1
|
Lan J, Cai D, Gou S, Bai Y, Lei H, Li Y, Chen Y, Zhao Y, Shen J, Wu X, Li M, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Cho CH, Zhang Y, Zheng X, Xiao Z, Du F. The dynamic role of ferroptosis in cancer immunoediting: Implications for immunotherapy. Pharmacol Res 2025; 214:107674. [PMID: 40020885 DOI: 10.1016/j.phrs.2025.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Currently, cancer immunotherapy strategies are primarily formulated based on the patient's present condition, representing a "static" treatment approach. However, cancer progression is inherently "dynamic," as the immune environment is not fixed but undergoes continuous changes. This dynamism is characterized by the ongoing interactions between tumor cells and immune cells, which ultimately lead to alterations in the tumor immune microenvironment. This process can be effectively elucidated by the concept of cancer immunoediting, which divides tumor development into three phases: "elimination," "equilibrium," and "escape." Consequently, adjusting immunotherapy regimens based on these distinct phases may enhance patient survival and improve prognosis. Targeting ferroptosis is an emerging area in cancer immunotherapy, and our findings reveal that the antioxidant systems associated with ferroptosis possess dual roles, functioning differently across the three phases of cancer immunoediting. Therefore, this review delve into the dual role of the ferroptosis antioxidant system in tumor development and progression. It also propose immunotherapy strategies targeting ferroptosis at different stages, ultimately aiming to illuminate the significant implications of targeting ferroptosis at various phases for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiarui Lan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China
| | - Yulin Bai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China
| | - Huaqing Lei
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Yan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Zhang
- Department of Oncology, Luzhou People's Hospital, Luzhou, Sichuan 646000, China
| | - Xin Zheng
- Department of Oncology, Luzhou People's Hospital, Luzhou, Sichuan 646000, China.
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China.
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China.
| |
Collapse
|
2
|
Sandhbor P, John G, Bhat S, Goda JS. Immune response recalibration using immune therapy and biomimetic nano-therapy against high-grade gliomas and brain metastases. Asian J Pharm Sci 2025; 20:101021. [PMID: 40224727 PMCID: PMC11987628 DOI: 10.1016/j.ajps.2025.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/07/2024] [Accepted: 10/03/2024] [Indexed: 04/15/2025] Open
Abstract
Although with aggressive standards of care like surgical resection, chemotherapy, and radiation, high-grade gliomas (HGGs) and brain metastases (BM) treatment has remained challenging for more than two decades. However, technological advances in this field and immunotherapeutic strategies have revolutionized the treatment of HGGs and BM. Immunotherapies like immune checkpoint inhibitors, CAR-T targeting, oncolytic virus-based therapy, bispecific antibody treatment, and vaccination approaches, etc., are emerging as promising avenues offering new hope in refining patient's survival benefits. However, selective trafficking across the blood-brain barrier (BBB), immunosuppressive tumor microenvironment (TME), metabolic alteration, and tumor heterogeneity limit the therapeutic efficacy of immunotherapy for HGGs and BM. Furthermore, to address this concern, the NanoBioTechnology-based bioinspired delivery system has been gaining tremendous attention in recent years. With technological advances such as Trojan horse targeting and infusing/camouflaging nanoparticles surface with biological molecules/cells like immunocytes, erythrocytes, platelets, glioma cell lysate and/or integrating these strategies to get hybrid membrane for homotypic recognition. These biomimetic nanotherapy offers advantages over conventional nanoparticles, focusing on greater target specificity, increased circulation stability, higher active loading capacity, BBB permeability (inherent inflammatory chemotaxis of neutrophils), decreased immunogenicity, efficient metabolism-based combinatorial effects, and prevention of tumor recurrence by induction of immunological memory, etc. provide new age of improved immunotherapies outcomes against HGGs and BM. In this review, we emphasize on neuro-immunotherapy and the versatility of these biomimetic nano-delivery strategies for precise targeting of hard-to-treat and most lethal HGGs and BM. Moreover, the challenges impeding the clinical translatability of these approaches were addressed to unmet medical needs of brain cancers.
Collapse
Affiliation(s)
- Puja Sandhbor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore 21218, USA
| | - Geofrey John
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar 410210, India
- Homi Bhabha National Institute, Anushakti Nagar 400094, India
| | - Sakshi Bhat
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar 410210, India
- Homi Bhabha National Institute, Anushakti Nagar 400094, India
| | - Jayant S. Goda
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar 410210, India
- Homi Bhabha National Institute, Anushakti Nagar 400094, India
| |
Collapse
|
3
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
4
|
Abdullaeva S, Chubarev V, Valeeva A, Preferanskaya N, Neganova M, Smolyarchuk E, Liu J, Sukocheva O, Samsonov M, Alyautdin R. Analysis of Clinical Success and Molecular Mechanisms of Action of Novel Anti-glioblastoma Drugs: A Review. Curr Med Chem 2025; 32:1082-1102. [PMID: 38299393 DOI: 10.2174/0109298673281283240101053940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Gliomas and glioblastomas (GBM) are common primary malignant brain tumors, which are highly malignant and have a poor prognosis. The presence of cancer stem cells with unrestricted proliferative capacity and ability to generate glial neoplastic cells, the diffuse nature of GBM, and other specific factors of GBM contribute to poor results of drug therapy in patients with GBM. Despite the worldwide efforts to improve the treatment, many novel anti-GBM drugs are active just in vitro, in silico, and in preclinical trials, and they sometimes demonstrate poor or no activity in clinical trials. In this paper, we have casually selected and analyzed the most promising evidence-based results related to glioblastoma treatment at FDA and Clinical Trials.gov databases. It was observed that the most prospective trend in the development of anti-GBM drugs is combination therapy vs. monotherapy. Our analysis of clinical trials has allowed us to predict that the most promising combination therapy that has shown the best results in patient's surveillance should include drugs that block different growth-promoting signals in glioblastoma cells and that are activated by the V600E BRAF mutation. One drug should inhibit signals from the BRAF protein, whereas the second drug in combination should inhibit signals from the MEK protein. METHODS The content of this review is based on information obtained from PubMed, ClinicalTrials.- gov, and the U.S. Food and Drug Administration (https://www.fda.gov/). In ClinicalTrials.gov, we retrieved studies published from January 1, 2015. In the data search, "Glioblastoma" was used as the keyword. A study was deleted if it studied remedies for concomitant tumor diseases, as well as if it did not include descriptions of treatment methods and/or if GBM was not mentioned. The analysis of the effectiveness of treatment was carried out according to the increasing overall survival in GBM patients, compared to the gold standard for this cancer. RESULTS GBM patients treated with novel immunotherapy agents and drugs acting on epigenetic factors and receptor tyrosine kinase inhibitors have shown encouraging potential for future development in clinic. However, combinations of drugs have led to more significant improvements in the results and an increase in life expectancy of patients. For example, the combination of nivolumab and ipilimumab showed a 72% increase in life expectancy compared to using nivolumab alone (9.8 vs. 16.85). CONCLUSION Combining anti-GBM drugs appears to be a key direction for increasing treatment effectiveness and overall survival. Radiotherapy of GBM can increase the effect of combination drug therapy.
Collapse
Affiliation(s)
- Sabina Abdullaeva
- Department of Pharmacology, Sechenov University, Trubetskaya Street, 8-2, Moscow, 119991, Russian Federation
| | - Vladimir Chubarev
- Department of Pharmacology, Sechenov University, Trubetskaya Street, 8-2, Moscow, 119991, Russian Federation
| | - Anna Valeeva
- Department of Pharmacology, Sechenov University, Trubetskaya Street, 8-2, Moscow, 119991, Russian Federation
| | - Nina Preferanskaya
- Department of Pharmacology, Sechenov University, Trubetskaya Street, 8-2, Moscow, 119991, Russian Federation
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij pr. 1, Chernogolovka, 142432, Russian Federation
- Laboratory of Redox-activity Molecular System, FRC Kazan Scientific Center, Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Akad. Arbuzov st. 8, Kazan, 420088, Russia
| | - Elena Smolyarchuk
- Department of Pharmacology, Sechenov University, Trubetskaya Street, 8-2, Moscow, 119991, Russian Federation
| | - Junqi Liu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Olga Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia
| | - Mikhail Samsonov
- Department of Pharmacology, Sechenov University, Trubetskaya Street, 8-2, Moscow, 119991, Russian Federation
- R-Pharm JSC, Leninsky pr., 111- 1, Moscow, 119421, Russian Federation
| | - Renad Alyautdin
- Department of Pharmacology, Sechenov University, Trubetskaya Street, 8-2, Moscow, 119991, Russian Federation
- Scientific Centre for Expert Evaluation of Medicinal Products, 8/2., Petrovsky Boulevard, Moscow, 127051, Russian Federation
| |
Collapse
|
5
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
6
|
Du Z, Sui D, Xin D, Tang X, Li M, Liu X, Deng Y, Song Y. Sialic acid-modified doxorubicin liposomes target tumor-related immune cells to relieve multiple inhibitions of CD8 + T cells. J Liposome Res 2024; 34:464-474. [PMID: 38196168 DOI: 10.1080/08982104.2023.2298901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
In different types of cancer treatments, cancer-specific T cells are required for effective anticancer immunity, which has a central role in cancer immunotherapy. However, due to the multiple inhibitions of CD8+ T cells by tumor-related immune cells, CD8+ T-cell mediated antitumor immunotherapy has not achieved breakthrough progress in the treatment of solid tumors. Receptors for sialic acid (SA) are highly expressed in tumor-associated immune cells, so SA-modified nanoparticles are a drug delivery nanoplatform using tumor-associated immune cells as vehicles. To relieve the multiple inhibitions of CD8+ T cells by tumor-associated immune cells, we prepared SA-modified doxorubicin liposomes (SL-DOX, Scheme 1A). In our study, free SA decreased the toxicity of SL-DOX to tumor-associated immune cells. Compared with common liposomes, SL-DOX could inhibit tumor growth more effectively. It is worth noting that SL-DOX could not only kill tumor-related neutrophils and monocytes to relieve the multiple inhibitions of CD8+ T cells but also induce immunogenic death of tumor cells to promote the infiltration and differentiation of CD8+ T cells (Scheme 1B). Therefore, SL-DOX has potential value for the clinical therapeutic effect of CD8+ T cells mediating anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Zhouchunxiao Du
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongzhe Xin
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingze Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Mundhara N, Sadhukhan P. Cracking the Codes behind Cancer Cells' Immune Evasion. Int J Mol Sci 2024; 25:8899. [PMID: 39201585 PMCID: PMC11354234 DOI: 10.3390/ijms25168899] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Immune evasion is a key phenomenon in understanding tumor recurrence, metastasis, and other critical steps in tumor progression. The tumor microenvironment (TME) is in constant flux due to the tumor's ability to release signals that affect it, while immune cells within it can impact cancer cell behavior. Cancer cells undergo several changes, which can change the enrichment of different immune cells and modulate the activity of existing immune cells in the tumor microenvironment. Cancer cells can evade immune surveillance by downregulating antigen presentation or expressing immune checkpoint molecules. High levels of tumor-infiltrating lymphocytes (TILs) correlate with better outcomes, and robust immune responses can control tumor growth. On the contrary, increased enrichment of Tregs, myeloid-derived suppressor cells, and M2-like anti-inflammatory macrophages can hinder effective immune surveillance and predict poor prognosis. Overall, understanding these immune evasion mechanisms guides therapeutic strategies. Researchers aim to modulate the TME to enhance immune surveillance and improve patient outcomes. In this review article, we strive to summarize the composition of the tumor immune microenvironment, factors affecting the tumor immune microenvironment (TIME), and different therapeutic modalities targeting the immune cells. This review is a first-hand reference to understand the basics of immune surveillance and immune evasion.
Collapse
Affiliation(s)
| | - Pritam Sadhukhan
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Abou Daher L, Heppell O, Lopez-Plaza I, Guerra-Londono CE. Perioperative Blood Transfusions and Cancer Progression: A Narrative Review. Curr Oncol Rep 2024; 26:880-889. [PMID: 38847973 DOI: 10.1007/s11912-024-01552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE OF REVIEW To examine the most recent evidence about known controversies on the effect of perioperative transfusion on cancer progression. RECENT FINDINGS Laboratory evidence suggests that transfusion-related immunomodulation can be modified by blood management and storage practices, but it is likely of less intensity than the effect of the surgical stress response. Clinical evidence has questioned the independent effect of blood transfusion on cancer progression for some cancers but supported it for others. Despite major changes in surgery and anesthesia, cancer surgery remains a major player in perioperative blood product utilization. Prospective data is still required to strengthen or refute existing associations. Transfusion-related immunomodulation in cancer surgery is well-documented, but the extent to which it affects cancer progression is unclear. Associations between transfusion and cancer progression are disease-specific. Increasing evidence shows autologous blood transfusion may be safe in cancer surgery.
Collapse
Affiliation(s)
- Layal Abou Daher
- Department of Anesthesiology, Pain Management, & Perioperative Medicine, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | | | - Ileana Lopez-Plaza
- Department of Pathology and Blood Bank, Henry Ford Health, Detroit, MI, USA
| | - Carlos E Guerra-Londono
- Department of Anesthesiology, Pain Management, & Perioperative Medicine, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| |
Collapse
|
9
|
Zhao R, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zheng Y, Gu H, Zhao D, Madhunapantula SV, Zhu X, Liu J, Fan R. Cuproptosis, the novel type of oxidation-induced cell death in thoracic cancers: can it enhance the success of immunotherapy? Cell Commun Signal 2024; 22:379. [PMID: 39068453 PMCID: PMC11282696 DOI: 10.1186/s12964-024-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Copper is an important metal micronutrient, required for the balanced growth and normal physiological functions of human organism. Copper-related toxicity and dysbalanced metabolism were associated with the disruption of intracellular respiration and the development of various diseases, including cancer. Notably, copper-induced cell death was defined as cuproptosis which was also observed in malignant cells, representing an attractive anti-cancer instrument. Excess of intracellular copper leads to the aggregation of lipoylation proteins and toxic stress, ultimately resulting in the activation of cell death. Differential expression of cuproptosis-related genes was detected in normal and malignant tissues. Cuproptosis-related genes were also linked to the regulation of oxidative stress, immune cell responses, and composition of tumor microenvironment. Activation of cuproptosis was associated with increased expression of redox-metabolism-regulating genes, such as ferredoxin 1 (FDX1), lipoic acid synthetase (LIAS), lipoyltransferase 1 (LIPT1), dihydrolipoamide dehydrogenase (DLD), drolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), and pyruvate dehydrogenase E1 subunit beta (PDHB)). Accordingly, copper-activated network was suggested as an attractive target in cancer therapy. Mechanisms of cuproptosis and regulation of cuproptosis-related genes in different cancers and tumor microenvironment are discussed in this study. The analysis of current findings indicates that therapeutic regulation of copper signaling, and activation of cuproptosis-related targets may provide an effective tool for the improvement of immunotherapy regimens.
Collapse
Affiliation(s)
- Ruiwen Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Olga Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia.
| | - Edmund Tse
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Port Rd, Adelaide, SA, 5000, Australia
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia Aleksandrova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yufei Zheng
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Gu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Deyao Zhao
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - SabbaRao V Madhunapantula
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Xiaorong Zhu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junqi Liu
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruitai Fan
- The Department of Radiation Oncology & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
He T, Hu C, Li S, Fan Y, Xie F, Sun X, Jiang Q, Chen W, Jia Y, Li W. The role of CD8 + T-cells in colorectal cancer immunotherapy. Heliyon 2024; 10:e33144. [PMID: 39005910 PMCID: PMC11239598 DOI: 10.1016/j.heliyon.2024.e33144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Immunotherapy has been an advanced and effective approach to treating various types of solid tumors in recent years, and the most successful strategy is immune checkpoint inhibitors (ICIs), which have shown beneficial effects in patients with colorectal cancer (CRC). Drug resistance to ICIs is usually associated with CD8+ T-cells targeting tumor antigens; thus, CD8+ T-cells play an important role in immunotherapy. Unfortunately, Under continuous antigen stimulation, tumor microenvironment(TME), hypoxia and other problems it leads to insufficient infiltration of CD8+ T-cells, low efficacy and mechanism exhaustion, which have become obstacles to immunotherapy. Thus, this article describes the relationship between CRC and the immune system, focuses on the process of CD8+ T-cells production, activation, transport, killing, and exhaustion, and expounds on related mechanisms leading to CD8+ T-cells exhaustion. Finally, this article summarizes the latest strategies and methods in recent years, focusing on improving the infiltration, efficacy, and exhaustion of CD8+ T-cells, which may help to overcome the barriers to immunotherapy.
Collapse
Affiliation(s)
- Tao He
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Chencheng Hu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Shichao Li
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yao Fan
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Fei Xie
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Xin Sun
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Qingfeng Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Weidong Chen
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yingtian Jia
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Wusheng Li
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| |
Collapse
|
11
|
Manoutcharian K, Gevorkian G. Are we getting closer to a successful neoantigen cancer vaccine? Mol Aspects Med 2024; 96:101254. [PMID: 38354548 DOI: 10.1016/j.mam.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Although significant advances in immunotherapy have revolutionized the treatment of many cancer types over the past decade, the field of vaccine therapy, an important component of cancer immunotherapy, despite decades-long intense efforts, is still transmitting signals of promises and awaiting strong data on efficacy to proceed with regulatory approval. The field of cancer vaccines faces standard challenges, such as tumor-induced immunosuppression, immune response in inhibitory tumor microenvironment (TME), intratumor heterogeneity (ITH), permanently evolving cancer mutational landscape leading to neoantigens, and less known obstacles: neoantigen gain/loss upon immunotherapy, the timing and speed of appearance of neoantigens and responding T cell clonotypes and possible involvement of immune interference/heterologous immunity, in the complex interplay between evolving tumor epitopes and the immune system. In this review, we discuss some key issues related to challenges hampering the development of cancer vaccines, along with the current approaches focusing on neoantigens. We summarize currently well-known ideas/rationales, thus revealing the need for alternative vaccine approaches. Such a discussion should stimulate vaccine researchers to apply out-of-box, unconventional thinking in search of new avenues to deal with critical, often yet unaddressed challenges on the road to a new generation of therapeutics and vaccines.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP, 04510, Mexico.
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP, 04510, Mexico.
| |
Collapse
|
12
|
Zhou X, Jia Y, Mao C, Liu S. Small extracellular vesicles: Non-negligible vesicles in tumor progression, diagnosis, and therapy. Cancer Lett 2024; 580:216481. [PMID: 37972701 DOI: 10.1016/j.canlet.2023.216481] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Small extracellular vesicles (sEVs) such as exosomes are nanoscale membranous particles (<200 nm) that have emerged as crucial targets for liquid biopsy and as promising drug delivery vehicles. They play a significant role in tumor progression as intercellular messengers. They can serve as biomarkers for tumor diagnosis and as drug carriers for cancer treatment. This article reviews recent studies on sEVs in oncology and explores their potential as biomarkers and drug delivery vehicles. Following tumorigenesis, sEVs in the tumor microenvironment (TME) and circulatory system undergo modifications to regulate various events in the TME, including angiogenesis, epithelial-mesenchymal transition (EMT), and tumor immunity, with either pro- or anti-tumor effects. sEVs have been investigated for use as diagnostic and prognostic biomarkers for a variety of tumors, including lung cancer, melanoma, breast cancer, prostate cancer, and hepatocellular carcinoma. sEVs can be used for cancer therapy by packaging drugs or proteins into them through pre- and post-isolation modification techniques. The clinical trials of sEVs as biomarkers and drug carriers are also summarized. Finally, the challenges in the use of sEVs are described and the possible approaches to tackling them are suggested. Overall, sEVs will advance the precision cancer medicine and has shown great potential in clinical applications.
Collapse
Affiliation(s)
- Xinru Zhou
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Yin Jia
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shanrong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Navy Military Medical University, Shanghai, China.
| |
Collapse
|
13
|
Zhang J, Guo B, Chen JH, Liu XJ, Zhang JH, Zhu HQ, Wang WY, Tang ZH, Wei B, Cao YX, Zhan L. NLRC5 potentiates anti-tumor CD8 + T cells responses by activating interferon-β in endometrial cancer. Transl Oncol 2023; 36:101742. [PMID: 37531863 PMCID: PMC10407819 DOI: 10.1016/j.tranon.2023.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/11/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
OBJECTIVES NLR family CARD domain containing 5 (NLRC5) could promote major histocompatibility complex class I (MHC-I)-dependent CD8+ T cell-mediated anticancer immunity. In this study, the immunosurveillance role and underlying mechanisms of NLRC5 in endometrial cancer (EC) were characterized. METHODS CD8+ T cells were separated from healthy women's peripheral blood by using magnetic beads. The effect of NLRC5 and interferon-β (IFN-β) on immunosurveillance of EC were examined through a mouse tumor model and a CD8+ T cell-EC cell coculture system after NLRC5 overexpression and IFN-β overexpression or depletion. The effect of NLRC5 on IFN-β expression was examined with gain- and loss-of-function experiments. RESULTS NLRC5 overexpression in the EC cell and CD8+ T cell coculture system inhibited EC cell proliferation and migration and promoted EC cell apoptosis and CD8+ T cell proliferation. In vivo, NLRC5 overexpression increased the proportion of CD8+ T cells and inhibited EC progression. Furthermore, IFN-β overexpression in the EC cell and CD8+ T cell coculture system activated CD8+ T cell proliferation; however, genetic depletion of IFN-β exerted the opposite effects. In addition, NLRC5 could negatively regulate IFN-β expression in EC cells. Mechanistically, NLRC5 potentiated the antitumor responses of CD8+ T cells to EC by activating IFN-β. CONCLUSIONS Taken together, our findings demonstrated that NLRC5 potentiates anti-tumor CD8+ T cells responses by activating interferon-β in EC, suggesting that genetically escalated NLRC5 and IFN-β may act as potential candidates for the clinical translation of adjuvant immunotherapies to patients with EC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Jia-Hua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Xiao-Jing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Jun-Hui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
| | - Hai-Qing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Wen-Yan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China
| | - Zhen-Hai Tang
- Center for Scientific Research of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China.
| | - Yun-Xia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China.
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, Anhui 230601, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, Anhui 230022, China.
| |
Collapse
|
14
|
Liu K, He S, Sun S, Zhang X, He Y, Quan F, Pang B, Xiao Y. Computational Quantification of Cancer Immunoediting. Cancer Immunol Res 2023; 11:1159-1167. [PMID: 37540180 DOI: 10.1158/2326-6066.cir-22-0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/31/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023]
Abstract
The remarkable success of cancer immunotherapy has revolutionized cancer treatment, emphasizing the importance of tumor-immune interactions in cancer evolution and treatment. Cancer immunoediting describes the dual effect of tumor-immune interactions: inhibiting tumor growth by destroying tumor cells and facilitating tumor escape by shaping tumor immunogenicity. To better understand tumor-immune interactions, it is critical to develop computational methods to measure the extent of cancer immunoediting. In this review, we provide a comprehensive overview of the computational methods for quantifying cancer immunoediting. We focus on describing the basic ideas, computational processes, advantages, limitations, and influential factors. We also summarize recent advances in quantifying cancer immunoediting studies and highlight future research directions. As the methods for quantifying cancer immunoediting are continuously improved, future research will further help define the role of immunity in tumorigenesis and hopefully provide a basis for the design of new personalized cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Kun Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shengyuan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangqin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xinxin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanzhen He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Fei Quan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Bo Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Fatima GN, Fatma H, Saraf SK. Vaccines in Breast Cancer: Challenges and Breakthroughs. Diagnostics (Basel) 2023; 13:2175. [PMID: 37443570 DOI: 10.3390/diagnostics13132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is a problem for women's health globally. Early detection techniques come in a variety of forms ranging from local to systemic and from non-invasive to invasive. The treatment of cancer has always been challenging despite the availability of a wide range of therapeutics. This is either due to the variable behaviour and heterogeneity of the proliferating cells and/or the individual's response towards the treatment applied. However, advancements in cancer biology and scientific technology have changed the course of the cancer treatment approach. This current review briefly encompasses the diagnostics, the latest and most recent breakthrough strategies and challenges, and the limitations in fighting breast cancer, emphasising the development of breast cancer vaccines. It also includes the filed/granted patents referring to the same aspects.
Collapse
Affiliation(s)
- Gul Naz Fatima
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Hera Fatma
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
16
|
Zhu X, Zhao W, Zhou Z, Gu X. Unraveling the Drivers of Tumorigenesis in the Context of Evolution: Theoretical Models and Bioinformatics Tools. J Mol Evol 2023:10.1007/s00239-023-10117-0. [PMID: 37246992 DOI: 10.1007/s00239-023-10117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
Cancer originates from somatic cells that have accumulated mutations. These mutations alter the phenotype of the cells, allowing them to escape homeostatic regulation that maintains normal cell numbers. The emergence of malignancies is an evolutionary process in which the random accumulation of somatic mutations and sequential selection of dominant clones cause cancer cells to proliferate. The development of technologies such as high-throughput sequencing has provided a powerful means to measure subclonal evolutionary dynamics across space and time. Here, we review the patterns that may be observed in cancer evolution and the methods available for quantifying the evolutionary dynamics of cancer. An improved understanding of the evolutionary trajectories of cancer will enable us to explore the molecular mechanism of tumorigenesis and to design tailored treatment strategies.
Collapse
Affiliation(s)
- Xunuo Zhu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenyi Zhao
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 310058, China.
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
17
|
Weeden CE, Gayevskiy V, Marceaux C, Batey D, Tan T, Yokote K, Ribera NT, Clatch A, Christo S, Teh CE, Mitchell AJ, Trussart M, Rankin L, Obers A, McDonald JA, Sutherland KD, Sharma VJ, Starkey G, D'Costa R, Antippa P, Leong T, Steinfort D, Irving L, Swanton C, Gordon CL, Mackay LK, Speed TP, Gray DHD, Asselin-Labat ML. Early immune pressure initiated by tissue-resident memory T cells sculpts tumor evolution in non-small cell lung cancer. Cancer Cell 2023; 41:837-852.e6. [PMID: 37086716 DOI: 10.1016/j.ccell.2023.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/24/2023]
Abstract
Tissue-resident memory T (TRM) cells provide immune defense against local infection and can inhibit cancer progression. However, it is unclear to what extent chronic inflammation impacts TRM activation and whether TRM cells existing in tissues before tumor onset influence cancer evolution in humans. We performed deep profiling of healthy lungs and lung cancers in never-smokers (NSs) and ever-smokers (ESs), finding evidence of enhanced immunosurveillance by cells with a TRM-like phenotype in ES lungs. In preclinical models, tumor-specific or bystander TRM-like cells present prior to tumor onset boosted immune cell recruitment, causing tumor immune evasion through loss of MHC class I protein expression and resistance to immune checkpoint inhibitors. In humans, only tumors arising in ES patients underwent clonal immune evasion, unrelated to tobacco-associated mutagenic signatures or oncogenic drivers. These data demonstrate that enhanced TRM-like activity prior to tumor development shapes the evolution of tumor immunogenicity and can impact immunotherapy outcomes.
Collapse
Affiliation(s)
- Clare E Weeden
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Velimir Gayevskiy
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Claire Marceaux
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Daniel Batey
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Tania Tan
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Kenta Yokote
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Nina Tubau Ribera
- Advanced Technology and Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Allison Clatch
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Susan Christo
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Charis E Teh
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Andrew J Mitchell
- Materials Characterisation and Fabrication Platform, Department of Chemical Engineering, the University of Melbourne, Parkville, VIC, Australia
| | - Marie Trussart
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Lucille Rankin
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jackson A McDonald
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Kate D Sutherland
- ACRF Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia
| | - Varun J Sharma
- Department of Surgery, the University of Melbourne, Parkville, VIC, Australia; Liver and Intestinal Transplant Unit, Austin Health, Heidelberg, VIC, Australia; Department of Cardiothoracic Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Graham Starkey
- Department of Surgery, the University of Melbourne, Parkville, VIC, Australia; Liver and Intestinal Transplant Unit, Austin Health, Heidelberg, VIC, Australia
| | - Rohit D'Costa
- DonateLife Victoria, Carlton, VIC, Australia; Department of Intensive Care Medicine, Melbourne Health, Melbourne, VIC, Australia
| | - Phillip Antippa
- Department of Surgery, the University of Melbourne, Parkville, VIC, Australia; The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Tracy Leong
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia; Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, VIC, Australia
| | - Daniel Steinfort
- Department of Medicine, the University of Melbourne, Parkville, VIC, Australia; The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Louis Irving
- Department of Medicine, the University of Melbourne, Parkville, VIC, Australia; The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, Francis Crick Institute, London, UK; University College London Hospitals, London, UK
| | - Claire L Gordon
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia; Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia; North Eastern Public Health Unit, Austin Health, Heidelberg, VIC, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Terence P Speed
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; School of Mathematics and Statistics, the University of Melbourne, Parkville, VIC, Australia
| | - Daniel H D Gray
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia.
| | - Marie-Liesse Asselin-Labat
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, the University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
18
|
Liu S, Sun Q, Ren X. Novel strategies for cancer immunotherapy: counter-immunoediting therapy. J Hematol Oncol 2023; 16:38. [PMID: 37055849 PMCID: PMC10099030 DOI: 10.1186/s13045-023-01430-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
The advent of immunotherapy has made an indelible mark on the field of cancer therapy, especially the application of immune checkpoint inhibitors in clinical practice. Although immunotherapy has proven its efficacy and safety in some tumors, many patients still have innate or acquired resistance to immunotherapy. The emergence of this phenomenon is closely related to the highly heterogeneous immune microenvironment formed by tumor cells after undergoing cancer immunoediting. The process of cancer immunoediting refers to the cooperative interaction between tumor cells and the immune system that involves three phases: elimination, equilibrium, and escape. During these phases, conflicting interactions between the immune system and tumor cells result in the formation of a complex immune microenvironment, which contributes to the acquisition of different levels of immunotherapy resistance in tumor cells. In this review, we summarize the characteristics of different phases of cancer immunoediting and the corresponding therapeutic tools, and we propose normalized therapeutic strategies based on immunophenotyping. The process of cancer immunoediting is retrograded through targeted interventions in different phases of cancer immunoediting, making immunotherapy in the context of precision therapy the most promising therapy to cure cancer.
Collapse
Affiliation(s)
- Shaochuan Liu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| |
Collapse
|
19
|
Kavun A, Veselovsky E, Lebedeva A, Belova E, Kuznetsova O, Yakushina V, Grigoreva T, Mileyko V, Fedyanin M, Ivanov M. Microsatellite Instability: A Review of Molecular Epidemiology and Implications for Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2023; 15:cancers15082288. [PMID: 37190216 DOI: 10.3390/cancers15082288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Microsatellite instability (MSI) is one of the most important molecular characteristics of a tumor, which occurs among various tumor types. In this review article, we examine the molecular characteristics of MSI tumors, both sporadic and Lynch-associated. We also overview the risks of developing hereditary forms of cancer and potential mechanisms of tumor development in patients with Lynch syndrome. Additionally, we summarize the results of major clinical studies on the efficacy of immune checkpoint inhibitors for MSI tumors and discuss the predictive role of MSI in the context of chemotherapy and checkpoint inhibitors. Finally, we briefly discuss some of the underlying mechanisms causing therapy resistance in patients treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Egor Veselovsky
- OncoAtlas LLC, 119049 Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, 119049 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olesya Kuznetsova
- OncoAtlas LLC, 119049 Moscow, Russia
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
| | - Valentina Yakushina
- OncoAtlas LLC, 119049 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, 119049 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Mikhail Fedyanin
- N.N. Blokhin Russian Cancer Research Center, 115478 Moscow, Russia
- State Budgetary Institution of Health Care of the City of Moscow "Moscow Multidisciplinary Clinical Center" "Kommunarka" of the Department of Health of the City of Moscow, 142770 Moscow, Russia
- Federal State Budgetary Institution "National Medical and Surgical Center named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, 105203 Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, 119049 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
20
|
Khadela A, Chavda VP, Postwala H, Ephraim R, Apostolopoulos V, Shah Y. Configuring Therapeutic Aspects of Immune Checkpoints in Lung Cancer. Cancers (Basel) 2023; 15:543. [PMID: 36672492 PMCID: PMC9856297 DOI: 10.3390/cancers15020543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Immune checkpoints are unique components of the body's defense mechanism that safeguard the body from immune responses that are potent enough to harm healthy body cells. When proteins present on the surface of T cells recognize and bind to the proteins present on other tumor cells, immune checkpoints are triggered. These proteins are called immunological checkpoints. The T cells receive an on/off signal when the checkpoints interact with companion proteins. This might avert the host's immune system from eliminating cancer cells. The standard care plan for the treatment of non-small cell lung cancer (NSCLC) has been revolutionized with the use of drugs targeting immune checkpoints, in particular programmed cell death protein 1. These drugs are now extended for their potential to manage SCLC. However, it is acknowledged that these drugs have specific immune related adverse effects. Herein, we discuss the use of immune checkpoint inhibitors in patients with NSCLC and SCLC, their outcomes, and future perspectives.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Humzah Postwala
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Yesha Shah
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
21
|
Tatarova Z, Blumberg DC, Bensen A, Mills GB, Jonas O. Panobinostat Induced Spatial In Situ Biomarkers Predictive of Anti-PD-1 Efficacy in Mouse Mammary Carcinoma. Cells 2023; 12:308. [PMID: 36672243 PMCID: PMC9856407 DOI: 10.3390/cells12020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Immunotherapies, including anti-PD-1 immune checkpoint blocking (ICB) antibodies, have revolutionized the treatment of many solid malignancies. However, their efficacy in breast cancer has been limited to a subset of patients with triple-negative breast cancer, where ICBs are routinely combined with a range of cytotoxic and targeted agents. Reliable biomarkers predictive of the therapeutic response to ICB in breast cancer are critically missing, though a combination response has been associated with immunogenic cell death (ICD). Here, we utilized a recently developed integrated analytical platform, the multiplex implantable microdevice assay (MIMA), to evaluate the presence and spatial cell relations of literature-based candidate markers predictive of ICB efficacy in luminal mouse mammary carcinoma. MIMA integrates (i) an implantable microdevice for the localized delivery of small amounts of drugs inside the tumor bed with (ii) sequential multiplex immunohistochemistry (mIHC) and spatial cell analysis pipelines to rapidly (within days) describe drug mechanisms of action and find predictive biomarkers in complex tumor tissue. We show that the expression of cleaved caspase-3, ICAM-1, neuropilin-1, myeloperoxidase, calreticulin, galectin-3, and PD-L1 were spatially associated with the efficacy of panobinostat, a pan-HDAC inhibitor that was previously shown to induce immunogenic cell death and synergize with anti-PD-1 in breast cancer. PD-L1 by itself, however, was not a reliable predictor. Instead, ICB efficacy was robustly identified through the in situ hotspot detection of galectin-3-positive non-proliferating tumor zones enriched in cell death and infiltrated by anti-tumor cytotoxic neutrophils positive for ICAM-1 and neuropilin-1. Such hotspots can be specifically detected using distance-based cluster analyses. Single-cell measurements of the functional states in the tumor microenvironment suggest that both qualitative and quantitative effects might drive effective therapy responses. Overall, the presented study provides (i) complementary biological knowledge about the earliest cell events of induced anti-tumor immunity in breast cancer, including the emergence of resistant cancer stem cells, and (ii) newly identified biomarkers in form of specific spatial cell associations. The approach used standard cell-type-, IHC-, and FFPE-based techniques, and therefore the identified spatial clustering of in situ biomarkers can be readily integrated into existing clinical or research workflows, including in luminal breast cancer. Since early drug responses were detected, the biomarkers could be especially applicable to window-of-opportunity clinical trials to rapidly discriminate between responding and resistant patients, thus limiting unnecessary treatment-associated toxicities.
Collapse
Affiliation(s)
- Zuzana Tatarova
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan C. Blumberg
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - AeSoon Bensen
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gordon B. Mills
- Division of Oncologic Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Lazarus HM, Pitts K, Wang T, Lee E, Buchbinder E, Dougan M, Armstrong DG, Paine R, Ragsdale CE, Boyd T, Rock EP, Gale RP. Recombinant GM-CSF for diseases of GM-CSF insufficiency: Correcting dysfunctional mononuclear phagocyte disorders. Front Immunol 2023; 13:1069444. [PMID: 36685591 PMCID: PMC9850113 DOI: 10.3389/fimmu.2022.1069444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Endogenous granulocyte-macrophage colony-stimulating factor (GM-CSF), identified by its ability to support differentiation of hematopoietic cells into several types of myeloid cells, is now known to support maturation and maintain the metabolic capacity of mononuclear phagocytes including monocytes, macrophages, and dendritic cells. These cells sense and attack potential pathogens, present antigens to adaptive immune cells, and recruit other immune cells. Recombinant human (rhu) GM-CSF (e.g., sargramostim [glycosylated, yeast-derived rhu GM-CSF]) has immune modulating properties and can restore the normal function of mononuclear phagocytes rendered dysfunctional by deficient or insufficient endogenous GM-CSF. Methods We reviewed the emerging biologic and cellular effects of GM-CSF. Experts in clinical disease areas caused by deficient or insufficient endogenous GM-CSF examined the role of GM-CSF in mononuclear phagocyte disorders including autoimmune pulmonary alveolar proteinosis (aPAP), diverse infections (including COVID-19), wound healing, and anti-cancer immune checkpoint inhibitor therapy. Results We discuss emerging data for GM-CSF biology including the positive effects on mitochondrial function and cell metabolism, augmentation of phagocytosis and efferocytosis, and immune cell modulation. We further address how giving exogenous rhu GM-CSF may control or treat mononuclear phagocyte dysfunction disorders caused or exacerbated by GM-CSF deficiency or insufficiency. We discuss how rhu GM-CSF may augment the anti-cancer effects of immune checkpoint inhibitor immunotherapy as well as ameliorate immune-related adverse events. Discussion We identify research gaps, opportunities, and the concept that rhu GM-CSF, by supporting and restoring the metabolic capacity and function of mononuclear phagocytes, can have significant therapeutic effects. rhu GM-CSF (e.g., sargramostim) might ameliorate multiple diseases of GM-CSF deficiency or insufficiency and address a high unmet medical need.
Collapse
Affiliation(s)
- Hillard M. Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Pitts
- Medical Affairs, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Tisha Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elinor Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elizabeth Buchbinder
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Michael Dougan
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - David G. Armstrong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, United States
| | | | - Timothy Boyd
- Clinical Development, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Edwin P. Rock
- Clinical Development, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Robert Peter Gale
- Hematology Centre, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| |
Collapse
|
23
|
de Freitas JVB, Reis AVF, Silva ADO, de Sousa ACC, Martins JRP, Nogueira KAB, da Silva Moreira T, Petrilli R, Eloy JO. Monoclonal Antibodies in Nanosystems as a Strategy for Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
24
|
Mehranzadeh E, Crende O, Badiola I, Garcia-Gallastegi P. What Are the Roles of Proprotein Convertases in the Immune Escape of Tumors? Biomedicines 2022; 10:biomedicines10123292. [PMID: 36552048 PMCID: PMC9776400 DOI: 10.3390/biomedicines10123292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Protein convertases (PCs) play a significant role in post-translational procedures by transforming inactive precursor proteins into their active forms. The role of PCs is crucial for cellular homeostasis because they are involved in cell signaling. They have also been described in many diseases such as Alzheimer's and cancer. Cancer cells are secretory cells that send signals to the tumor microenvironment (TME), remodeling the surrounding space for their own benefits. One of the most important components of the TME is the immune system of the tumor. In this review, we describe recent discoveries that link PCs to the immune escape of tumors. Among PCs, many findings have determined the role of Furin (PC3) as a paramount enzyme causing the TME to induce tumor immune evasion. The overexpression of various cytokines and proteins, for instance, IL10 and TGF-B, moves the TME towards the presence of Tregs and, consequently, immune tolerance. Furthermore, Furin is implicated in the regulation of macrophage activity that contributes to the increased impairment of DCs (dendritic cells) and T effector cells. Moreover, Furin interferes in the MHC Class_1 proteolytic cleavage in the trans-Golgi network. In tumors, the T cytotoxic lymphocytes (CTLs) response is impeded by the PD1 receptor (PD1-R) located on CTLs and its ligand, PDL1, located on cancer cells. The inhibition of Furin is a subtle means of enhancing the antitumor response by repressing PD-1 expression in tumors or macrophage cells. The impacts of other PCs in tumor immune escape have not yet been clarified to the extent that Furin has. Accordingly, the influence of other types of PCs in tumor immune escape is a promising topic for further consideration.
Collapse
Affiliation(s)
- Elham Mehranzadeh
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Olatz Crende
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Iker Badiola
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Nanokide Therapeutics SL, Ed. ZITEK, Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Patricia Garcia-Gallastegi
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Correspondence:
| |
Collapse
|
25
|
Guan X, Bao G, Liang J, Yao Y, Xiang Y, Zhong X. Evolution of small cell lung cancer tumor mutation: from molecular mechanisms to novel viewpoints. Semin Cancer Biol 2022; 86:346-355. [PMID: 35367118 DOI: 10.1016/j.semcancer.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a clinically common malignant tumor originating from the lung neuroendocrine stem cells, which has a poor prognosis and accounts for approximately 15% of all lung cancer cases. However, research on its treatment has been slow, and the 5-year survival rate of patients with SCLC has been < 5% for many years. In recent years, the development and popularization of gene sequencing technology have facilitated the understanding of the gene mutation landscape and tumor evolution of SCLC, thereby leading to a more accurate prediction of the prognosis of SCLC and the development of individualized treatment. In this review, we aimed to discuss the mutation evolution of SCLC from the perspective of a tumor evolution theory and described the sequence of mutation evolution in the occurrence and development of SCLC. In addition, we summarized the existing whole-exome sequencing (WES) data of SCLC cases at our center along with relevant publications on sequencing. Thereafter, we discuss the role of different mutated pathways in the occurrence of SCLC to predict its prognosis more accurately and summarized individualized treatment strategies.
Collapse
Affiliation(s)
- Xiaojiao Guan
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Guangyao Bao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jie Liang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yao Yao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yifan Xiang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
26
|
Xia Y, Yang R, Zhu J, Wang H, Li Y, Fan J, Fu C. Engineered nanomaterials trigger abscopal effect in immunotherapy of metastatic cancers. Front Bioeng Biotechnol 2022; 10:890257. [PMID: 36394039 PMCID: PMC9643844 DOI: 10.3389/fbioe.2022.890257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Despite advances in cancer treatment, metastatic cancer is still the main cause of death in cancer patients. At present, the treatment of metastatic cancer is limited to palliative care. The abscopal effect is a rare phenomenon in which shrinkage of metastatic tumors occurs simultaneously with the shrinkage of a tumor receiving localized treatment, such as local radiotherapy or immunotherapy. Immunotherapy shows promise for cancer treatment, but it also leads to consequences such as low responsiveness and immune-related adverse events. As a promising target-based approach, intravenous or intratumoral injection of nanomaterials provides new opportunities for improving cancer immunotherapy. Chemically modified nanomaterials may be able to trigger the abscopal effect by regulating immune cells. This review discusses the use of nanomaterials in killing metastatic tumor cells through the regulation of immune cells and the prospects of such nanomaterials for clinical use.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Fu,
| |
Collapse
|
27
|
Shahverdi M, Masoumi J, Ghorbaninezhad F, Shajari N, Hajizadeh F, Hassanian H, Alizadeh N, Jafarlou M, Baradaran B. The modulatory role of dendritic cell-T cell cross-talk in breast cancer: Challenges and prospects. Adv Med Sci 2022; 67:353-363. [PMID: 36116207 DOI: 10.1016/j.advms.2022.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/05/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Antigen recognition and presentation are highlighted as the first steps in developing specialized antigen responses. Dendritic cells (DCs) are outstanding professional antigen-presenting cells (APCs) responsible for priming cellular immunity in pathological states, including cancer. However, the diminished or repressed function of DCs is thought to be a substantial mechanism through which tumors escape from the immune system. In this regard, DCs obtained from breast cancer (BC) patients represent a notably weakened potency to encourage specific T-cell responses. Additionally, impaired DC-T-cell cross-talk in BC facilitates the immune evade of cancer cells and is connected with tumor advancement, immune tolerance, and adverse prognosis for patients. In this review we aim to highlight the available knowledge on DC-T-cell interactions in BC aggressiveness and show its therapeutic potential in BC treatment.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Shi ZY, Zhang SX, Li CH, Fan D, Xue Y, Cheng ZH, Wu LX, Lu KY, Wu ZF, Li XF, Liu HY, Li SJ. Differential distribution and prognostic value of CD4+ T cell subsets before and after radioactive iodine therapy in differentiated thyroid cancer with varied curative outcomes. Front Immunol 2022; 13:966550. [PMID: 36091039 PMCID: PMC9459039 DOI: 10.3389/fimmu.2022.966550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Differentiated thyroid cancer is the most frequently diagnosed endocrine tumor. While differentiated thyroid cancers often respond to initial treatment, little is known about the differences in circulating immune cells amongst patients who respond differently. A prospective study of 39 patients with differentiated thyroid cancer was conducted. Serum thyroglobulin levels and thyroid and immunological functions were tested before and after radioactive iodine treatment (RAIT). Efficacy assessments were performed 6 to 12 months after radioactive iodine treatment. Most patients showed an excellent response to radioactive iodine treatment. Before radioactive iodine treatment, the excellent response group had considerably fewer circulating CD4+ T cell subsets than the non-excellent response group. Both the excellent response and non-excellent response groups had considerably lower circulating CD4+ T lymphocyte subsets 30 days after radioactive iodine treatment, but those of the excellent response group were still lower than those of the non-excellent response group. All circulating CD4+ T cell subsets in the excellent response group rose by varying degrees by the 90th day, but only Treg cell amounts increased in the non-excellent response group. Interestingly, in the non-excellent response group, we noticed a steady drop in Th1 cells. However, the bulk of circulating CD4+ T cell subsets between the two groups did not differ appreciably by the 90th day. Finally, we discovered that CD4+ T cell subsets had strong predictive potential, and we thus developed high-predictive-performance models that deliver more dependable prognostic information. In conclusion, in individuals with differentiated thyroid cancer, there is great variation in circulating immune cells, resulting in distinct treatment outcomes. Low absolute CD4+ T cell counts is linked to improved clinical outcomes as well as stronger adaptive and resilience capacities.
Collapse
Affiliation(s)
- Zhi-Yong Shi
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Key laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Cai-Hong Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Di Fan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Xue
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhe-Hao Cheng
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li-Xiang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ke-Yi Lu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhi-Fang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao-Feng Li
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hai-Yan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Hai-Yan Liu, ; Si-Jin Li,
| | - Si-Jin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Hai-Yan Liu, ; Si-Jin Li,
| |
Collapse
|
29
|
Manjili MH, Khazaie K. Pattern recognition of tumor dormancy and relapse beyond cell-intrinsic and cell-extrinsic pathways. Semin Cancer Biol 2022; 78:1-4. [PMID: 34990835 DOI: 10.1016/j.semcancer.2021.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this thematic issue, several mechanisms of tumor dormancy and relapse are discussed. The reviews suggest mutual interactions and communications between malignant cells and other cells in their niche during tumor dormancy. Nevertheless, a complete understanding of tumor dormancy remains elusive. This is because we are getting lost in details of cell-intrinsic and cell-extrinsic molecular pathways without being able to discover the pattern of tumor dormancy. Here, we discuss some conceptual frameworks and methodological approaches that facilitate pattern recognition of tumor dormancy, and propose that settling on certain biological scale such as mitochondria would be the key to discover the pattern of tumor dormancy and relapse.
Collapse
Affiliation(s)
- Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Massey Cancer Center, 401 College Street, Box 980035, Richmond, VA, 23298, United States.
| | | |
Collapse
|
30
|
Zhao Y, Liu L, Sun R, Cui G, Guo S, Han S, Li Z, Bai T, Teng L. Exosomes in cancer immunoediting and immunotherapy. Asian J Pharm Sci 2022; 17:193-205. [PMID: 35582642 PMCID: PMC9091780 DOI: 10.1016/j.ajps.2021.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/14/2021] [Accepted: 12/26/2021] [Indexed: 12/18/2022] Open
Abstract
As an important means of communication among cells, exosomes are being studied more and more widely, especially in the context of cancer immunotherapy. In the phase of tumor immunoediting, exosomes derived from tumor cells and different immune cells have complex and changeable physiological functions, because they carry different proteins and nucleic acid from the source cells. Based on the role of exosomes in the communication between different cells, cancer treatment methods are also under continuous research. This review briefly introduces the molecular composition of exosomes, which is closely related to their secretion mechanism. Subsequently, the role of exosomes encapsulating different information molecules is summarized. The role of exosomes in the three phases of tumor immunoediting is introduced in detail, and the relevant literature of exosomes in the tumor immune microenvironment is summarized by using a novel framework for extracting relevant documents. Finally, it summarizes the various exosome-based immunotherapies currently proposed, as well as the challenges and future prospects of exosomes in tumor immunotherapy.
Collapse
Affiliation(s)
- Yarong Zhao
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Luotong Liu
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Rongze Sun
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Guilin Cui
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Shuyu Guo
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Songren Han
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Ziwei Li
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Tian Bai
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
- Corresponding author.
| | - Lesheng Teng
- School of Life Sciences & College of Computer Science and Technology, Jilin University, Changchun 130012, China
- Corresponding author.
| |
Collapse
|
31
|
Shi H, Li K, Ni Y, Liang X, Zhao X. Myeloid-Derived Suppressor Cells: Implications in the Resistance of Malignant Tumors to T Cell-Based Immunotherapy. Front Cell Dev Biol 2021; 9:707198. [PMID: 34336860 PMCID: PMC8317971 DOI: 10.3389/fcell.2021.707198] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
T lymphocytes function as major players in antigen-mediated cytotoxicity and have become powerful tools for exploiting the immune system in tumor elimination. Several types of T cell-based immunotherapies have been prescribed to cancer patients with durable immunological response. Such strategies include immune checkpoint inhibitors, adoptive T cell therapy, cancer vaccines, oncolytic virus, and modulatory cytokines. However, the majority of cancer patients still failed to take the advantage of these kinds of treatments. Currently, extensive attempts are being made to uncover the potential mechanism of immunotherapy resistance, and myeloid-derived suppressor cells (MDSCs) have been identified as one of vital interpretable factors. Here, we discuss the immunosuppressive mechanism of MDSCs and their contributions to failures of T cell-based immunotherapy. Additionally, we summarize combination therapies to ameliorate the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Houhui Shi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Kai Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yanghong Ni
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|