1
|
Huang L, Jiang C, Yan M, Wan W, Li S, Xiang Z, Wu J. The oral-gut microbiome axis in breast cancer: from basic research to therapeutic applications. Front Cell Infect Microbiol 2024; 14:1413266. [PMID: 39639864 PMCID: PMC11617537 DOI: 10.3389/fcimb.2024.1413266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
As a complicated and heterogeneous condition, breast cancer (BC) has posed a tremendous public health challenge across the world. Recent studies have uncovered the crucial effect of human microbiota on various perspectives of health and disease, which include cancer. The oral-gut microbiome axis, particularly, have been implicated in the occurrence and development of colorectal cancer through their intricate interactions with host immune system and modulation of systemic inflammation. However, the research concerning the impact of oral-gut microbiome axis on BC remains scarce. This study focused on comprehensively reviewing and summarizing the latest ideas about the potential bidirectional relation of the gut with oral microbiota in BC, emphasizing their potential impact on tumorigenesis, treatment response, and overall patient outcomes. This review can reveal the prospect of tumor microecology and propose a novel viewpoint that the oral-gut microbiome axis can be a breakthrough point in future BC studies.
Collapse
Affiliation(s)
- Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shuxiang Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
De Filippo C, Chioccioli S, Meriggi N, Troise AD, Vitali F, Mejia Monroy M, Özsezen S, Tortora K, Balvay A, Maudet C, Naud N, Fouché E, Buisson C, Dupuy J, Bézirard V, Chevolleau S, Tondereau V, Theodorou V, Maslo C, Aubry P, Etienne C, Giovannelli L, Longo V, Scaloni A, Cavalieri D, Bouwman J, Pierre F, Gérard P, Guéraud F, Caderni G. Gut microbiota drives colon cancer risk associated with diet: a comparative analysis of meat-based and pesco-vegetarian diets. MICROBIOME 2024; 12:180. [PMID: 39334498 PMCID: PMC11438057 DOI: 10.1186/s40168-024-01900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/05/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) risk is strongly affected by dietary habits with red and processed meat increasing risk, and foods rich in dietary fibres considered protective. Dietary habits also shape gut microbiota, but the role of the combination between diet, the gut microbiota, and the metabolite profile on CRC risk is still missing an unequivocal characterisation. METHODS To investigate how gut microbiota affects diet-associated CRC risk, we fed Apc-mutated PIRC rats and azoxymethane (AOM)-induced rats the following diets: a high-risk red/processed meat-based diet (MBD), a normalised risk diet (MBD with α-tocopherol, MBDT), a low-risk pesco-vegetarian diet (PVD), and control diet. We then conducted faecal microbiota transplantation (FMT) from PIRC rats to germ-free rats treated with AOM and fed a standard diet for 3 months. We analysed multiple tumour markers and assessed the variations in the faecal microbiota using 16S rRNA gene sequencing together with targeted- and untargeted-metabolomics analyses. RESULTS In both animal models, the PVD group exhibited significantly lower colon tumorigenesis than the MBD ones, consistent with various CRC biomarkers. Faecal microbiota and its metabolites also revealed significant diet-dependent profiles. Intriguingly, when faeces from PIRC rats fed these diets were transplanted into germ-free rats, those transplanted with MBD faeces developed a higher number of preneoplastic lesions together with distinctive diet-related bacterial and metabolic profiles. PVD determines a selection of nine taxonomic markers mainly belonging to Lachnospiraceae and Prevotellaceae families exclusively associated with at least two different animal models, and within these, four taxonomic markers were shared across all the three animal models. An inverse correlation between nonconjugated bile acids and bacterial genera mainly belonging to the Lachnospiraceae and Prevotellaceae families (representative of the PVD group) was present, suggesting a potential mechanism of action for the protective effect of these genera against CRC. CONCLUSIONS These results highlight the protective effects of PVD while reaffirming the carcinogenic properties of MBD diets. In germ-free rats, FMT induced changes reminiscent of dietary effects, including heightened preneoplastic lesions in MBD rats and the transmission of specific diet-related bacterial and metabolic profiles. Importantly, to the best of our knowledge, this is the first study showing that diet-associated cancer risk can be transferred with faeces, establishing gut microbiota as a determinant of diet-associated CRC risk. Therefore, this study marks the pioneering demonstration of faecal transfer as a means of conveying diet-related cancer risk, firmly establishing the gut microbiota as a pivotal factor in diet-associated CRC susceptibility. Video Abstract.
Collapse
Grants
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- JTC-2017-7 Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on "Interrelation of the Intestinal Microbiome, Diet and Health"
- Expression of interest # 895 HDHL INTIMIC-Knowledge Platform on food, diet, intestinal microbiomics and human health
- Expression of interest # 895 HDHL INTIMIC-Knowledge Platform on food, diet, intestinal microbiomics and human health
- PE00000003 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15 March 2022 of Italian Ministry of University and Research funded by the European Union - NextGenerationEU; Project title "ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security - Working ON Foods"
- PE00000003 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15 March 2022 of Italian Ministry of University and Research funded by the European Union - NextGenerationEU; Project title "ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security - Working ON Foods"
- PE00000003 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15 March 2022 of Italian Ministry of University and Research funded by the European Union - NextGenerationEU; Project title "ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security - Working ON Foods"
- ECS00000017 European Union - NextGenerationEU - National Recovery and Resilience Plan, Mission 4 Component 2 - Investment 1.5 - THE - Tuscany Health Ecosystem
- ECS00000017 European Union - NextGenerationEU - National Recovery and Resilience Plan, Mission 4 Component 2 - Investment 1.5 - THE - Tuscany Health Ecosystem
- G. Caderni University of Florence (Fondo ex-60%), Italy
- Joint Programming Initiative a Healthy Diet for a Healthy Life-Intestinal Microbiomics (JPI HDHL-INTIMIC) Call for Joint Transnational Research Proposals on “Interrelation of the Intestinal Microbiome, Diet and Health”
- National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15 March 2022 of Italian Ministry of University and Research funded by the European Union – NextGenerationEU; Project title “ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security – Working ON Foods”
Collapse
Affiliation(s)
- Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy.
| | - Sofia Chioccioli
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Antonio Dario Troise
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Mariela Mejia Monroy
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Serdar Özsezen
- Netherlands Organisation for Applied Scientific Research, Zeist, Netherlands
| | - Katia Tortora
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Aurélie Balvay
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Maudet
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nathalie Naud
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Edwin Fouché
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Charline Buisson
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Jacques Dupuy
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Valérie Bézirard
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Sylvie Chevolleau
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Valérie Tondereau
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Vassilia Theodorou
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Claire Maslo
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Perrine Aubry
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Camille Etienne
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Lisa Giovannelli
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | | | - Jildau Bouwman
- Netherlands Organisation for Applied Scientific Research, Zeist, Netherlands
| | - Fabrice Pierre
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Françoise Guéraud
- Toxalim, INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31027, France
| | - Giovanna Caderni
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy.
- NEUROFARBA Department, Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| |
Collapse
|
3
|
Deng X, Yang H, Tian L, Ling J, Ruan H, Ge A, Liu L, Fan H. Bibliometric analysis of global research trends between gut microbiota and breast cancer: from 2013 to 2023. Front Microbiol 2024; 15:1393422. [PMID: 39144230 PMCID: PMC11322113 DOI: 10.3389/fmicb.2024.1393422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background Breast cancer is the most prevalent cancer globally and is associated with significant mortality. Recent research has provided crucial insights into the role of gut microbiota in the onset and progression of breast cancer, confirming its impact on the disease's management. Despite numerous studies exploring this relationship, there is a lack of comprehensive bibliometric analyses to outline the field's current state and emerging trends. This study aims to fill that gap by analyzing key research directions and identifying emerging hotspots. Method Publications from 2013 to 2023 were retrieved from the Web of Science Core Collection database. The VOSviewer, R language and SCImago Graphica software were utilized to analyze and visualize the volume of publications, countries/regions, institutions, authors, and keywords in this field. Results A total of 515 publications were included in this study. The journal Cancers was identified as the most prolific, contributing 21 papers. The United States and China were the leading contributors to this field. The University of Alabama at Birmingham was the most productive institution. Peter Bai published the most papers, while James J. Goedert was the most cited author. Analysis of highly cited literature and keyword clustering confirmed a close relationship between gut microbiota and breast cancer. Keywords such as "metabolomics" and "probiotics" have been prominently highlighted in the keyword analysis, indicating future research hotspots in exploring the interaction between metabolites in the breast cancer microenvironment and gut microbiota. Additionally, these keywords suggest significant interest in the therapeutic potential of probiotics for breast cancer treatment. Conclusion Research on the relationship between gut microbiota and breast cancer is expanding. Attention should be focused on understanding the mechanisms of their interaction, particularly the metabolite-microbiota-breast cancer crosstalk. These insights have the potential to advance prevention, diagnosis, and treatment strategies for breast cancer. This bibliometric study provides a comprehensive assessment of the current state and future trends of research in this field, offering valuable perspectives for future studies on gut microbiota and breast cancer.
Collapse
Affiliation(s)
- Xianguang Deng
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua Yang
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lingjia Tian
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Ling
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Ruan
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Anqi Ge
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hongqiao Fan
- Department of Cosmetic and Plastic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Bhagavatula D, Hasan TN, Vohra H, Khorami S, Hussain A. Delineating the Antiapoptotic Property of Apigenin as an Antitumor Agent: A Computational and In Vitro Study on HeLa Cells. ACS OMEGA 2024; 9:24751-24760. [PMID: 38882173 PMCID: PMC11170653 DOI: 10.1021/acsomega.4c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Apigenin, a flavonoid, is reported to have multiple health benefits including cancer prevention; this study evaluates the drug likeliness and Swiss ADME properties of apigenin. Apoptosis, which is a key hallmark of cancer, is associated with the deregulation of the balance between proapoptotic proteins and antiapoptotic proteins such as BCL-2,BCL-xl, BFL-1, BCL-w, BRAG-16, and MCL-1. The docking studies of apigenin with the mentioned proteins was performed to identify the interactions between the ligand and proteins, which suggested that apigenin was able to bind to most of the proteins similar to the inhibitory molecules of its native structure. A remarkable reduction in the total energy after energy minimization of apigenin-antiapoptotic protein complexes suggested increased stability of the docked complexes. The same complexes were found to be stable over a 10 ns period of molecular simulation at 300 K. These findings advocated the study to evaluate apigenin's potential to inhibit the HeLa cells at 5, 10, and 15 μM concentrations in the clonogenic assay. Apigenin inhibited the colony-forming ability of HeLa cells in a dose-dependent manner over a fortnight. Light microscopy of the treated cells displayed the morphological evidence characteristic of apoptosis in HeLa cells such as blebbing, spike formation, cytoplasmic oozing, and nuclear fragmentation. Thus, these results clearly indicate that apigenin may be used as a potential chemopreventive agent in cervical cancer management.
Collapse
Affiliation(s)
- Deepika Bhagavatula
- School of Life Sciences,Manipal Academy of Higher Education, Dubai 345050 ,United Arab Emirates
| | - Tarique Noorul Hasan
- School of Life Sciences,Manipal Academy of Higher Education, Dubai 345050 ,United Arab Emirates
- Department of Molecular Genetics, Sh. Tahnoon Bin Mohammed Medical City (STMC), Al Ain, Pure Health, Abu Dhabi 17822, United Arab Emirates
| | - Huzefa Vohra
- School of Life Sciences,Manipal Academy of Higher Education, Dubai 345050 ,United Arab Emirates
| | - Sherareh Khorami
- School of Life Sciences,Manipal Academy of Higher Education, Dubai 345050 ,United Arab Emirates
| | - Arif Hussain
- School of Life Sciences,Manipal Academy of Higher Education, Dubai 345050 ,United Arab Emirates
| |
Collapse
|
5
|
Filippou C, Themistocleous SC, Marangos G, Panayiotou Y, Fyrilla M, Kousparou CA, Pana ZD, Tsioutis C, Johnson EO, Yiallouris A. Microbial Therapy and Breast Cancer Management: Exploring Mechanisms, Clinical Efficacy, and Integration within the One Health Approach. Int J Mol Sci 2024; 25:1110. [PMID: 38256183 PMCID: PMC10816061 DOI: 10.3390/ijms25021110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review elucidates the profound relationship between the human microbiome and breast cancer management. Recent findings highlight the significance of microbial alterations in tissue, such as the gut and the breast, and their role in influencing the breast cancer risk, development, progression, and treatment outcomes. We delve into how the gut microbiome can modulate systemic inflammatory responses and estrogen levels, thereby impacting cancer initiation and therapeutic drug efficacy. Furthermore, we explore the unique microbial diversity within breast tissue, indicating potential imbalances brought about by cancer and highlighting specific microbes as promising therapeutic targets. Emphasizing a holistic One Health approach, this review underscores the importance of integrating insights from human, animal, and environmental health to gain a deeper understanding of the complex microbe-cancer interplay. As the field advances, the strategic manipulation of the microbiome and its metabolites presents innovative prospects for the enhancement of cancer diagnostics and therapeutics. However, rigorous clinical trials remain essential to confirm the potential of microbiota-based interventions in breast cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andreas Yiallouris
- School of Medicine, European University Cyprus, 6 Diogenis Str., 2404 Engomi, P.O. Box 22006, Nicosia 1516, Cyprus
| |
Collapse
|
6
|
KavianFar A, Taherkhani H, Ahmadi A, Salimi M, Lanjanian H, Masoudi-Nejad A. Restoring the epigenetic landscape of lung microbiome: potential therapeutic approach for chronic respiratory diseases. BMC Pulm Med 2024; 24:2. [PMID: 38166878 PMCID: PMC10759706 DOI: 10.1186/s12890-023-02789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and bronchiectasis, present significant threats to global health. Recent studies have revealed the crucial role of the lung microbiome in the development of these diseases. Pathogens have evolved complex strategies to evade the immune response, with the manipulation of host cellular epigenetic mechanisms playing a pivotal role. There is existing evidence regarding the effects of Pseudomonas on epigenetic modifications and their association with pulmonary diseases. Therefore, this study aims to directly assess the connection between Pseudomonas abundance and chronic respiratory diseases. We hope that our findings will shed light on the molecular mechanisms behind lung pathogen infections. METHODS We analyzed data from 366 participants, including individuals with COPD, acute exacerbations of COPD (AECOPD), bronchiectasis, and healthy individuals. Previous studies have given limited attention to the impact of Pseudomonas on these groups and their comparison with healthy individuals. Two independent datasets from different ethnic backgrounds were used for external validation. Each dataset separately analyzed bacteria at the genus level. RESULTS The study reveals that Pseudomonas, a bacterium, was consistently found in high concentrations in all chronic lung disease datasets but it was present in very low abundance in the healthy datasets. This suggests that Pseudomonas may influence cellular mechanisms through epigenetics, contributing to the development and progression of chronic respiratory diseases. CONCLUSIONS This study emphasizes the importance of understanding the relationship between the lung microbiome, epigenetics, and the onset of chronic pulmonary disease. Enhanced recognition of molecular mechanisms and the impact of the microbiome on cellular functions, along with a better understanding of these concepts, can lead to improved diagnosis and treatment.
Collapse
Affiliation(s)
- Azadeh KavianFar
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Hamidreza Taherkhani
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Tehran, Iran.
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Lanjanian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Mohanan A, Harilal SL, Plakkot B, Pottakkat B, Kanakkaparambil R. Nutritional Epigenetics and Gut Microbiome. EPIGENETICS AND HUMAN HEALTH 2024:121-159. [DOI: 10.1007/978-3-031-54215-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Xiong D, Zhang L, Sun ZJ. Targeting the epigenome to reinvigorate T cells for cancer immunotherapy. Mil Med Res 2023; 10:59. [PMID: 38044445 PMCID: PMC10694991 DOI: 10.1186/s40779-023-00496-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICIs) has revolutionized the field of cancer treatment; however, ICI efficacy is constrained by progressive dysfunction of CD8+ tumor-infiltrating lymphocytes (TILs), which is termed T cell exhaustion. This process is driven by diverse extrinsic factors across heterogeneous tumor immune microenvironment (TIME). Simultaneously, tumorigenesis entails robust reshaping of the epigenetic landscape, potentially instigating T cell exhaustion. In this review, we summarize the epigenetic mechanisms governing tumor microenvironmental cues leading to T cell exhaustion, and discuss therapeutic potential of targeting epigenetic regulators for immunotherapies. Finally, we outline conceptual and technical advances in developing potential treatment paradigms involving immunostimulatory agents and epigenetic therapies.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China
| | - Lu Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
9
|
Mousavinasab F, Karimi R, Taheri S, Ahmadvand F, Sanaaee S, Najafi S, Halvaii MS, Haghgoo A, Zamany M, Majidpoor J, Khosravifar M, Baniasadi M, Talebi M, Movafagh A, Aghaei-Zarch SM, Khorram N, Farnia P, Kalhor K. Microbiome modulation in inflammatory diseases: Progress to microbiome genetic engineering. Cancer Cell Int 2023; 23:271. [PMID: 37951913 PMCID: PMC10640760 DOI: 10.1186/s12935-023-03095-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/07/2023] [Indexed: 11/14/2023] Open
Abstract
Recent developments in sequencing technology and analytical approaches have allowed researchers to show that the healthy gut microbiome is very varied and capable of performing a wide range of tasks. The importance of gut microbiota in controlling immunological, neurological, and endocrine function is becoming well-recognized. Thereby, numerous inflammatory diseases, including those that impact the gastrointestinal system, as well as less obvious ones, including Rheumatoid arthritis (RA), cancer, gestational diabetes (GD), type 1 diabetes (T1D), and type 2 diabetes (T2D), have been linked to dysbiotic gut microbiota. Microbiome engineering is a rapidly evolving frontier for solutions to improve human health. Microbiome engineering seeks to improve the function of an ecosystem by manipulating the composition of microbes. Thereby, generating potential therapies against metabolic, inflammatory, and immunological diseases will be possible through microbiome engineering. This essay first provides an overview of the traditional technological instruments that might be used for microbiome engineering, such as Fecal Microbiota Transplantation (FMT), prebiotics, and probiotics. Moreover, we will also discuss experimental genetic methods such as Metagenomic Alteration of Gut microbiome by In situ Conjugation (MAGIC), Bacteriophage, and Conjugative plasmids in manipulating intestinal microbiota.
Collapse
Affiliation(s)
| | - Ronika Karimi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Taheri
- Department of Microbiology, Shahr Qods Branch, Islamic Azad University, Tehran, Iran
| | | | - Saameh Sanaaee
- Department of New Science, Faculty of Cellular and Molecular biology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Alireza Haghgoo
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Marzieh Zamany
- Shahid Akbarabadi Clinical Research Development Unit, Iran University of medical Science, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mina Khosravifar
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mohammad Baniasadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nastaran Khorram
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Poopak Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA
| |
Collapse
|
10
|
Ye Z, Song G, Liang J, Yi S, Gao Y, Jiang H. Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer. BMC Cancer 2023; 23:617. [PMID: 37400791 DOI: 10.1186/s12885-023-10922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/05/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. METHODS After screening the colorectal cancer methylation dataset, diagnostic sites were identified via survival analysis, difference analysis, and ridge regression dimensionality reduction. The correlation between the selected methylation sites and the estimation of immune cell infiltration was analyzed. The accuracy of the diagnosis was verified using different datasets and the 10-fold crossover method. RESULTS According to Gene Ontology, the main enrichment pathways of genes with hypermethylation sites are axon development, axonogenesis, and pattern specification processes. However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggests the following main enrichment pathways: neuroactive ligand-receptor interaction, calcium signaling, and cAMP signaling. In The Cancer Genome Atlas (TCGA) and GSE131013 datasets, the area under the curve of cg07628404 was > 0.95. For the NaiveBayes machine model of cg02604524, cg07628404, and cg27364741, the accuracies of 10-fold cross-validation in the GSE131013 and TCGA datasets were 95% and 99.4%, respectively. The survival prognosis of the hypomethylated group (cg02604524, cg07628404, and cg27364741) was better than that of the hypermethylated group. The mutation risk did not differ between the hypermethylated and hypomethylated groups. The correlation coefficient between the three loci and CD4 central memory T cells, hematological stem cells, and other immune cells was not high (p < 0.05). CONCLUSION In cases of colorectal cancer, the main enrichment pathway of genes with hypermethylated sites was axon and nerve development. In the biopsy tissues, the hypermethylation sites were diagnostic for colorectal cancer, and the NaiveBayes machine model of the three loci showed good diagnostic performance. Site (cg02604524, cg07628404, and cg27364741) hypermethylation predicts poor survival for colorectal cancer. Three methylation sites were weakly correlated with individual immune cell infiltration. Hypermethylation sites may be a useful repository for diagnosing colorectal cancer.
Collapse
Affiliation(s)
- Zhen Ye
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Guangle Song
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Jianwei Liang
- Department of General Surgery, Tai'an City Center Hospital, Taian, 271000, Shandong, China
| | - Shuying Yi
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Yuqi Gao
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, 250013, Shandong, China.
| | - Hanming Jiang
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, 250013, Shandong, China.
| |
Collapse
|
11
|
Kalia VC, Lee JK, Rangappa KS, Gupta VK. Special issue Microbes in Cancer Research in 'Seminar in Cancer Biology' 2021. Semin Cancer Biol 2022; 86:1102-1104. [PMID: 34979275 DOI: 10.1016/j.semcancer.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | | | - Vijai Kumar Gupta
- Center for Safe and Improved Food, & Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
12
|
Wu H, Ganguly S, Tollefsbol TO. Modulating Microbiota as a New Strategy for Breast Cancer Prevention and Treatment. Microorganisms 2022; 10:microorganisms10091727. [PMID: 36144329 PMCID: PMC9503838 DOI: 10.3390/microorganisms10091727] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer (BC) is the most common cancer in women in the United States. There has been an increasing incidence and decreasing mortality rate of BC cases over the past several decades. Many risk factors are associated with BC, such as diet, aging, personal and family history, obesity, and some environmental factors. Recent studies have shown that healthy individuals and BC patients have different microbiota composition, indicating that microbiome is a new risk factor for BC. Gut and breast microbiota alterations are associated with BC prognosis. This review will evaluate altered microbiota populations in gut, breast tissue, and milk of BC patients, as well as mechanisms of interactions between microbiota modulation and BC. Probiotics and prebiotics are commercially available dietary supplements to alleviate side-effects of cancer therapies. They also shape the population of human gut microbiome. This review evaluates novel means of modulating microbiota by nutritional treatment with probiotics and prebiotics as emerging and promising strategies for prevention and treatment of BC. The mechanistic role of probiotic and prebiotics partially depend on alterations in estrogen metabolism, systematic immune regulation, and epigenetics regulation.
Collapse
Affiliation(s)
- Huixin Wu
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
- Integrative Center for Aging Research, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
- University Wide Microbiome Center, University of Alabama Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573; Fax: +1-205-975-6097
| |
Collapse
|
13
|
Stella GM, Scialò F, Bortolotto C, Agustoni F, Sanci V, Saddi J, Casali L, Corsico AG, Bianco A. Pragmatic Expectancy on Microbiota and Non-Small Cell Lung Cancer: A Narrative Review. Cancers (Basel) 2022; 14:cancers14133131. [PMID: 35804901 PMCID: PMC9264919 DOI: 10.3390/cancers14133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
It is well known that lung cancer relies on a number of genes aberrantly expressed because of somatic lesions. Indeed, the lungs, based on their anatomical features, are organs at a high risk of development of extremely heterogeneous tumors due to the exposure to several environmental toxic agents. In this context, the microbiome identifies the whole assemblage of microorganisms present in the lungs, as well as in distant organs, together with their structural elements and metabolites, which actively interact with normal and transformed cells. A relevant amount of data suggest that the microbiota plays a role not only in cancer disease predisposition and risk but also in its initiation and progression, with an impact on patients’ prognosis. Here, we discuss the mechanistic insights of the complex interaction between lung cancer and microbiota as a relevant component of the microenvironment, mainly focusing on novel diagnostic and therapeutic objectives.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
- Correspondence:
| | - Filippo Scialò
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.S.); (A.B.)
- Ceinge Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Chandra Bortolotto
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia Medical School, 27100 Pavia, Italy;
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Francesco Agustoni
- Unit of Oncology, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Vincenzo Sanci
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
| | - Jessica Saddi
- Radiation Therapy IRCCS Unit, Department of Medical Sciences and Infective Diseases, Policlinico San Matteo Foundation, 27100 Pavia, Italy;
- University of Milano-Bicocca, 20900 Monza, Italy
| | - Lucio Casali
- Honorary Consultant Student Support and Services, University of Pavia, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.S.); (A.B.)
| |
Collapse
|
14
|
Microbiome in cancer: Role in carcinogenesis and impact in therapeutic strategies. Biomed Pharmacother 2022; 149:112898. [PMID: 35381448 DOI: 10.1016/j.biopha.2022.112898] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is the world's second-leading cause of death, and the involvement of microbes in a range of diseases, including cancer, is well established. The gut microbiota is known to play an important role in the host's health and physiology. The gut microbiota and its metabolites may activate immunological and cellular pathways that kill invading pathogens and initiate a cancer-fighting immune response. Cancer is a multiplex illness, characterized by the persistence of several genetic and physiological anomalies in malignant tissue, complicating disease therapy and control. Humans have coevolved with a complex bacterial, fungal, and viral microbiome over millions of years. Specific long-known epidemiological links between certain bacteria and cancer have recently been grasped at the molecular level. Similarly, advances in next-generation sequencing technology have enabled detailed research of microbiomes, such as the human gut microbiome, allowing for the finding of taxonomic and metabolomic linkages between the microbiome and cancer. These investigations have found causative pathways for both microorganisms within tumors and bacteria in various host habitats far from tumors using direct and immunological procedures. Anticancer diagnostic and therapeutic solutions could be developed using this review to tackle the threat of anti-cancer medication resistance as well through the wide-ranging involvement of the microbiota in regulating host metabolic and immunological homeostasis. We reviewed the significance of gut microbiota in cancer initiation as well as cancer prevention. We look at certain microorganisms that may play a role in the development of cancer. Several bacteria with probiotic qualities may be employed as bio-therapeutic agents to re-establish the microbial population and trigger a strong immune response to remove malignancies, and further study into this should be conducted.
Collapse
|
15
|
Vitorino M, Baptista de Almeida S, Alpuim Costa D, Faria A, Calhau C, Azambuja Braga S. Human Microbiota and Immunotherapy in Breast Cancer - A Review of Recent Developments. Front Oncol 2022; 11:815772. [PMID: 35155205 PMCID: PMC8832278 DOI: 10.3389/fonc.2021.815772] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy and the second cause of cancer-specific death in women from high-income countries. Infectious agents are the third most important risk factor for cancer incidence after tobacco and obesity. Dysbiosis emerged as a key player that may influence cancer development, treatment, and prognosis through diverse biological processes. Metastatic BC has a highly variable clinical course, and more recently, immune checkpoint inhibitors (ICIs) have become an emerging therapy in BC. Even with standardised treatment protocols, patients do not respond similarly, reflecting each individual´s heterogeneity, unique BC features, and tumour microenvironment. However, there is insufficient data regarding predictive factors of response to available treatments for BC. The microbiota could be a crucial piece of the puzzle to anticipate better individual BC risk and prognosis, pharmacokinetics, pharmacodynamics, and clinical efficacy. In recent years, it has been shown that gut microbiota may modulate cancer treatments' efficacy and adverse effects, and it is also apparent that both cancer itself and anticancer therapies interact with gut microbiota bidirectionally. Moreover, it has been proposed that certain gut microbes may protect the host against inappropriate inflammation and modulate the immune response. Future clinical research will determine if microbiota may be a prognostic and predictive factor of response to ICI and/or its side effects. Also, modulation of microbiota can be used to improve outcomes in BC patients. In this review, we discuss the potential implications of metabolomics and pharmacomicrobiomics that might impact BC immunotherapy treatment.
Collapse
Affiliation(s)
- Marina Vitorino
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
| | | | - Diogo Alpuim Costa
- Breast Cancer Unit, CUF Oncologia, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Faria
- NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Conceição Calhau
- NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
- CINTESIS – Center for Health Technology and Services Research, NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Sofia Azambuja Braga
- Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal
- Breast Cancer Unit, CUF Oncologia, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
| |
Collapse
|
16
|
El-Sayed A, Aleya L, Kamel M. Microbiota and epigenetics: promising therapeutic approaches? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49343-49361. [PMID: 34319520 PMCID: PMC8316543 DOI: 10.1007/s11356-021-15623-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/20/2021] [Indexed: 04/15/2023]
Abstract
The direct/indirect responsibility of the gut microbiome in disease induction in and outside the digestive tract is well studied. These results are usually from the overpopulation of certain species on the cost of others, interaction with beneficial microflora, interference with normal epigenetic control mechanisms, or suppression of the immune system. Consequently, it is theoretically possible to cure such disorders by rebalancing the microbiome inside our bodies. This can be achieved by changing the lifestyle pattern and diet or by supplementation with beneficial bacteria or their metabolites. Various approaches have been explored to manipulate the normal microbial inhabitants, including nutraceutical, supplementations with prebiotics, probiotics, postbiotics, synbiotics, and antibiotics, or through microbiome transplantation (fecal, skin, or vaginal microbiome transplantation). In the present review, the interaction between the microbiome and epigenetics and their role in disease induction is discussed. Possible future therapeutic approaches via the reestablishment of equilibrium in our internal micro-ecosystem are also highlighted.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|