muscle-invasive BC (MIBC). Often, MIBC is chemoresistant, which, according to cancer stem cells (CSCs) theory, is linked to the presence of bladder cancer stem cells (BCSCs). Sex-determining region Y- (SRY) Box transcription factor 2 (SOX2), which is a molecular marker of BCSCs, is aberrantly over-expressed in chemoresistant BC cell lines. It is one of the standalone prognostic factors for BC, and it has an inherently significant function in the emergence and progression of the disease. This review first summarizes the role of SRY-related high-mobility group protein Box (SOX) family genes in BC, focusing on the SOX2 and its significance in BC. Second, it discusses the mechanisms relevant to the regulation of SOX2. Finally, it summarizes the signaling pathways related to SOX2 in BC, suggests current issues to be addressed, and proposes potential directions for future research to provide new insights for the treatment of BC.
Collapse
Affiliation(s)
- Guodong Chen
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan Chen
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiquan Xu
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Gengqing Wu
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
22
|
The role of transcription factors in the acquisition of the four latest proposed hallmarks of cancer and corresponding enabling characteristics. Semin Cancer Biol 2022; 86:1203-1215. [PMID: 36244529 DOI: 10.1016/j.semcancer.2022.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
With the recent description of the molecular and cellular characteristics that enable acquisition of both core and new hallmarks of cancer, the consequences of transcription factor dysregulation in the hallmarks scheme has become increasingly evident. Dysregulation or mutation of transcription factors has long been recognized in the development of cancer where alterations in these key regulatory molecules can result in aberrant gene expression and consequential blockade of normal cellular differentiation. Here, we provide an up-to-date review of involvement of dysregulated transcription factor networks with the most recently reported cancer hallmarks and enabling characteristic properties. We present some illustrative examples of the impact of dysregulated transcription factors, specifically focusing on the characteristics of phenotypic plasticity, non-mutational epigenetic reprogramming, polymorphic microbiomes, and senescence. We also discuss how new insights into transcription factor dysregulation in cancer is contributing to addressing current therapeutic challenges.
Collapse
|
23
|
Yu H, Li T, Mao X. Expression and Significance of Sex-Determining Region Y (SRY)–Box 12 (SOX12) in Oral Squamous Cell Carcinoma. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a ubiquitous malignancy and is associated with high mortality. Accumulating evidence indicates that transcription factors play a pivotal role in the progression of OSCC. This study was aimed to investigate the expression of SOX12 in OSCC and its
significance. SOX12 expression in OSCC tissues was analyzed through TCGA databases and then tested by Western blot and qRT-PCR analysis. Moreover, SOX12 was silenced by RNA interference in OSCC cells (SCC-25 and SCC-4), and the growth ability of OSCC cells was examined using MTT assay. The
level of SOX12 was upregulated in OSCC according to the TCGA results, which was further confirmed in the OSCC cell lines. Patients with high SOX12 expression had shorter overall survival (OS) than those with low SOX12 expression. High expression of SOX12 is positively correlated with T stage
of OSCC. In addition, MTT analysis indicated that silencing of SOX12 resulted in reduced OSCC cell proliferation. Taken together, the high expression of SOX12 in OSCC indicates that SOX12 gene may play an essential role in OSCC. Our research indicates that SOX12 expression could be a predictive
biomarker and is a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Huijie Yu
- Department of Stomatology, The People’s Hospital of Dongying, Shandong, 257000, China
| | - Tianhua Li
- Department of Stomatology, The People’s Hospital of Dongying, Shandong, 257000, China
| | - Xuemei Mao
- Department of Stomatology, The People’s Hospital of Dongying, Shandong, 257000, China
| |
Collapse
|
24
|
Hu X, Liu R, Hou J, Peng W, Wan S, Xu M, Li Y, Zhang G, Zhai X, Liang P, Cui H. SMARCE1 promotes neuroblastoma tumorigenesis through assisting MYCN-mediated transcriptional activation. Oncogene 2022; 41:4295-4306. [PMID: 35978151 DOI: 10.1038/s41388-022-02428-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
SMARCE1 gene, encoding a core subunit of SWI/SNF chromatin remodeling complex, is situated on chromosome 17q21-ter region that is frequently gained in neuroblastoma. However, its role in the tumorigenesis remains unknown. Here, we showed that high expression of SMARCE1 was associated with poor prognosis of patients with neuroblastoma, especially those with MYCN amplification. Knockdown of SMARCE1 reduced proliferation, colony formation, and tumorigenicity of neuroblastoma cells. Mechanistically, SMARCE1 directly interacted with MYCN, which was necessary for MYCN-mediated transcriptional activation of downstream target genes including PLK1, ODC1, and E2F2. Overexpression of PLK1, ODC1 or E2F2 significantly reversed the inhibiting effect of SMARCE1 knockdown on the proliferation, colony formation, and tumorigenicity of MYCN-amplified neuroblastoma cells. Moreover, we revealed that MYCN directly regulated SMARCE1 transcription through binding to a non-canonical E-box of SMARCE1 promoter, thus enhancing SMARCE1-MYCN cooperativity. These findings establish SMARCE1 is a critical oncogenic factor in neuroblastoma and provide a new potential target for treatment of neuroblastoma with 17q21-ter gain and MYCN amplification.
Collapse
Affiliation(s)
- Xiaosong Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Sicheng Wan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Minghao Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Yongsen Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400010, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, 400010, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
25
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
26
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
27
|
Scrapie-Responsive Gene 1 Promotes Chondrogenic Differentiation of Umbilical Cord Mesenchymal Stem Cells via Wnt5a. Stem Cells Int 2022; 2022:9124277. [PMID: 35126528 PMCID: PMC8813292 DOI: 10.1155/2022/9124277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/25/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Objective Repair of cartilage defects, a common condition resulting from many factors, is still a great challenge. Based on their chondrogenic differentiation ability, mesenchymal stem cell- (MSC-) based cartilage regeneration is a promising approach for cartilage defect repair. However, MSC differentiation into chondroblasts or related cell lineages is elaborately controlled by stem cell differentiation stage factors and affected by an array of bioactive elements, which may impede the efficient production of target cells. Thus, identifying a single transcription factor to promote chondrogenic differentiation is critical. Herein, we explored the mechanism by which scrapie-responsive gene 1 (SCRG1), a candidate gene for cartilage regeneration promotion, regulates chondrogenic differentiation of MSCs. Methods Expression of SCRG1 was detected in umbilical cord-derived MSCs (UCMSCs) by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemical analysis during chondrogenic differentiation. The function of SCRG1 in chondrogenic potential was evaluated after gene knockdown or overexpression by lentiviral vectors. Finally, a rabbit cartilage defect model was established to evaluate the effect of SCRG1 on cartilage repair in vivo. Results Expression of SCRG1 was upregulated during in vitro chondrogenic differentiation of UCMSCs. SCRG1 knockdown inhibited chondrogenic differentiation of UCMSCs, while SCRG1 overexpression promoted chondrogenic differentiation of UCMSCs in vitro. In addition, UCMSC overexpressing SCRG1 promoted cartilage repair in vivo. Mechanistically, SCRG1 promoted chondrogenic differentiation via upregulation of Wnt5a expression and subsequent inhibition of β-catenin. Conclusion Our results showed that SCRG1 promotes chondrogenic differentiation of UCMSCs by inhibiting canonical Wnt/β-catenin signaling through Wnt5a. Our findings provide a future target for chondrogenic differentiation and cartilage regeneration.
Collapse
|
28
|
Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives. Int J Mol Sci 2021; 22:ijms222111321. [PMID: 34768751 PMCID: PMC8583549 DOI: 10.3390/ijms222111321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 01/16/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins (Cas) is an adaptive immune system in archaea and most bacteria. By repurposing these systems for use in eukaryote cells, a substantial revolution has arisen in the genome engineering field. In recent years, CRISPR-Cas technology was rapidly developed and different types of DNA or RNA sequence editors, gene activator or repressor, and epigenome modulators established. The versatility and feasibility of CRISPR-Cas technology has introduced this system as the most suitable tool for discovering and studying the mechanism of specific genes and also for generating appropriate cell and animal models. SOX genes play crucial roles in development processes and stemness. To elucidate the exact roles of SOX factors and their partners in tissue hemostasis and cell regeneration, generating appropriate in vitro and in vivo models is crucial. In line with these premises, CRISPR-Cas technology is a promising tool for studying different family members of SOX transcription factors. In this review, we aim to highlight the importance of CRISPR-Cas and summarize the applications of this novel, promising technology in studying and decoding the function of different members of the SOX gene family.
Collapse
|
29
|
Saenz-Antoñanzas A, Moncho-Amor V, Auzmendi-Iriarte J, Elua-Pinin A, Rizzoti K, Lovell-Badge R, Matheu A. CRISPR/Cas9 Deletion of SOX2 Regulatory Region 2 ( SRR2) Decreases SOX2 Malignant Activity in Glioblastoma. Cancers (Basel) 2021; 13:cancers13071574. [PMID: 33805518 PMCID: PMC8037847 DOI: 10.3390/cancers13071574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Understanding how SOX2, a major driver of cancer stem cells, is regulated in cancer cells is relevant to tackle tumorigenesis. In this study, we deleted the SRR2 regulatory region in glioblastoma cells. Our data confirm that the SRR2 enhancer regulates SOX2 expression in cancer and reveal that SRR2 deletion halts malignant activity of SOX2. Abstract SOX2 is a transcription factor associated with stem cell activity in several tissues. In cancer, SOX2 expression is increased in samples from several malignancies, including glioblastoma, and high SOX2 levels are associated with the population of tumor-initiating cells and with poor patient outcome. Therefore, understanding how SOX2 is regulated in cancer cells is relevant to tackle tumorigenesis. The SOX2 regulatory region 2(SRR2) is located downstream of the SOX2 coding region and mediates SOX2 expression in embryonic and adult stem cells. In this study, we deleted SRR2 using CRISPR/Cas9 in glioblastoma cells. Importantly, SRR2-deleted glioblastoma cells presented reduced SOX2 expression and decreased proliferative activity and self-renewal capacity in vitro. In line with these results, SRR2-deleted glioblastoma cells displayed decreased tumor initiation and growth in vivo. These effects correlated with an elevation of p21CIP1 cell cycle and p27KIP1 quiescence regulators. In conclusion, our data reveal that SRR2 deletion halts malignant activity of SOX2 and confirms that the SRR2 enhancer regulates SOX2 expression in cancer.
Collapse
Affiliation(s)
- Ander Saenz-Antoñanzas
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.S.-A.); (J.A.-I.); (A.E.-P.)
| | - Veronica Moncho-Amor
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London NW1 1AT, UK; (V.M.-A.); (K.R.); (R.L.-B.)
| | - Jaione Auzmendi-Iriarte
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.S.-A.); (J.A.-I.); (A.E.-P.)
| | - Alejandro Elua-Pinin
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.S.-A.); (J.A.-I.); (A.E.-P.)
- Donostia Hospital, 20014 San Sebastian, Spain
| | - Karine Rizzoti
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London NW1 1AT, UK; (V.M.-A.); (K.R.); (R.L.-B.)
| | - Robin Lovell-Badge
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London NW1 1AT, UK; (V.M.-A.); (K.R.); (R.L.-B.)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.S.-A.); (J.A.-I.); (A.E.-P.)
- CIBER of Frailty and Healthy Aging (CIBERfes), Carlos III Institute, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Correspondence:
| |
Collapse
|
30
|
Hong C, Yang S, Wang Q, Zhang S, Wu W, Chen J, Zhong D, Li M, Li L, Li J, Yu H, Chen H, Zeng Q, Zhang C. Epigenetic Age Acceleration of Stomach Adenocarcinoma Associated With Tumor Stemness Features, Immunoactivation, and Favorable Prognosis. Front Genet 2021; 12:563051. [PMID: 33815458 PMCID: PMC8012546 DOI: 10.3389/fgene.2021.563051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Abnormal DNA methylation (DNAm) age has been assumed to be an indicator for canceration and all-cause mortality. However, associations between DNAm age and molecular features of stomach adenocarcinoma (STAD), and its prognosis have not been systematically studied. Method: We calculated the DNAm age of 591 STAD samples and 115 normal stomach samples from The Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO) database using the Horvath’s clock model. Meanwhile, we utilized survival analysis to evaluate the prognostic value of DNAm age and epigenetic age acceleration shift. In addition, we performed weighted gene co-expression network analysis (WGCNA) to identify DNAm age-associated gene modules and pathways. Finally, the association between DNAm age and molecular features was performed by correlation analysis. Results: DNA methylation age was significantly correlated with chronological age in normal gastric tissues (r = 0.85, p < 0.0001), but it was not associated with chronological age in STAD samples (r = 0.060, p = 0.2369). Compared with tumor adjacent normal tissue, the DNAm age of STAD tissues was significantly decreased. Meanwhile, chronological age in STAD samples was higher than its DNAm age. Both DNAm age and epigenetic acceleration shift were associated with the prognosis of STAD patients. By using correlation analysis, we also found that DNAm age was associated with immunoactivation and stemness in STAD samples. Conclusion: In summary, epigenetic age acceleration of STAD was associated with tumor stemness, immunoactivation, and favorable prognosis.
Collapse
Affiliation(s)
- Chunhong Hong
- Center of Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shaohua Yang
- Center of Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qiaojin Wang
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenhui Wu
- Center of Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinyao Chen
- Center of Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Danhui Zhong
- Department of Physiotherapy, The University of Hongkong-Shenzhen Hospital, Shenzhen, China
| | - Mingzhe Li
- Center of Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liang Li
- Center of Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jianfeng Li
- Center of Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hong Yu
- Center of Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hong Chen
- Center of Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qianlin Zeng
- Center of Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Changhua Zhang
- Center of Digestive Disease, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
31
|
Liu J, Qiu J, Zhang Z, Zhou L, Li Y, Ding D, Zhang Y, Zou D, Wang D, Zhou Q, Lang T. SOX4 maintains the stemness of cancer cells via transcriptionally enhancing HDAC1 revealed by comparative proteomics study. Cell Biosci 2021; 11:23. [PMID: 33482915 PMCID: PMC7821488 DOI: 10.1186/s13578-021-00539-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background Cancer stem cells (CSCs) are the root of human cancer development and the major cause of treatment failure. Aberrant elevation of SOX4, a member of SOX (SRY-related HMG-box) family transcription factors, has been identified in many types of human cancer and promotes cancer development. However, the role of SOX4 in CSCs, especially at a proteome-wide level, has remained elusive. The aim of this study is to investigate the effect of SOX4 on the stemness of CSCs and reveal the underlying mechanisms by identification of SOX4-induced proteome changes through proteomics study. Results Overexpression of SOX4 promotes sphere formation and self-renewal of colorectal cancer cells in vitro and in vivo and elevates the expression levels of CSCs markers. Through iTRAQ-based quantitative proteomics analysis, 215 differentially expressed proteins (128 upregulated, 87 downregulated) in SOX4-overexpressing HCT-116 spheres were identified. The bioinformatic analysis highlighted the importance of HDAC1 as the fundamental roles of its impacted pathways in stem cell maintenance, including Wnt, Notch, cell cycle, and transcriptional misregulation in cancer. The mechanistic study showed that SOX4 directly binds to the promoter of HDAC1, promotes HDAC1 transcription, thereby supporting the stemness of colorectal cancer cells. HDAC1 hallmarks colorectal cancer stem cells and depletion of HDAC1 abolished the stimulatory effect of SOX4. Furthermore, SOX4-HDAC1 axis is conserved in multiple types of cancer. Conclusions The results of this study reveal SOX4-induced proteome changes in HCT-116 spheres and demonstrates that transcriptional activation of HDAC1 is the primary mechanism underlying SOX4 maintaining CSCs. This finding suggests that HDAC1 is a potential drug target for eradicating SOX4-driven human CSCs.
Collapse
Affiliation(s)
- Jingshu Liu
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, 400044, Chongqing, People's Republic of China
| | - Jiangfeng Qiu
- Department of Gastrointestinal Surgery, Renji Hospital Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, People's Republic of China
| | - Zhiqi Zhang
- Department of General Surgery, School of Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, 200081, Shanghai, People's Republic of China
| | - Lei Zhou
- Singapore Eye Research Institute, The academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Yunzhe Li
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Dongyan Ding
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Yang Zhang
- Laboratory Department, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Dong Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Qi Zhou
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China. .,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, 400044, Chongqing, People's Republic of China.
| | - Tingyuan Lang
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China. .,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, 400044, Chongqing, People's Republic of China.
| |
Collapse
|
32
|
Identification of Genes Whose Expression Overlaps Age Boundaries and Correlates with Risk Groups in Paediatric and Adult Acute Myeloid Leukaemia. Cancers (Basel) 2020; 12:cancers12102769. [PMID: 32992503 PMCID: PMC7650662 DOI: 10.3390/cancers12102769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary To better understand whether acute myeloid leukaemia differs between children and adults, we have analysed the expression of genes in samples from both patient groups. Using previously published data, we compared gene expression between patient risk subgroups. We examined patients who had a poor chance of survival, based on clinical assessments, and those with a good chance of survival, to see whether there was any difference in the genes expressed in their leukaemic cells. Then we compared the genes on these lists between adults and children with acute myeloid leukaemia. We believe that patients with good or poor survival chances express genes that provide insights into how leukaemic cells behave. We hope that this work will provide new information about the mechanisms that underlie acute myeloid leukaemia and answer questions on the ways this form of leukaemia is similar in adults and children, which will then tell us whether the same treatments could be used for both age groups of patients. Abstract Few studies have compared gene expression in paediatric and adult acute myeloid leukaemia (AML). In this study, we have analysed mRNA-sequencing data from two publicly accessible databases: (1) National Cancer Institute’s Therapeutically Applicable Research to Generate Effective Treatments (NCI-TARGET), examining paediatric patients, and (2) The Cancer Genome Atlas (TCGA), examining adult patients with AML. With a particular focus on 144 known tumour antigens, we identified STEAP1, SAGE1, MORC4, SLC34A2 and CEACAM3 as significantly different in their expression between standard and low risk paediatric AML patient subgroups, as well as between poor and good, and intermediate and good risk adult AML patient subgroups. We found significant differences in event-free survival (EFS) in paediatric AML patients, when comparing standard and low risk subgroups, and quartile expression levels of BIRC5, MAGEF1, MELTF, STEAP1 and VGLL4. We found significant differences in EFS in adult AML patients when comparing intermediate and good, and poor and good risk adult AML patient subgroups and quartile expression levels of MORC4 and SAGE1, respectively. When examining Kyoto Encyclopedia of Genes and Genomes (KEGG) (2016) pathway data, we found that genes altered in AML were involved in key processes such as the evasion of apoptosis (BIRC5, WNT1) or the control of cell proliferation (SSX2IP, AML1-ETO). For the first time we have compared gene expression in paediatric AML patients with that of adult AML patients. This study provides unique insights into the differences and similarities in the gene expression that underlies AML, the genes that are significantly differently expressed between risk subgroups, and provides new insights into the molecular pathways involved in AML pathogenesis.
Collapse
|
33
|
Zhao C, Wang D, Wang X, Mao Y, Xu Z, Sun Y, Mei X, Song J, Shi W. Down-regulation of exosomal miR-200c derived from keratinocytes in vitiligo lesions suppresses melanogenesis. J Cell Mol Med 2020; 24:12164-12175. [PMID: 32918341 PMCID: PMC7579706 DOI: 10.1111/jcmm.15864] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Vitiligo is a refractory disfiguring skin disease. However, the aetiology and pathogenesis of vitiligo have not been fully defined. Previous studies have shown that exosomes from normal human keratinocytes improve melanogenesis by up‐regulating the expression of melanogenesis‐related proteins. Several microRNAs (miRNAs) have been demonstrated to be effective in modulating melanogenesis via exosomes. In the present study, it was found that the effect of exosomes derived from keratinocytes in vitiligo lesions in regulating melanin synthesis is weakened. Furthermore, miR‐200c was detected to be significantly down‐regulated in exosomes from keratinocytes in vitiligo lesions. In addition, miR‐200c enhanced the expression of melanogenesis‐related genes via suppressing SOX1 to activate β‐catenin. In conclusion, our study revealed that the effect of exosomes secreted by keratinocytes in vitiligo lesions exhibited a weaker capacity in promoting melanogenesis of melanocytes. Moreover, the expression of miR‐200c, which mediates melanogenesis in exosomes secreted by keratinocytes in vitiligo lesions, is down‐regulated, which may be one of the pathogenesis in vitiligo. Therefore, keratinocyte‐derived exosomal miR‐200c may be a potential target for the treatment of vitiligo.
Collapse
Affiliation(s)
- Chaoshuai Zhao
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongliang Wang
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Wang
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaqi Mao
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ziqian Xu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yue Sun
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Song
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Chen J, Dang Y, Feng W, Qiao C, Liu D, Zhang T, Wang Y, Tian D, Fan D, Nie Y, Wu K, Xia L. SOX18 promotes gastric cancer metastasis through transactivating MCAM and CCL7. Oncogene 2020; 39:5536-5552. [PMID: 32616889 DOI: 10.1038/s41388-020-1378-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The therapeutic strategies for advanced gastric cancer (GC) remain unsatisfying and limited. Therefore, it is still imperative to fully elucidate the mechanisms underlying GC metastasis. Here, we report a novel role of SRY-box transcription factor 18 (SOX18), a member of the SOX family, in promoting GC metastasis. The elevated expression of SOX18 was positively correlated with distant metastasis, higher AJCC stage, and poor prognosis in human GC. SOX18 expression was an independent and significant risk factor for the recurrence and survival in GC patients. Up-regulation of SOX18 promoted GC invasion and metastasis, whereas down-regulation of SOX18 decreased GC invasion and metastasis. Melanoma cell adhesion molecule (MCAM) and C-C motif chemokine ligand 7 (CCL7) are direct transcriptional targets of SOX18. Knockdown of MCAM and CCL7 significantly decreased SOX18-mediated GC invasion and metastasis, while the stable overexpression of MCAM and CCL7 reversed the decrease in cell invasion and metastasis that was induced by the inhibition of SOX18. A mechanistic investigation indicated that the upregulation of SOX18 that was mediated by the CCL7-CCR1 pathway relied on the ERK/ELK1 pathway. SOX18 knockdown significantly reduced CCL7-enhanced GC invasion and metastasis. Furthermore, BX471, a specific CCR1 inhibitor, significantly reduced the SOX18-mediated GC invasion and metastasis. In human GC tissues, SOX18 expression was positively correlated with CCL7 and MCAM expression, and patients with positive coexpression of SOX18/CCL7 or SOX18/MCAM had the worst prognosis. In conclusion, we defined a CCL7-CCR1-SOX18 positive feedback loop that played a pivotal role in GC metastasis, and targeting this pathway may be a promising therapeutic option for the clinical management of GC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yunzhi Dang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Chenyang Qiao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Daiming Fan
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
35
|
Meng Y, Xu Q, Chen L, Wang L, Hu X. The function of SOX2 in breast cancer and relevant signaling pathway. Pathol Res Pract 2020; 216:153023. [PMID: 32703490 DOI: 10.1016/j.prp.2020.153023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The purpose of this study was to explore the functional roles of SOX2 in the progression of breast cancer and relevant molecular mechanism. METHODS A total of 108 breast cancer patients were included, and breast cancer cell line MDA-MB-231 was selected for this research. Real time-qualitative polymerase chain reaction (RT-qPCR) was conducted to measure the expression level of SOX2 mRNA. MTT and Transwell assays were used to detected the proliferation, migration and invasion of breast cancer cells, respectively. Luciferase reporter assay was conducted to reveal the relationship of SOX2 with PTEN. Western blot was performed to detect the expressions of Wnt/β-catenin pathway-related proteins. RESULTS The expression of SOX2 mRNA was up-regulated in breast cancer tissues and cells (P < 0.001). SOX2 expression was significantly associated with TNM stage and lymph node metastasis of breast cancer patients (P < 0.05). SOX2 knockdown significantly inhibited the proliferation, migration and invasion of breast cancer cells (P < 0.05). PTEN was a direct target of SOX2. The inhibition of PTEN could significantly suppress the progression of breast cancer cells with SOX2 overexpression. SOX2 knockdown also inhibited the expressions of β-catenin, TCP-4, FZD7, C-myc and MMP-7 proteins. Moreover, PTEN knockdown reversed the results caused by SOX2 overexpression, that is, increased expressions of β-catenin, TCP-4, FZD7, C-myc and MMP-7 proteins (P < 0.05). CONCLUSION SOX2 promotes the progression of breast cancer through activating Wnt/β-catenin signaling pathway via regulating PTEN.
Collapse
Affiliation(s)
- Yanchun Meng
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Phase I Clinical Trial Center, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qunfang Xu
- Clinical Laboratory, Capital Medical University Electric Teaching Hospital (State Grid Coporation of China Beijing Electric Power Hospital), Beijing, China
| | - Lin Chen
- Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingfei Wang
- Department of Oncology, the 903rd Hospital of PLA, Hangzhou, 310013, China.
| | - Xichun Hu
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Phase I Clinical Trial Center, Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
36
|
Shen J, Zhai J, Wu X, Xie G, Shen L. Serum proteome profiling reveals SOX3 as a candidate prognostic marker for gastric cancer. J Cell Mol Med 2020; 24:6750-6761. [PMID: 32363730 PMCID: PMC7299728 DOI: 10.1111/jcmm.15326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Searching for the novel tumour biomarkers is pressing for gastric cancer diagnostication and prognostication. The serum specimens from patients diagnosed with locally advanced gastric carcinoma before operation and 4 week after surgery were collected, respectively, and serum proteome profiling was conducted by liquid chromatography–mass spectrometry (MS)/MS. Fifty‐five proteins were identified to be up‐regulated and 16 proteins were down‐regulated, and these differentially expressed proteins participated in various biological processes. Serum levels of SOX3, one of down‐regulated proteins, in stomach cancer patients were higher than in healthy controls. SOX3 levels in cancer tissues were remarkably related to tumour differentiation, lymph node metastasis, primary tumour invasion and pTNM (pathological TNM) stage. Analysis with The Cancer Genome Atlas database indicated that SOX3 level and pTNM stage were the independent risk factors for the patient survival and that the overall survival was negatively associated with the SOX3 levels. Loss‐of‐function showed that SOX3 promoted gastric cancer cell invasion and migration in vitro and in vivo. SOX3 silence inhibits the expression of MMP9, and SOX3 is responsible for MMP9 expression transcriptionally. Our study highlights the potentiality of the paired pre‐ and post‐operation serum proteome signatures for the detection of biomarkers and reveals that SOX3 may serve as a candidate prognosis marker for gastric cancer.
Collapse
Affiliation(s)
- Jiajia Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Zhai
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinqian Wu
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guiping Xie
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lizong Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Qin CX, Yang XQ, Zhan ZY. Connection between SOX7 Expression and Breast Cancer Prognosis. Med Sci Monit 2020; 26:e921510. [PMID: 32238796 PMCID: PMC7152737 DOI: 10.12659/msm.921510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background SOX7 exerts a repressing effect against tumors and imposes vital influences on malignancies. Our research discussed the importance of SOX7 in breast cancer prognoses. Material/Methods SOX7 mRNA expression in breast cancer tissues samples and matched adjacent normal controls of breast cancer patients was measured by quantitative real-time-polymerase chain reaction (qRT-PCR). The relationship of SOX7 with clinicopathological characteristics were analyzed via chi-square test. The association of SOX7 levels with clinical outcomes was evaluated adopting the Kaplan-Meier method and multivariate Cox proportional hazards regression model. Results SOX7 mRNA degree of expression exhibited a declining tendency in breast cancer tissue compared to paired bordering normal tissue specimens (P<0.001). In addition, the reduced SOX7 degree of expression had a strong correlation to larger cancer mass dimension (P=0.006) and lymph node metastasis (P=0.001). Survival analysis revealed that the overall survival (OS) time was much shorter among cases harboring low SOX7 degree of expression compared to high degree of expression (P=0.005). Moreover, SOX7 expression alone could predict OS among breast cancer patients (hazard ratio=3.956, 95% confidence interval=1.330–11.772, P=0.013). Conclusions SOX7 expression was downregulated in breast cancer tissues, and it could function as a useful prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Chun-Xin Qin
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| | - Xiao-Qing Yang
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| | - Zhi-Yong Zhan
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| |
Collapse
|
38
|
Chen J, Liu H, Chen J, Sun B, Wu J, Du C. PLXNC1 Enhances Carcinogenesis Through Transcriptional Activation of IL6ST in Gastric Cancer. Front Oncol 2020; 10:33. [PMID: 32117710 PMCID: PMC7010712 DOI: 10.3389/fonc.2020.00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Transcriptional factors (TFs) are responsible for orchestrating gene transcription during cancer progression. However, their roles in gastric cancer (GC) remain unclear. Methods: We analyzed the differential expressions of TFs and, using GC cells and tissues, investigated plexin C1 (PLXNC1) RNA levels, as well as PLXNC1's clinical relevance and functional mechanisms. The molecular function of PLXNC1 was evaluated in vitro and in vivo. Kaplan-Meier curves and the log-rank test were used to analyze overall survival (OS) and disease-free survival (DFS). Results: PLXNC1 was frequently up-regulated in GC and associated with poor prognosis. The expression level of PLXNC1 could serve as an independent biomarker to predict a patient's overall survival. Notably, knockdown of PLXNC1 significantly abolished GC cell proliferation, and migration, and overexpression of PLXNC1 accelerated carcinogenesis in GC. The gene set enrichment analysis (GSEA) indicated that high-expression of PLXNC1 was positively correlated with the activation of epithelial-mesenchymal transition (EMT), TNF-α, and IL-6/STAT3 signaling pathways. PLXNC1 promoted proliferation and migration of GC cells through transcriptional activation of the interleukin 6 signal transducer (IL6ST), which could rescue the malignant behavior of PLXNC1-deficient GC cells. Conclusions: Our study demonstrated that the PLXNC1 plays an oncogenic role in GC patients. The PLXNC1-IL6ST axis represents a novel potential therapeutic target for GC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Haining Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinggui Chen
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Bo Sun
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jianghong Wu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Chunyan Du
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|