1
|
Rehim S, Yuan S, Wang H. Mirvetuximab Soravtansine in solid tumors: A systematic review and meta-analysis. PLoS One 2024; 19:e0310736. [PMID: 39729462 DOI: 10.1371/journal.pone.0310736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/05/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Mirvetuximab Soravtansine (MIRV) is a promising antibody‒drug conjugate (ADC) that targets folate receptor alpha (FRα), which is overexpressed in several types of solid tumors. In November 2022, MIRV was approved in the USA for the treatment of adult patients with FRα-positive, platinum-resistant epithelial ovarian, fallopian tube or primary peritoneal cancer who received 1-3 prior systemic treatment regimens. Therefore, high-quality evidence for its efficacy and safety in different cancers is urgently needed. METHODS A systematic search (e.g., PubMed, Embase, Web Of Science, Cochrane Library) was conducted to identify all relevant clinical trials of MIRV alone or in combination with chemo- and/or target-therapies in solid tumors. The primary end-point was median progression-free survival (mPFS). The secondary endpoints were the Objective response rate (ORR) and adverse effects (AEs). A random-effects model was applied. RESULTS The study included nine research studies with a total of 682 patients. The pooled mPFS and pooled ORR were 6.70 months (95% CI 4.54-8.86, I2 = 96.21%) and 36% (95% CI: 28% to 44%, I2 = 76.79%), respectively. Significant differences were observed among intervention regimens and response to platinum. The pooled mPFS of MIRV monotherapy and MIRV+ Bevacizumab (BEV) combined therapy was 4.28 (95% CI 3.90-4.65, I2 = 0.00%) and 7.78 (95% CI 6.62-8.95, I2 = 0.00%), respectively. The pooled ORRs of MIRV monotherapy and MIRV+BEV combined therapy were 25% (95% CI 21%-29%, I2 = 25.20%) and 43% (95% CI 36%-50%, I2 = 0.01%), respectively. The pooled ORRs of the platinum-sensitive, platinum-resistant groups were 59% (95% CI 36%-81%, I2 = 61.88%), 33% (95% CI 25%-40%, I2 = 69.73%), respectively. In addition, we conducted supplementary subgroup analyses to explore the influence of FRα receptor expression levels and the number of prior treatments on treatment outcomes. The most common adverse effects were blurred vision (45.20%), nausea (40.13%), diarrhea (39.52%), fatigue (33.84%) and keratopathy (31.20%). CONCLUSIONS MIRV has significant therapeutic effects in solid tumors, especially when combined with BEV. In platinum-tolerant tumors, the efficacy of MIRV is also considerable. Overall, MIRV is relatively safe in solid tumors, and adverse reactions are relatively rare and mild.
Collapse
Affiliation(s)
- Shamsnur Rehim
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuang Yuan
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongjing Wang
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Salem DP, Bortolin LT, Gusenleitner D, Grosha J, Zabroski IO, Biette KM, Banerjee S, Sedlak CR, Byrne DM, Hamzeh BF, King MS, Cuoco LT, Santos-Heiman T, Barcaskey GN, Yang KS, Duff PA, Winn-Deen ES, Guettouche T, Mattoon DR, Huang EK, Schekman RW, Couvillon AD, Sedlak JC. Colocalization of Cancer-Associated Biomarkers on Single Extracellular Vesicles for Early Detection of Cancer. J Mol Diagn 2024; 26:1109-1128. [PMID: 39326670 DOI: 10.1016/j.jmoldx.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Detection of cancer early, when it is most treatable, remains a significant challenge because of the lack of diagnostic methods sufficiently sensitive to detect nascent tumors. Early-stage tumors are small relative to their tissue of origin, heterogeneous, and infrequently manifest in clinical symptoms. The detection of early-stage tumors is challenging given the lack of tumor-specific indicators (ie, protein biomarkers, circulating tumor DNA) to enable detection using a noninvasive diagnostic assay. To overcome these obstacles, we have developed a liquid biopsy assay that interrogates circulating extracellular vesicles (EVs) to detect tumor-specific biomarkers colocalized on the surface of individual EVs. We demonstrate the technical feasibility of this approach in human cancer cell line-derived EVs, where we show strong correlations between assay signal and cell line gene/protein expression for the ovarian cancer-associated biomarkers bone marrow stromal antigen-2, folate receptor-α, and mucin-1. Furthermore, we demonstrate that detecting distinct colocalized biomarkers on the surface of EVs significantly improves discrimination performance relative to single biomarker measurements. Using this approach, we observe promising discrimination of high-grade serous ovarian cancer versus benign ovarian masses and healthy women in a proof-of-concept clinical study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Randy W Schekman
- Department of Molecular and Cell Biology, Li Ka Shing Center, University of California Berkeley, Berkeley, California
| | | | | |
Collapse
|
3
|
Malik S, Sikander M, Bell N, Zubieta D, Bell MC, Yallapu MM, Chauhan SC. Emerging role of mucins in antibody drug conjugates for ovarian cancer therapy. J Ovarian Res 2024; 17:161. [PMID: 39118097 PMCID: PMC11308542 DOI: 10.1186/s13048-024-01485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Ovarian cancer stands as the deadliest gynecologic malignancy, responsible for nearly 65% of all gynecologic cancer-related deaths. The challenges in early detection and diagnosis, coupled with the widespread intraperitoneal spread of cancer cells and resistance to chemotherapy, contribute significantly to the high mortality rate of this disease. Due to the absence of specific symptoms and the lack of effective screening methods, most ovarian cancer cases are diagnosed at advanced stages. While chemotherapy is a common treatment, it often leads to tumor recurrence, necessitating further interventions. In recent years, antibody-drug conjugates (ADCs) have emerged as a valuable tool in targeted cancer therapy. These complex biotherapeutics combine an antibody that specifically targets tumor specific/associated antigen(s) with a high potency anti-cancer drug through a linker, offering a promising approach for ovarian cancer treatment. The identification of molecular targets in various human tumors has paved the way for the development of targeted therapies, with ADCs being at the forefront of this innovation. By delivering cytotoxic agents directly to tumors and metastatic lesions, ADCs show potential in managing chemo-resistant ovarian cancers. Mucins such as MUC16, MUC13, and MUC1 have shown significantly higher expression in ovarian tumors as compared to normal and/or benign samples, thus have become promising targets for ADC generation. While traditional markers are limited by their elevated levels in non-cancerous conditions, mucins offer a new possibility for targeted treatment in ovarian cancer. This review comprehensively described the potential of mucins for the generation of ADC therapy, highlighting their importance in the quest to improve the outcome of ovarian cancer patients.
Collapse
Affiliation(s)
- Shabnam Malik
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Mohammed Sikander
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Natasha Bell
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Daniel Zubieta
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Maria C Bell
- Sanford Health, Sanford Gynecologic Oncology Clinic, Sioux Falls, SD, 57104, USA
| | - Murali M Yallapu
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Subhash C Chauhan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA.
| |
Collapse
|
4
|
Chen J, Yang L, Ma Y, Zhang Y. Recent advances in understanding the immune microenvironment in ovarian cancer. Front Immunol 2024; 15:1412328. [PMID: 38903506 PMCID: PMC11188340 DOI: 10.3389/fimmu.2024.1412328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
The occurrence of ovarian cancer (OC) is a major factor in women's mortality rates. Despite progress in medical treatments, like new drugs targeting homologous recombination deficiency, survival rates for OC patients are still not ideal. The tumor microenvironment (TME) includes cancer cells, fibroblasts linked to cancer (CAFs), immune-inflammatory cells, and the substances these cells secrete, along with non-cellular components in the extracellular matrix (ECM). First, the TME mainly plays a role in inhibiting tumor growth and protecting normal cell survival. As tumors progress, the TME gradually becomes a place to promote tumor cell progression. Immune cells in the TME have attracted much attention as targets for immunotherapy. Immune checkpoint inhibitor (ICI) therapy has the potential to regulate the TME, suppressing factors that facilitate tumor advancement, reactivating immune cells, managing tumor growth, and extending the survival of patients with advanced cancer. This review presents an outline of current studies on the distinct cellular elements within the OC TME, detailing their main functions and possible signaling pathways. Additionally, we examine immunotherapy rechallenge in OC, with a specific emphasis on the biological reasons behind resistance to ICIs.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yiming Ma
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
5
|
El Bairi K, Madariaga A, Trapani D, Al Jarroudi O, Afqir S. New horizons for platinum-resistant ovarian cancer: insights from the 2023 American Society of Clinical Oncology (ASCO) and European Society for Medical Oncology (ESMO) Annual Meetings. Int J Gynecol Cancer 2024; 34:760-772. [PMID: 38101815 DOI: 10.1136/ijgc-2023-004927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Platinum-resistant ovarian cancer is difficult to treat and has a poor prognosis. Patients with platinum-resistant ovarian cancer have limited treatment options and often have a limited benefit from existing chemotherapeutic agents. There is a lack of contemporary effective anticancer drugs and reliable predictive biomarkers for this aggressive cancer. Recent cutting-edge research presented at the 2023 American Society of Clinical Oncology (ASCO) and the European Society for Medical Oncology (ESMO) Annual Meetings has provided insights into several potential therapeutic targets, such as DNA damage repair proteins, cell-cycle regulators, and immune-modulating agents. In addition, antibody-drug conjugates have provided new practice-changing results in platinum-resistant ovarian cancer. Here, we review the results of research presented at this annual event, with a focus on clinical trials investigating novel treatment approaches for platinum-resistant ovarian cancer, in addition to predictive and prognostic biomarkers for optimal patient selection, and other topics, such as real-world evidence.
Collapse
Affiliation(s)
- Khalid El Bairi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medical Sciences, University Mohammed 6 Polytechnic, Ben Guerir, Morocco
| | - Ainhoa Madariaga
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Dario Trapani
- European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Ouissam Al Jarroudi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
6
|
Li W, Huang L, Qi N, Zhang Q, Qin Z. Upregulation of CALD1 predicted a poor prognosis for platinum-treated ovarian cancer and revealed it as a potential therapeutic resistance target. BMC Genomics 2024; 25:183. [PMID: 38365611 PMCID: PMC10870461 DOI: 10.1186/s12864-024-10056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) has the worst prognosis among gynecological malignancies, most of which are found to be in advanced stage. Cell reduction surgery based on platinum-based chemotherapy is the current standard of treatment for OC, but patients are prone to relapse and develop drug resistance. The objective of this study was to identify a specific molecular target responsible for platinum chemotherapy resistance in OC. RESULTS We screened the protein-coding gene Caldesmon (CALD1), expressed in cisplatin-resistant OC cells in vitro. The prognostic value of CALD1 was evaluated using survival curve analysis in OC patients treated with platinum therapy. The diagnostic value of CALD1 was verified by drawing a Receiver Operating Characteristic (ROC) curve using clinical samples from OC patients. This study analyzed data from various databases including Gene Expression Omnibus (GEO), Human Protein Atlas (HPA), The Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA), GEPIA 2, UALCAN, Kaplan-Meier (KM) plotter, LinkedOmics database, and String. Different expression genes (DEGs) between cisplatin-sensitive and cisplatin-resistant cells were acquired respectively from 5 different datasets of GEO. CALD1 was selected as a common gene from 5 groups DEGs. Online data analysis of HPA and CCLE showed that CALD1 was highly expressed in both normal ovarian tissue and OC. In TCGA database, high expression of CALD1 was associated with disease stage and venous invasion in OC. Patients with high CALD1 expression levels had a worse prognosis under platinum drug intervention, according to Kaplan-Meier (KM) plotter analysis. Analysis of clinical sample data from GEO showed that CALD1 had superior diagnostic value in distinguishing patients with platinum "resistant" and platinum "sensitive" (AUC = 0.816), as well as patients with worse progression-free survival (AUC = 0.741), and those with primary and omental metastases (AUC = 0.811) in ovarian tumor. At last, CYR61 was identified as a potential predictive molecule that may play an important role alongside CALD1 in the development of platinum resistance in OC. CONCLUSIONS CALD1, as a member of cytoskeletal protein, was associated with poor prognosis of platinum resistance in OC, and could be used as a target protein for mechanism study of platinum resistance in OC.
Collapse
Affiliation(s)
- Wei Li
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Nana Qi
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Qinle Zhang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China.
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China.
| |
Collapse
|
7
|
Brassard J, Hughes MR, Dean P, Hernaez DC, Thornton S, Banville AC, Smazynski J, Warren M, Zhang K, Milne K, Gilks CB, Mes-Masson AM, Huntsman DG, Nelson BH, Roskelley CD, McNagny KM. A tumor-restricted glycoform of podocalyxin is a highly selective marker of immunologically cold high-grade serous ovarian carcinoma. Front Oncol 2023; 13:1286754. [PMID: 38188285 PMCID: PMC10771318 DOI: 10.3389/fonc.2023.1286754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Targeted-immunotherapies such as antibody-drug conjugates (ADC), chimeric antigen receptor (CAR) T cells or bispecific T-cell engagers (eg, BiTE®) all aim to improve cancer treatment by directly targeting cancer cells while sparing healthy tissues. Success of these therapies requires tumor antigens that are abundantly expressed and, ideally, tumor specific. The CD34-related stem cell sialomucin, podocalyxin (PODXL), is a promising target as it is overexpressed on a variety of tumor types and its expression is consistently linked to poor prognosis. However, PODXL is also expressed in healthy tissues including kidney podocytes and endothelia. To circumvent this potential pitfall, we developed an antibody, named PODO447, that selectively targets a tumor-associated glycoform of PODXL. This tumor glycoepitope is expressed by 65% of high-grade serous ovarian carcinoma (HGSOC) tumors. Methods In this study we characterize these PODO447-expressing tumors as a distinct subset of HGSOC using four different patient cohorts that include pre-chemotherapy, post-neoadjuvant chemotherapy (NACT) and relapsing tumors as well as tumors from various peritoneal locations. Results We find that the PODO447 epitope expression is similar across tumor locations and negligibly impacted by chemotherapy. Invariably, tumors with high levels of the PODO447 epitope lack infiltrating CD8+ T cells and CD20+ B cells/plasma cells, an immune phenotype consistently associated with poor outcome. Discussion We conclude that the PODO447 glycoepitope is an excellent biomarker of immune "cold" tumors and a candidate for the development of targeted-therapies for these hard-to-treat cancers.
Collapse
Affiliation(s)
- Julyanne Brassard
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Michael R. Hughes
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Pamela Dean
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Diana Canals Hernaez
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Shelby Thornton
- Molecular and Advanced Pathology Core (MAPcore), University of British Columbia, Vancouver, BC, Canada
| | | | | | - Mary Warren
- British Columbia Cancer Agency, Victoria, BC, Canada
| | - Kevin Zhang
- British Columbia Cancer Agency, Victoria, BC, Canada
| | - Katy Milne
- British Columbia Cancer Agency, Victoria, BC, Canada
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - David G. Huntsman
- Molecular and Advanced Pathology Core (MAPcore), University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, University of British Columbia, Vancouver, BC, Canada
| | | | - Calvin D. Roskelley
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M. McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Eskander RN, Moore KN, Monk BJ, Herzog TJ, Annunziata CM, O’Malley DM, Coleman RL. Overcoming the challenges of drug development in platinum-resistant ovarian cancer. Front Oncol 2023; 13:1258228. [PMID: 37916177 PMCID: PMC10616588 DOI: 10.3389/fonc.2023.1258228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/11/2023] [Indexed: 11/03/2023] Open
Abstract
The definition of "platinum-resistant ovarian cancer" has evolved; it now also reflects cancers for which platinum treatment is no longer an option. Standard of care for platinum-resistant ovarian cancer is single-agent, non-platinum chemotherapy with or without bevacizumab, which produces modest response rates, with the greatest benefits achieved using weekly paclitaxel. Several recent phase 3 trials of pretreated patients with prior bevacizumab exposure failed to meet their primary efficacy endpoints, highlighting the challenge in improving clinical outcomes among these patients. Combination treatment with antiangiogenics has improved outcomes, whereas combination strategies with immune checkpoint inhibitors have yielded modest results. Despite extensive translational research, there has been a lack of reliable and established biomarkers that predict treatment response in platinum-resistant ovarian cancer. Additionally, in the platinum-resistant setting, implications for the time between the penultimate dose of platinum therapy and platinum retreatment remain an area of debate. Addressing the unmet need for an effective treatment in the platinum-resistant setting requires thoughtful clinical trial design based on a growing understanding of the disease. Recent cancer drug approvals highlight the value of incorporating molecular phenotypes to better define patients who are more likely to respond to novel therapies. Clinical trials designed per the Gynecologic Cancer InterGroup recommendations-which advocate against relying solely upon the platinum-free interval-will help advance our understanding of recurrent ovarian cancer response where platinum rechallenge in the platinum-resistant setting may be considered. The inclusion of biomarkers in clinical trials will improve patient stratification and potentially demonstrate correlations with biomarker expression and duration of response. With the efficacy of antibody-drug conjugates shown for the treatment of some solid and hematologic cancers, current trials are evaluating the use of various novel conjugates in the setting of platinum-resistant ovarian cancer. Emerging novel treatments coupled with combination trials and biomarker explorations offer encouraging results for potential strategies to improve response rates and prolong progression-free survival in this population with high unmet need. This review outlines existing data from contemporary clinical trials of patients with platinum-resistant ovarian cancer and suggests historical synthetic benchmarks for non-randomized trials.
Collapse
Affiliation(s)
- Ramez N. Eskander
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Rebecca and John Moores Cancer Center, University of California San Diego Health, San Diego, CA, United States
| | - Kathleen N. Moore
- Gynecologic Oncology, Stephenson Cancer Center, The University of Oklahoma College of Medicine, Oklahoma, OK, United States
| | - Bradley J. Monk
- Gynecologic Oncology, HonorHealth Research Institute, University of Arizona College of Medicine, Creighton University School of Medicine, Phoenix, AZ, United States
| | - Thomas J. Herzog
- Obstetrics and Gynecology, University of Cincinnati Cancer Center, Cincinnati, OH, United States
| | | | - David M. O’Malley
- Division of Gynecologic Oncology, The Ohio State University and The James Comprehensive Cancer Center, Columbus, OH, United States
| | - Robert L. Coleman
- Gynecologic Oncology, US Oncology Research, Texas Oncology, The Woodlands, TX, United States
| |
Collapse
|
9
|
Wang Y, Liu L, Yu Y. Mucins and mucinous ovarian carcinoma: Development, differential diagnosis, and treatment. Heliyon 2023; 9:e19221. [PMID: 37664708 PMCID: PMC10468386 DOI: 10.1016/j.heliyon.2023.e19221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Mucinous ovarian carcinoma (MOC) is a rare histological type of epithelial ovarian cancer. It has poor response to conventional platinum-based chemotherapy regimens and PARPi-based maintenance treatment, resulting in short survival and poor prognosis in advanced-disease patients. MOC is characterized by mucus that is mainly composed of mucin in the cystic cavity. Our review discusses in detail the role of mucins in MOC. Mucins are correlated with MOC development. Furthermore, they are valuable in the differential diagnosis of primary and secondary ovarian mucinous tumors. Some types of mucins have been studied in the context of chemoresistance and targeted therapy for ovarian cancer. This review may provide a new direction for the diagnosis and treatment of advanced MOC.
Collapse
Affiliation(s)
- Yicong Wang
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| | - Lifeng Liu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| | - Yongai Yu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| |
Collapse
|
10
|
Al Jarroudi O, El Bairi K, Curigliano G, Afqir S. Antibody-Drug Conjugates: A New Therapeutic Approach for Triple-Negative Breast Cancer. Cancer Treat Res 2023; 188:1-27. [PMID: 38175340 DOI: 10.1007/978-3-031-33602-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subset associated with a worse prognosis and poor response to conventional chemotherapy. Despite recent advances in drug discovery, its management is still a challenge for clinicians, illuminating the unmet need to develop novel treatment approaches. Antibody-drug conjugates (ADC) are innovative oncology drugs that combine the specificity of monoclonal antibodies and the high efficacy of anticancer payloads, to deliver cytotoxic drugs selectively to cancer cells. Various ADCs were investigated for TNBC and have provided a promise for this aggressive women's cancer including the FDA-approved sacituzumab govitecan. In this chapter, we reviewed different ADCs studied for TNBC including their mechanisms of action, efficacy, and tolerability. Moreover, we have also discussed their therapeutic potential based on combinatorial approaches with other targeted therapies in early and metastatic TNBC.
Collapse
Affiliation(s)
- Ouissam Al Jarroudi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco.
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco.
| | - Khalid El Bairi
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Said Afqir
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
| |
Collapse
|
11
|
Taurelli Salimbeni B, Ferraro E, Boscolo Bielo L, Curigliano G. Innovative Therapeutic Approaches for Patients with HER2-Positive Breast Cancer. Cancer Treat Res 2023; 188:237-281. [PMID: 38175349 DOI: 10.1007/978-3-031-33602-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Overexpression of human epidermal growth factor receptor 2 (HER2), a transmembrane tyrosine kinase receptor, has been described in about 15-20% of breast cancer (BC) and is associated with poor outcomes. Trastuzumab is the first anti-HER2 monoclonal antibody (mAB) that blocks receptor activity but it also activates immune response against cancer cells, thus, revolutionizing the prognosis of patients with HER2-positive BC. Over the years, new therapies have been developed, including other mAbs and tyrosine kinase inhibitors (TKIs) that required multimodal approaches with chemotherapy to optimize their anticancer activity. This chapter gives a comprehensive overview of the last advancements including new approaches and future combinations, which seem to be very promising in overcoming resistance to the traditional anti-HER2 treatments. A modern therapeutic algorithm should include treatment options based on tumour patterns and a patient-centred approach. A proper patient's selection is crucial to derive maximal benefits from a treatment strategy and emerging biomarkers should be integrated along with the HER2 status, which is currently the only validated biomarker in the context of HER2-positive disease. These biomarkers might include molecular features with reported prognostic/predictive significance, such as phosphatidylinositol 3' -kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathways, programmed cell death protein ligand 1 (PD-L1), and tumour-infiltrating lymphocytes (TILs), which all affect prognosis and response to treatments.
Collapse
Affiliation(s)
- Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via G. Ripamonti 435, 20141, Milan, Italy
- Department of Clinical and Molecular Medicine, Oncology Unit, "La Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Emanuela Ferraro
- Breast Cancer Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via G. Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via G. Ripamonti 435, 20141, Milan, Italy.
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
12
|
Wu X, Shen S, Qin J, Fei W, Fan F, Gu J, Shen T, Zhang T, Cheng X. High co-expression of SLC7A11 and GPX4 as a predictor of platinum resistance and poor prognosis in patients with epithelial ovarian cancer. BJOG 2022; 129 Suppl 2:40-49. [PMID: 36485069 PMCID: PMC10108211 DOI: 10.1111/1471-0528.17327] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim was to assess the expression levels of SLC7A11 and GPX4 in relation to platinum resistance and prognosis in patients with epithelial ovarian cancer (EOC). DESIGN A retrospective cohort study. SETTING Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China. POPULATION OR SAMPLE We included 192 eligible patients from hospital between January 2002 and December 2018. METHODS We retrospectively analysed the medical records of patients with EOC. Surgical specimens of EOC were stained for SLC7A11 and GPX4. Survival analysis was performed using the Kaplan-Meier and Cox regression methods. MAIN OUTCOME MEASURES Clinical end points include platinum-free interval (PFI), progression-free survival (PFS) and overall survival (OS). RESULTS Patients with high co-expression levels of SLC7A11 and GPX4 had a 60-fold higher risk of platinum resistance compared with those with low co-expression (risk ratio, 60.46; 95% confidence interval [CI] 22.76-160.58; p < 0.001). Moreover, high co-expression level of SLC7A11 and GPX4 was an independent prognostic factor for poor OS (p < 0.001, hazard ratio [HR] 4.44, 95% CI, 2.77-7.14) and poor PFS (p < 0.001, HR = 5.73, 95% CI, 3.86-8.73). For in vitro experiments, SLC7A11 and GPX4 expression were both upregulated in platinum-resistant cells compared with their parental ovarian cancer cells, and siRNA-induced SLC7A11 and GPX4 inhibition decreased platinum resistance. CONCLUSIONS High expression levels of SLC7A11 and GPX4 are associated with platinum resistance in EOC patients. High co-expression of SLC7A11 and GPX4 may be a significant independent prognostic factor and a potential therapeutic target for platinum resistance in EOC patients.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Gynaecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhen Shen
- Department of Gynaecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiale Qin
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Fei
- Department of Pharmaceutics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengyun Fan
- Department of Gynaecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxin Gu
- Department of Gynaecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Shen
- Department of Gynaecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Zhang
- Department of Gynaecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Cheng
- Department of Gynaecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
El Bairi K, Al Jarroudi O, Afqir S. Ovarian cancer in Morocco: Time to act is now. Gynecol Oncol Rep 2021; 37:100857. [PMID: 34541276 PMCID: PMC8436074 DOI: 10.1016/j.gore.2021.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
•Ovarian cancer seems is a neglected cancer in Morocco.•No publications that impact clinical practice were published in the last decade.•In this editorial, we provide our vision to develop this ignored area of gynecologic oncology.
Collapse
Affiliation(s)
- Khalid El Bairi
- Department of Medical Oncology, Mohammed VI University , Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed I University, Oujda, Morocco
| | - Ouissam Al Jarroudi
- Department of Medical Oncology, Mohammed VI University , Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed I University, Oujda, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohammed VI University , Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed I University, Oujda, Morocco
| |
Collapse
|