1
|
Zhai X, Zhang Z, Chen Y, Wu Y, Zhen C, Liu Y, Lin Y, Chen C. Current and future therapies for small cell lung carcinoma. J Hematol Oncol 2025; 18:37. [PMID: 40170056 PMCID: PMC11959764 DOI: 10.1186/s13045-025-01690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/14/2025] [Indexed: 04/03/2025] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy characterized by rapid proliferation and high metastatic potential. It is characterized by universal inactivation of and RB1, overexpression of the MYC family and dysregulation of multiple oncogenic signaling pathways. Among different patients, SCLCs are similar at the genetic level but exhibit significant heterogeneity at the molecular level. The classification of SCLC has evolved from a simple neuroendocrine (NE)/non-neuroendocrine (non-NE) classification system to a transcription factor-based molecular subtype system; lineage plasticity adds further complexity and poses challenges for therapeutic development. While SCLC is initially sensitive to platinum-based chemotherapy, resistance develops rapidly, leading to a dismal prognosis. Various antibodies, including PD-1/PD-L1 inhibitors and antibody‒drug conjugates, have been introduced into clinical practice or are being evaluated in clinical trials. However, their therapeutic benefits for SCLC patients remain limited. This review summarizes SCLC carcinogenic mechanisms, tumor heterogeneity, and the immune microenvironment of SCLC, with a focus on recent advances in metastasis and resistance mechanisms. Additionally, the corresponding clinical progress in tackling these challenges is discussed.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Department of Medical Oncology, State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 1, Keyuan 4th Road, Gaopeng Avenue, Chengdu, 610041, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhengkun Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxin Chen
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanmou Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Cheng Zhen
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Liu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 1, Keyuan 4th Road, Gaopeng Avenue, Chengdu, 610041, Sichuan, China.
| | - Yiyun Lin
- Department of Medicine, Weill Cornell Medicine, East 69th Street, New York, NY, 10021, USA.
| | - Chong Chen
- Department of Medical Oncology, State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 1, Keyuan 4th Road, Gaopeng Avenue, Chengdu, 610041, Sichuan, China.
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Palli E, Lavigne M, Verginis P, Alissafi T, Anastasopoulou A, Lyrarakis G, Kirkwood JM, Gogas H, Ziogas DC. Transcriptomic signatures in peripheral CD4 +T-lymphocytes may reflect melanoma staging and immunotherapy responsiveness prior to ICI initiation. Front Immunol 2025; 16:1529707. [PMID: 40226614 PMCID: PMC11986426 DOI: 10.3389/fimmu.2025.1529707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Background and purpose Promoting adaptive immunity with ICIs has drastically improved melanoma prognosis, but not for all patients. Some cases relapse in the first few months, while others keep durable benefit, even after immunotherapy discontinuation. To identify cellular/molecular signatures in peripheral blood that could differentiate advanced from metastatic melanoma and predict dynamics for primary/secondary immune escape, we examined 100 consecutive patients with stage III/IV melanoma scheduled to start ICIs. Materials and methods At melanoma diagnosis, a multiparameter flow cytometric analysis and purification scheme using standard conjugated antibodies were performed for all individuals prior to ICI initiation. In each stage(III/IV) according to their RFS/PFS, we retrospectively selected the cases with the clearest clinical outcomes and focused our analysis on the extreme responders(n=7) and non-responders(n=7) to characterize the transcriptomes of circulating CD4+T-cells by bulk RNA-seq, Differential Expression Analysis(DEA)and Gene Ontology(GO)enrichment analysis. Based on our selected patient cohort, we examined for differentially expressed genes(DEGs)and key-pathways that appear preferentially activated in stage III vs. IV melanoma, and in long vs. short immunotherapy responders. Results Although circulating immune-cells did not numerically differ in both sets of analysis(staging and ICI responsiveness), DEA and GO data showed that patients could be clustered separately, identifying 189vs.92 DEGs in stage IV/III and 101vs.47 DEGs in early progressors/long responders. These DEGs were functionally implicated in distinct pathways. For metastatic cases: inflammatory response(logp-value=-9.2:ADGRE5/2,CYBA,GRN,HMOX1,IRF5,ITGAM), adaptive immunity(logp-value=-7.7:CD1C,CD74,CYBB,NCF2,CTSA,S100A8/9,BCL3,FCER1G), T-cell activation(logp-value=-6.3:BCL3,CD1C,CD74,FCER1G,FGL2)and lipid metabolism/catabolism(logp-value=-2.5/-2.6:ARF3,GPX1,MVD,OCRL,PCCB,CTSA,PNPLA2,NAGLU,GBA2,ABHD4); while in early-progressors to ICIs: immune effector processing(logp-value=-13.7:BCL6,FGR,HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5,NKG7,SLC11A1,TYROBP,SPON2,HAVCR2),PD-1(logp-value=-10.2:HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5)and IFN signaling(logp-value=-8.5: HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5,NCAM1,IFITM3),positive regulation of T-cell activation(logp-value=-7.7:BCL6,HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5,SASH3,HAVCR2)and CD28 co-stimulation(logp-value=-10.3:HLA-DQA1/DQB1,HLA-DRA,HLA-DRB1/DRB5), supporting an immune-mediated behavior. Conclusions Specific pathways and marker genes in the peripheral CD4+T-cells may predetermine melanoma staging and immunotherapy resistance.
Collapse
Affiliation(s)
- Eleni Palli
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Matthieu Lavigne
- Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology - Biology Department, University of Crete, School of Medicine, Heraklion, Greece
| | - Panagiotis Verginis
- Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology - Biology Department, University of Crete, School of Medicine, Heraklion, Greece
| | - Themis Alissafi
- Laboratory of Biology, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Amalia Anastasopoulou
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Georgios Lyrarakis
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - John M. Kirkwood
- Division of Hematology/Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Helen Gogas
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Dimitrios C. Ziogas
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| |
Collapse
|
3
|
Rizzo A, Brunetti O, Brandi G. Hepatocellular Carcinoma Immunotherapy: Predictors of Response, Issues, and Challenges. Int J Mol Sci 2024; 25:11091. [PMID: 39456872 PMCID: PMC11507510 DOI: 10.3390/ijms252011091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as durvalumab, tremelimumab, and atezolizumab, have emerged as a significant therapeutic option for the treatment of hepatocellular carcinoma (HCC). In fact, the efficacy of ICIs as single agents or as part of combination therapies has been demonstrated in practice-changing phase III clinical trials. However, ICIs confront several difficulties, including the lack of predictive biomarkers, primary and secondary drug resistance, and treatment-related side effects. Herein, we provide an overview of current issues and future challenges in this setting.
Collapse
Affiliation(s)
- Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| |
Collapse
|
4
|
He Y, Xu H, Liu Y, Kempa S, Vechiatto C, Schmidt R, Yilmaz EY, Heidemann L, Schnorr J, Metzkow S, Schellenberger E, Häckel A, Patzak A, Müller DN, Savic LJ. The Effects of Hypoxia on the Immune-Metabolic Interplay in Liver Cancer. Biomolecules 2024; 14:1024. [PMID: 39199411 PMCID: PMC11352590 DOI: 10.3390/biom14081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
M2-like macrophages promote tumor growth and cancer immune evasion. This study used an in vitro model to investigate how hypoxia and tumor metabolism affect macrophage polarization. Liver cancer cells (HepG2 and VX2) and macrophages (THP1) were cultured under hypoxic (0.1% O2) and normoxic (21% O2) conditions with varying glucose levels (2 g/L or 4.5 g/L). Viability assays and extracellular pH (pHe) measurements were conducted over 96 hours. Macrophages were exposed to the tumor-conditioned medium (TCM) from the cancer cells, and polarization was assessed using arginase and nitrite assays. GC-MS-based metabolic profiling quantified TCM meta-bolites and correlated them with M2 polarization. The results showed that pHe in TCMs decreased more under hypoxia than normoxia (p < 0.0001), independent of glucose levels. The arginase assay showed hypoxia significantly induced the M2 polarization of macrophages (control group: p = 0.0120,0.1%VX2-TCM group: p = 0.0149, 0.1%HepG2-TCM group: p < 0.0001, 0.1%VX2-TCMHG group: p = 0.0001, and 0.1%HepG2-TCMHG group: p < 0.0001). TCMs also induced M2 polarization under normoxic conditions, but the strongest M2 polarization occurred when both tumor cells and macrophages were incubated under hypoxia with high glucose levels. Metabolomics revealed that several metabolites, particularly lactate, were correlated with hypoxia and M2 polarization. Under normoxia, elevated 2-amino-butanoic acid (2A-BA) strongly correlated with M2 polarization. These findings suggest that targeting tumor hypoxia could mitigate immune evasion in liver tumors. Lactate drives acidity in hypoxic tumors, while 2A-BA could be a therapeutic target for overcoming immunosuppression in normoxic conditions.
Collapse
Affiliation(s)
- Yubei He
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Han Xu
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Yu Liu
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Stefan Kempa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Carolina Vechiatto
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Robin Schmidt
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Emine Yaren Yilmaz
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Luisa Heidemann
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Jörg Schnorr
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Susanne Metzkow
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Eyk Schellenberger
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Akvile Häckel
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Dominik N. Müller
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (S.K.); (C.V.)
| | - Lynn Jeanette Savic
- Department of Radiology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, 13353 Berlin, Germany; (Y.H.); (H.X.); (Y.L.); (R.S.); (E.Y.Y.); (L.H.); (J.S.); (S.M.); (E.S.); (A.H.)
- Experimental and Clinical Research Center, A Joint Cooperation of Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany;
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
5
|
Zheng P, Lin Z, Ding Y, Duan S. Targeting the dynamics of cancer metabolism in the era of precision oncology. Metabolism 2023:155615. [PMID: 37286129 DOI: 10.1016/j.metabol.2023.155615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Cancer metabolic reprogramming is a promising target for cancer therapy. The progression of tumors, including their growth, development, metastasis, and spread, is a dynamic process that varies over time and location. This means that the metabolic state of tumors also fluctuates. A recent study found that energy production efficiency is lower in solid tumors but increases significantly in tumor metastasis. Despite its importance for targeted tumor metabolism therapy, few studies have described the dynamic metabolic changes of tumors. In this commentary, we discuss the limitations of past targeted tumor metabolism therapy and the key findings of this study. We also summarize its immediate clinical implications for dietary intervention and explore future research directions for understanding the dynamic changes in tumor metabolic reprogramming.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Zihao Lin
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Yuemin Ding
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou 310015, China; Institute of Translational Medicine, Hangzhou City University, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University, Hangzhou 310015, China.
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou 310015, China; Institute of Translational Medicine, Hangzhou City University, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University, Hangzhou 310015, China.
| |
Collapse
|
6
|
Bioactive lipid-nanoparticles with inherent self-therapeutic and anti-angiogenic properties for cancer therapy. Acta Biomater 2023; 157:500-510. [PMID: 36535568 DOI: 10.1016/j.actbio.2022.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Angiogenesis inhibition has become a promising therapeutical strategy for cancer treatment. Current clinical anti-angiogenesis treatment includes antibodies against vascular endothelial growth factor (VEGF) or VEGF receptor, fusion proteins with high affinity to VEGF receptor, and tyrosine kinase inhibitors of VEGF receptor. However, current treatments are prone to systemic toxicity or acquiring drug resistance. A natural bioactive lipid 1,2-dipalmitoyl-sn‑glycero-3-phosphate (dipalmitoyl phosphatidic acid, DPPA) was reported to exhibit anti-angiogenic and anti-tumoral activity. However, the hydrophobic property of DPPA largely restricted its clinical use, while systemic infusion of free DPPA could result in undesirable side effects. Herein, we successfully developed DPPA-based lipid-nanoparticles (DPPA-LNPs) which turns the "therapeutic payload into nanocarrier". This strategy could improve on DPPA's hydrophiliciy, thereby facilitating its systemic administration. . DPPA-LNPs not only retained the therapeutic anti-angiogenic and anti-tumoral bioactivity of parental DPPA, but also greatly improved its tumor targeting ability via enhanced permeability and retention (EPR) effect. This strategy not only eliminates the limitation of drug encapsulation rate, toxicity of the delivery vehicle; but also enhances DPPA bioacvtity in vitro and in vivo. Systemic administration of DPPA-LNPs significantly suppressed the blood vessel formation and tumor growth of triple negative breast cancer and liver cancer growth on both xenograft tumor models. STATEMENT OF SIGNIFICANCE: This is the first-in-kind self-therapeutic inherent lipid to be made into a nanocarrier, with inherent anti-angiogenic and anti-tumor properties. DPPA nanocarrier is fully natural, fully compatible with minimal systemic toxicity. DPPA nanocarrier can accumulate at high concentration at tumor via EPR effect, exerting both anti-angiogenic and anti-tumor effects in vivo. DPPA nanocarrier could be used to encapsulate biologics or small molecules for synergistic anti-cancer therapy.
Collapse
|
7
|
Ziogas DC, Theocharopoulos C, Koutouratsas T, Haanen J, Gogas H. Mechanisms of resistance to immune checkpoint inhibitors in melanoma: What we have to overcome? Cancer Treat Rev 2023; 113:102499. [PMID: 36542945 DOI: 10.1016/j.ctrv.2022.102499] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Marching into the second decade after the approval of ipilimumab, it is clear that immune checkpoint inhibitors (ICIs) have dramatically improved the prognosis of melanoma. Although the current edge is already high, with a 4-year OS% of 77.9% for adjuvant nivolumab and a 6.5-year OS% of 49% for nivolumab/ipilimumab combination in the metastatic setting, a high proportion of patients with advanced melanoma have no benefit from immunotherapy, or experience an early disease relapse/progression in the first few months of treatment, surviving much less. Reasonably, the primary and acquired resistance to ICIs has entered into the focus of clinical research with positive (e.g., nivolumab and relatlimab combination) and negative feedbacks (e.g., nivolumab with pegylated-IL2, pembrolizumab with T-VEC, nivolumab with epacadostat, and combinatorial triplets of BRAF/MEK inhibitors with immunotherapy). Many intrinsic (intracellular or intra-tumoral) but also extrinsic (systematic) events are considered to be involved in the development of this resistance to ICIs: i) melanoma cell immunogenicity (e.g., tumor mutational burden, antigen-processing machinery and immunogenic cell death, neoantigen affinity and heterogeneity, genomic instability, melanoma dedifferentiation and phenotypic plasticity), ii) immune cell trafficking, T-cell priming, and cell death evasion, iii) melanoma neovascularization, cellular TME components(e.g., Tregs, CAFs) and extracellular matrix modulation, iv) metabolic antagonism in the TME(highly glycolytic status, upregulated CD39/CD73/adenosine pathway, iDO-dependent tryptophan catabolism), v) T-cell exhaustion and negative immune checkpoints, and vi) gut microbiota. In the present overview, we discuss how these parameters compromise the efficacy of ICIs, with an emphasis on the lessons learned by the latest melanoma studies; and in parallel, we describe the main ongoing approaches to overcome the resistance to immunotherapy. Summarizing this information will improve the understanding of how these complicated dynamics contribute to immune escape and will help to develop more effective strategies on how anti-tumor immunity can surpass existing barriers of ICI-refractory melanoma.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Tilemachos Koutouratsas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - John Haanen
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
8
|
Akter Z, Salamat N, Ali MY, Zhang L. The promise of targeting heme and mitochondrial respiration in normalizing tumor microenvironment and potentiating immunotherapy. Front Oncol 2023; 12:1072739. [PMID: 36686754 PMCID: PMC9851275 DOI: 10.3389/fonc.2022.1072739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Cancer immunotherapy shows durable treatment responses and therapeutic benefits compared to other cancer treatment modalities, but many cancer patients display primary and acquired resistance to immunotherapeutics. Immunosuppressive tumor microenvironment (TME) is a major barrier to cancer immunotherapy. Notably, cancer cells depend on high mitochondrial bioenergetics accompanied with the supply of heme for their growth, proliferation, progression, and metastasis. This excessive mitochondrial respiration increases tumor cells oxygen consumption, which triggers hypoxia and irregular blood vessels formation in various regions of TME, resulting in an immunosuppressive TME, evasion of anti-tumor immunity, and resistance to immunotherapeutic agents. In this review, we discuss the role of heme, heme catabolism, and mitochondrial respiration on mediating immunosuppressive TME by promoting hypoxia, angiogenesis, and leaky tumor vasculature. Moreover, we discuss the therapeutic prospects of targeting heme and mitochondrial respiration in alleviating tumor hypoxia, normalizing tumor vasculature, and TME to restore anti-tumor immunity and resensitize cancer cells to immunotherapy.
Collapse
|
9
|
Li T, Qiao T. Unraveling tumor microenvironment of small-cell lung cancer: Implications for immunotherapy. Semin Cancer Biol 2022; 86:117-125. [PMID: 36183998 DOI: 10.1016/j.semcancer.2022.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
Abstract
Small-cell lung cancer (SCLC) is an aggressive lung cancer subtype and its first-line treatment has remained unchanged for decades. In recent years, immunotherapy has emerged as a therapeutic strategy for tumor treatment, whereas, patients with SCLC exhibit poor overall responses to immunotherapy alone, which highlights the necessity for combinatorial approaches. The tumor microenvironment (TME), an integral component in cancer, is widely implicated in tumorigenesis and tumor metastasis. The interactions of various cells within TME shape the adverse conditions of the tumor microenvironment (characterized by hypoxia, nutrient restriction, and acidity) and are considered responsible for the modest therapeutic responses to immunotherapy. Several studies have suggested that adverse TME can regulate immune cell activation and function. However, the specific regulatory mechanisms and their implications on immunotherapy remain unclear. Thus, it is worth unraveling the characteristics of TME and its impact on antitumor immunity, in the hope of devising novel strategies to reinforce immunotherapeutic effects on SCLC. In this review, we firstly elaborate on the immune landscape of SCLC and the formation of three remarkable characteristics in TME, as well as the interaction among them. Next, we summarize the latest findings regarding the impacts of adverse TME on immune cells and its targeted therapy in SCLC. Finally, we discuss the ongoing trials in combination therapy and potential directions of SCLC therapy. Collectively, the findings combined here are expected to aid the design of trials for combining immunotherapy with therapy targeting the TME of SCLC.
Collapse
Affiliation(s)
- Tian Li
- Western Theater Command Air Force Hospital, Chengdu 610065, China; School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
10
|
Queen A, Bhutto HN, Yousuf M, Syed MA, Hassan MI. Carbonic anhydrase IX: A tumor acidification switch in heterogeneity and chemokine regulation. Semin Cancer Biol 2022; 86:899-913. [PMID: 34998944 DOI: 10.1016/j.semcancer.2022.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
The primary physiological process of respiration produces carbon dioxide (CO2) that reacts with water molecules which subsequently liberates bicarbonate (HCO-3) and protons. Carbonic anhydrases (CAs) are the primary catalyst involved in this conversion. More than 16 isoforms of human CAs show organ or subcellular specific activity. Dysregulation of each CA is associated with multiple pathologies. Out of these members, the overexpression of membrane-bound carbonic anhydrase IX (CAIX) is associated explicitly with hypoxic tumors or various solid cancers. CAIX helps tumors deal with higher CO2 by sequestering it with bicarbonate ions and helping cancer cells to grow in a comparatively hypoxic or acidic environment, thus acting as a pH adaptation switch. CAIX-mediated adaptations in cancer cells include angiogenesis, metabolic alterations, tumor heterogeneity, drug resistance, and regulation of cancer-specific chemokines. This review comprehensively collects and describe the cancer-specific expression mechanism and role of CAIX in cancer growth, progression, heterogeneity, and its structural insight to develop future combinatorial targeted cancer therapies.
Collapse
Affiliation(s)
- Aarfa Queen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Humaira Naaz Bhutto
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
11
|
Wang G, Wang H, Cheng S, Zhang X, Feng W, Zhang P, Wang J. N1-methyladenosine methylation-related metabolic genes signature and subtypes for predicting prognosis and immune microenvironment in osteosarcoma. Front Genet 2022; 13:993594. [PMID: 36147503 PMCID: PMC9485621 DOI: 10.3389/fgene.2022.993594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
N1-methyladenosine methylation (m1A), as an important RNA methylation modification, regulates the development of many tumours. Metabolic reprogramming is one of the important features of tumour cells, and it plays a crucial role in tumour development and metastasis. The role of RNA methylation and metabolic reprogramming in osteosarcoma has been widely reported. However, the potential roles and mechanisms of m1A-related metabolic genes (MRmetabolism) in osteosarcoma have not been currently described. All of MRmetabolism were screened, then selected two MRmetabolism by least absolute shrinkage and selection operator and multifactorial regression analysis to construct a prognostic signature. Patients were divided into high-risk and low-risk groups based on the median riskscore of all patients. After randomizing patients into train and test cohorts, the reliability of the prognostic signature was validated in the whole, train and test cohort, respectively. Subsequently, based on the expression profiles of the two MRmetabolism, we performed consensus clustering to classify patients into two clusters. In addition, we explored the immune infiltration status of different risk groups and different clusters by CIBERSORT and single sample gene set enrichment analysis. Also, to better guide individualized treatment, we analyzed the immune checkpoint expression differences and drug sensitivity in the different risk groups and clusters. In conclusion, we constructed a MRmetabolism prognostic signature, which may help to assess patient prognosis, immunotherapy response.
Collapse
Affiliation(s)
- Guowei Wang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongyi Wang
- Medical College, Hunan Normal University, Changsha, Hunan, China
| | - Sha Cheng
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaobo Zhang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanjiang Feng
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Wanjiang Feng, ; Pan Zhang, ; Jianlong Wang,
| | - Pan Zhang
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Wanjiang Feng, ; Pan Zhang, ; Jianlong Wang,
| | - Jianlong Wang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Wanjiang Feng, ; Pan Zhang, ; Jianlong Wang,
| |
Collapse
|
12
|
Association of Energy Expenditure and Efficacy in Metastatic Renal Cell Carcinoma Patients Treated with Nivolumab. Cancers (Basel) 2022; 14:cancers14133214. [PMID: 35804986 PMCID: PMC9264847 DOI: 10.3390/cancers14133214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Nivolumab improved patients’ survival in metastatic renal cell carcinoma (mRCC). We aimed to evaluate resting energy expenditure (REE) (i.e., patients’ basal metabolism) to predict efficacy. Methods: We conducted a monocentric, observational study of mRCC patients receiving nivolumab between October 2015 and May 2020. REE was measured prior to initiating immunotherapy using indirect calorimetry to determine hypo, normo and hypermetabolism. Primary endpoint was 6-month, progression-free survival (PFS), and secondary endpoints were response rate, PFS and overall survival (OS). Results: Of the 51 consecutive patients, 15 (29%) were hypermetabolic, 24 (47%) normometabolic, and 12 (24%) hypometabolic. The 6-month PFS was 15% for hypermetabolic patients and 65% for non-hypermetabolic patients (p < 0.01). In the multivariate analysis, hypermetabolism was the only baseline factor predicting 6-month PFS (OR 9.91, 95%CI [1.62−60.55], p = 0.01). Disease progression was noted as the best response in 73% of hypermetabolic patients and 26% of non-hypermetabolic patients (p = 0.02). Median PFS was 2.8 and 8.7 months (p < 0.01), and median OS was 20.2 and 35.1 months (p = 0.13) in the hypermetabolic and non-hypermetabolic groups, respectively. Conclusions: Our study identifies an association between mRCC patients’ energy expenditure and nivolumab efficacy. The measurement of REE by indirect calorimetry in routine practice could help identify patients at risk of nivolumab failure.
Collapse
|
13
|
Kim NH, Lee AY. Anti-Tumor Effect of IDF-11774, an Inhibitor of Hypoxia-Inducible Factor-1, on Melanoma. Biomol Ther (Seoul) 2022; 30:465-472. [PMID: 35712870 PMCID: PMC9424330 DOI: 10.4062/biomolther.2022.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Melanoma is one of the most aggressive skin cancers. Hypoxia contributes to the aggressiveness of melanoma by promoting cancer growth and metastasis. Upregulation of cyclin D1 can promote uncontrolled cell proliferation in melanoma, whereas stimulation of cytotoxic T cell activity can inhibit it. Epithelial mesenchymal transition (EMT) plays a critical role in melanoma metastasis. Hypoxia-inducible factor-1α (HIF-1α) is a main transcriptional mediator that regulates many genes related to hypoxia. CoCl2 is one of the most commonly used hypoxia-mimetic chemicals in cell culture. In this study, inhibitory effects of IDF-11774, an inhibitor of HIF-1α, on melanoma growth and metastasis were examined using cultured B16F10 mouse melanoma cells and nude mice transplanted with B16F10 melanoma cells in the presence or absence of CoCl2-induced hypoxia. IDF-11774 reduced HIF-1α upregulation and cell survival, but increased cytotoxicity of cultured melanoma cells under CoCl2-induced hypoxia. IDF-11774 also reduced tumor size and local invasion of B16F10 melanoma in nude mice along with HIF-1α downregulation. Expression levels of cyclin D1 in melanoma were increased by CoCl2 but decreased by IDF-11774. Apoptosis of melanoma cells and infiltration of cytotoxic T cells were increased in melanoma after treatment with IDF-11774. EMT was stimulated by CoCl2, but restored by IDF-11774. Overall, IDF-11774 inhibited the growth and metastasis of B16F10 melanoma via HIF-1α downregulation. The growth of B16F10 melanoma was inhibited by cyclin D1 downregulation and cytotoxic T cell stimulation. Metastasis of B16F10 melanoma was inhibited by EMT suppression.
Collapse
Affiliation(s)
- Nan-Hyung Kim
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| |
Collapse
|
14
|
Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol 2021; 18:751-772. [PMID: 34326502 DOI: 10.1038/s41571-021-00539-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia is prevalent in human tumours and contributes to microenvironments that shape cancer evolution and adversely affect therapeutic outcomes. Historically, two different tumour microenvironment (TME) research communities have been discernible. One has focused on physicochemical gradients of oxygen, pH and nutrients in the tumour interstitium, motivated in part by the barrier that hypoxia poses to effective radiotherapy. The other has focused on cellular interactions involving tumour and non-tumour cells within the TME. Over the past decade, strong links have been established between these two themes, providing new insights into fundamental aspects of tumour biology and presenting new strategies for addressing the effects of hypoxia and other microenvironmental features that arise from the inefficient microvascular system in solid tumours. This Review provides a perspective on advances at the interface between these two aspects of the TME, with a focus on translational therapeutic opportunities relating to the elimination and/or exploitation of tumour hypoxia.
Collapse
|
15
|
Boudou-Rouquette P, Arrondeau J, Gervais C, Durand JP, Fabre E, De Percin S, Villeminey CV, Piketty AC, Rassy N, Ulmann G, Damotte D, Mansuet-Lupo A, Giraud F, Alifano M, Wislez M, Alexandre J, Jouinot A, Goldwasser F. Development and validation of a host-dependent, PDL1-independent, biomarker to predict 6-month progression-free survival in metastatic non-small cell lung cancer (mNSCLC) patients treated with anti-PD1 immune checkpoint inhibitors (ICI) in the CERTIM Cohort: The ELY study. EBioMedicine 2021; 73:103630. [PMID: 34688030 PMCID: PMC8536532 DOI: 10.1016/j.ebiom.2021.103630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICI) are dramatically active in a minority of non-small cell lung cancer (NSCLC) patients. We studied here the relationship between patients's metabolism and outcome under ICI. Methods Metastatic NSCLC patients underwent a nutritional assessment prior to initiating immunotherapy. Resting energy expenditure (REE) was measured (mREE) using ambulatory indirect calorimetry and compared with the theoretical value (tREE) provided by the Harris and Benedict formula. The primary endpoint was 6-month progression-free survival (PFS). Secondary endpoints included objective response rate (ORR) and disease control rate (DCR) based on investigator review per RECIST v1.1. and overall survival (OS). The association of patient's metabolism with 6-month PFS was first explored in a single-center training cohort to estimate the effect size. The relationship between patient's metabolism and 6-month PFS was then tested in an independent non interventional observational prospective cohort (ELY) of 100 patients recruited in two tertiary university centers. Findings In the entire cohort, the ORR was 14% for the hypermetabolic group (n = 10/74) vs 38% for the normometabolic group (n = 26/68), respectively (estimated difference 25%, 95CI 9–40%, p = 0.001). The DCR was 28% for the hypermetabolic group (n = 21/74) vs 53% for the normometabolic group (n = 36/68), respectively (estimated difference 25%, 95CI 7–42%, p = 0.005). In the validation cohort (100 patients, 2 centers), normometabolic patients (defined as mREE/tREE < 110%) had increased 6-month PFS (57% versus 22%; odds ratio: 4.76; IC95 [1.87 – 12.89]; p<0.001) and improved overall survival (HR 2.20; IC95: 1.41–3.44; p<0.001). The positive and negative predictive values of normometabolism to identify non-progressive patients at 6 months, were 57% and 78% respectively, sensitivity was 72% and specificity was 66%. In multivariate analysis including PD-L1 tumor status, basal metabolism was an independent predictive factor for 6-month PFS. Interpretation Normometabolism is a new independent parameter to identify mNSCLC patients who will benefit from ICI, with both improved tumor response, 6-month PFS, and survival. Funding This work was supported by Baxter (04012016).
Collapse
Affiliation(s)
- Pascaline Boudou-Rouquette
- Medical Oncology Department, Cochin Hospital, AP-HP; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France.
| | - Jennifer Arrondeau
- Medical Oncology Department, Cochin Hospital, AP-HP; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France
| | - Claire Gervais
- Medical Oncology Department, Cochin Hospital, AP-HP; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France
| | - Jean-Philippe Durand
- Medical Oncology Department, Cochin Hospital, AP-HP; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Thoracic Oncology Department, Hôpital Européen Georges Pompidou (HEGP), AP-HP; Cancer Research for PErsonalized Medicine (CARPEM); Paris University, France
| | - Elizabeth Fabre
- Thoracic Oncology Department, Hôpital Européen Georges Pompidou (HEGP), AP-HP; Cancer Research for PErsonalized Medicine (CARPEM); Paris University, France
| | - Sixtine De Percin
- Medical Oncology Department, Cochin Hospital, AP-HP; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France
| | - Clémentine Vaquin Villeminey
- Medical Oncology Department, Cochin Hospital, AP-HP; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France
| | - Anne-Catherine Piketty
- Medical Oncology Department, Cochin Hospital, AP-HP; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France
| | - Nathalie Rassy
- Medical Oncology Department, Cochin Hospital, AP-HP; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France
| | - Guillaume Ulmann
- Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France; Clinical Chemistry, Cochin Hospital, AP-HP, Paris University, France; URP 4466 PRETRAM, AP-HP, Paris University, France
| | - Diane Damotte
- Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France; Pathology Department, Cochin Hospital, AP-HP, Paris University, France; Centre de recherche des Cordeliers, INSERM U1138, Paris University, France
| | - Audrey Mansuet-Lupo
- Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France; Pathology Department, Cochin Hospital, AP-HP, Paris University, France; Centre de recherche des Cordeliers, INSERM U1138, Paris University, France
| | - Frédérique Giraud
- Molecular Genetics Department, Cochin Hospital, AP-HP, Paris University, France
| | - Marco Alifano
- Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France; Thoracic Surgery Department, Cochin Hospital, AP-HP, Paris University, France
| | - Marie Wislez
- Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France; Pneumology Department, Cochin Hospital, AP-HP, Paris University, France
| | - Jérôme Alexandre
- Medical Oncology Department, Cochin Hospital, AP-HP; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France
| | - Anne Jouinot
- Medical Oncology Department, Cochin Hospital, AP-HP; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France
| | - François Goldwasser
- Medical Oncology Department, Cochin Hospital, AP-HP; Cancer Research for PErsonalized Medicine (CARPEM), Paris, France; Immunomodulatory Therapies Multidisciplinary Study group (CERTIM), Cochin Hospital, AP-HP, 75014 Paris, France; URP 4466 PRETRAM, AP-HP, Paris University, France
| |
Collapse
|
16
|
Caicedo A, Zambrano K, Sanon S, Luis Vélez J, Montalvo M, Jara F, Moscoso SA, Vélez P, Maldonado A, Velarde G. The diversity and coexistence of extracellular mitochondria in circulation: A friend or foe of the immune system. Mitochondrion 2021; 58:270-284. [PMID: 33662580 DOI: 10.1016/j.mito.2021.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023]
Abstract
The diversity and coexistence of extracellular mitochondria may have a key role in the maintenance of health and progression of disease. Studies report that active mitochondria can be found physiologically outside of cells and circulating in the blood without inducing an inflammatory response. In addition, inactive or harmed mitochondria have been recognized as activators of immune cells, as they play an essential role in diseases characterized by the metabolic deregulation of these cells, such as sepsis. In this review we analyze key aspects regarding the existence of a diversity of extracellular mitochondria, their coexistence in body fluids and their effects on various immune cells. Additionally, we introduce models of how extracellular mitochondria could be interacting to maintain health and affect disease prognosis. Unwrapped mitochondria (freeMitos) can exist as viable, active, inactive or harmed organelles. Mitochondria can also be found wrapped in a membrane (wrappedMitos) that may differ depending on the cell of origin. Mitochondrial fragments can also be present in various body fluids as DAMPs, as mtDNA enclosed in vesicles or as circulating-cell-free mtDNA (ccf-mtDNA). Interestingly, the great quantity of evidence regarding the levels of ccf-mtDNA and their correlation with aging and disease allows for the identification of the diversity, but not type, of extracellular mitochondria. The existence of a diversity of mitochondria and their effects on immune cells opens a new concept in the biomedical field towards the understanding of health, the progression of disease and the development of mitochondria as therapeutic agents.
Collapse
Affiliation(s)
- Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Serena Sanon
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Cornell University - Ithaca, United States
| | - Jorge Luis Vélez
- Universidad Central del Ecuador, Facultad de Ciencias Médicas, Quito, Ecuador; Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Mario Montalvo
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Fernando Jara
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Santiago Aguayo Moscoso
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Pablo Vélez
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Augusto Maldonado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, United States; Hospital General Docente de Calderón, Quito, Ecuador
| | - Gustavo Velarde
- Universidad Central del Ecuador, Facultad de Ciencias Médicas, Quito, Ecuador; Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| |
Collapse
|
17
|
Mohammadalipour A, Dumbali SP, Wenzel PL. Mitochondrial Transfer and Regulators of Mesenchymal Stromal Cell Function and Therapeutic Efficacy. Front Cell Dev Biol 2020; 8:603292. [PMID: 33365311 PMCID: PMC7750467 DOI: 10.3389/fcell.2020.603292] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cell (MSC) metabolism plays a crucial role in the surrounding microenvironment in both normal physiology and pathological conditions. While MSCs predominantly utilize glycolysis in their native hypoxic niche within the bone marrow, new evidence reveals the importance of upregulation in mitochondrial activity in MSC function and differentiation. Mitochondria and mitochondrial regulators such as sirtuins play key roles in MSC homeostasis and differentiation into mature lineages of the bone and hematopoietic niche, including osteoblasts and adipocytes. The metabolic state of MSCs represents a fine balance between the intrinsic needs of the cellular state and constraints imposed by extrinsic conditions. In the context of injury and inflammation, MSCs respond to reactive oxygen species (ROS) and damage-associated molecular patterns (DAMPs), such as damaged mitochondria and mitochondrial products, by donation of their mitochondria to injured cells. Through intercellular mitochondria trafficking, modulation of ROS, and modification of nutrient utilization, endogenous MSCs and MSC therapies are believed to exert protective effects by regulation of cellular metabolism in injured tissues. Similarly, these same mechanisms can be hijacked in malignancy whereby transfer of mitochondria and/or mitochondrial DNA (mtDNA) to cancer cells increases mitochondrial content and enhances oxidative phosphorylation (OXPHOS) to favor proliferation and invasion. The role of MSCs in tumor initiation, growth, and resistance to treatment is debated, but their ability to modify cancer cell metabolism and the metabolic environment suggests that MSCs are centrally poised to alter malignancy. In this review, we describe emerging evidence for adaptations in MSC bioenergetics that orchestrate developmental fate decisions and contribute to cancer progression. We discuss evidence and potential strategies for therapeutic targeting of MSC mitochondria in regenerative medicine and tissue repair. Lastly, we highlight recent progress in understanding the contribution of MSCs to metabolic reprogramming of malignancies and how these alterations can promote immunosuppression and chemoresistance. Better understanding the role of metabolic reprogramming by MSCs in tissue repair and cancer progression promises to broaden treatment options in regenerative medicine and clinical oncology.
Collapse
Affiliation(s)
- Amina Mohammadalipour
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States.,Immunology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
18
|
Fattore L, Mancini R, Ciliberto G. Cancer Stem Cells and the Slow Cycling Phenotype: How to Cut the Gordian Knot Driving Resistance to Therapy in Melanoma. Cancers (Basel) 2020; 12:cancers12113368. [PMID: 33202944 PMCID: PMC7696527 DOI: 10.3390/cancers12113368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer stem cells play a central role in the development of cancer and are poorly sensitive to standard chemotherapy and radiotherapy. Furthermore, they are also responsible for the onset of drug resistance. This also occurs in malignant melanoma, the deadliest form of skin cancer. Hence, cancer stem cells eradication is one of the main challenges for medical oncology. Here, we conducted a bioinformatics approach aimed to identify the main circuits and proteins underpinning cancer stem cell fitness in melanoma. Several lessons emerged from our work and may help to conceptualize future therapeutic approaches to prolong the efficacy of current therapies. Abstract Cancer stem cells (CSCs) have historically been defined as slow cycling elements that are able to differentiate into mature cells but without dedifferentiation in the opposite direction. Thanks to advances in genomic and non-genomic technologies, the CSC theory has more recently been reconsidered in a dynamic manner according to a “phenotype switching” plastic model. Transcriptional reprogramming rewires this plasticity and enables heterogeneous tumors to influence cancer progression and to adapt themselves to drug exposure by selecting a subpopulation of slow cycling cells, similar in nature to the originally defined CSCs. This model has been conceptualized for malignant melanoma tailored to explain resistance to target therapies. Here, we conducted a bioinformatics analysis of available data directed to the identification of the molecular pathways sustaining slow cycling melanoma stem cells. Using this approach, we identified a signature of 25 genes that were assigned to four major clusters, namely (1) kinases and metabolic changes, (2) melanoma-associated proteins, (3) Hippo pathway and (4) slow cycling/CSCs factors. Furthermore, we show how a protein−protein interaction network may be the main driver of these melanoma cell subpopulations. Finally, mining The Cancer Genome Atlas (TCGA) data we evaluated the expression levels of this signature in the four melanoma mutational subtypes. The concomitant alteration of these genes correlates with the worst overall survival (OS) for melanoma patients harboring BRAF-mutations. All together these results underscore the potentiality to target this signature to selectively kill CSCs and to achieve disease control in melanoma.
Collapse
Affiliation(s)
- Luigi Fattore
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Laboratory, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS, “Fondazione G. Pascale”, 80131 Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, 00161 Rome, Italy;
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence:
| |
Collapse
|
19
|
Muscolini M, Tassone E, Hiscott J. Oncolytic Immunotherapy: Can't Start a Fire Without a Spark. Cytokine Growth Factor Rev 2020; 56:94-101. [PMID: 32826166 DOI: 10.1016/j.cytogfr.2020.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 01/17/2023]
Abstract
Recent advances in cancer immunotherapy have renewed interest in oncolytic viruses (OVs) as a synergistic platform for the development of novel antitumor strategies. Cancer cells adopt multiple mechanisms to evade and suppress antitumor immune responses, essentially establishing a non-immunogenic ('cold') tumor microenvironment (TME), with poor T-cell infiltration and low mutational burden. Limitations to the efficacy of immunotherapy still exist, especially for a variety of solid tumors, where new approaches are necessary to overcome physical barriers in the TME and to mitigate adverse effects associated with current immunotherapeutics. OVs offer an attractive alternative by inducing direct oncolysis, immunogenic cell death, and immune stimulation. These multimodal mechanisms make OVs well suited to reprogram non-immunogenic tumors and TME into inflamed, immunogenic ('hot') tumors; enhanced release of tumor antigens by dying cancer cells is expected to augment T-cell infiltration, thereby eliciting potent antitumor immunity. Advances in virus engineering and understanding of tumor biology have allowed the optimization of OV-tumor selectivity, oncolytic potency, and immune stimulation. However, OV antitumor activity is likely to achieve its greatest potential as part of combinatorial strategies with other immune or cancer therapeutics.
Collapse
Affiliation(s)
| | - Evelyne Tassone
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - John Hiscott
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
20
|
Special issue: Resistance mechanisms to cancer immunotherapy. Semin Cancer Biol 2020; 65:iii-iv. [PMID: 32018057 DOI: 10.1016/j.semcancer.2020.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|