1
|
Chen L, Li Q. Nanomaterials in the diagnosis and treatment of gastrointestinal tumors: New clinical choices and treatment strategies. Mater Today Bio 2025; 32:101782. [PMID: 40331152 PMCID: PMC12051065 DOI: 10.1016/j.mtbio.2025.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Nanomaterials have emerged as a promising modality in the diagnosis and treatment of gastrointestinal (GI) tumors, offering significant advancements over conventional methods. In diagnostic applications, nanomaterials facilitate enhanced imaging techniques, including magnetic resonance imaging (MRI), computed tomography (CT), and fluorescence imaging, which provide improved resolution and more accurate detection of early-stage cancers. Nanoparticles (NPs), such as liposomes, dendrimers, and quantum dots, are increasingly employed for the targeted imaging of specific biomarkers associated with GI malignancies, thereby enhancing diagnostic sensitivity and specificity. Liposomes are primarily used for drug delivery due to their ability to encapsulate hydrophobic drugs, dendrimers are useful for both drug delivery and gene therapy due to their highly branched structure, and quantum dots are primarily used in imaging and diagnostics because of their fluorescent properties. We also discuss their respective advantages and limitations. In therapeutic contexts, nanomaterials play a pivotal role in the development of targeted drug delivery systems. These systems address the limitations of traditional chemotherapy by improving drug bioavailability, reducing systemic toxicity, and promoting selective accumulation at tumor sites via both passive and active targeting mechanisms. Nanomedicines, including NPs and nanocarriers, enable the precise delivery of chemotherapeutic agents, nucleic acid -based therapies, and immunomodulators directly to cancer cells, thereby optimizing therapeutic efficacy. Furthermore, nanotechnology offers the potential to modulate the tumor microenvironment (TME), a critical factor in overcoming challenges related to tumor resistance and metastasis. Despite these promising advancements, several challenges persist, including concerns regarding long-term toxicity, stability, and regulatory approval. Nonetheless, the integration of nanomaterials into clinical practice holds substantial potential for revolutionizing the management of GI cancers, paving the way for more precise, personalized, and effective therapeutic strategies.
Collapse
Affiliation(s)
- Liping Chen
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Qingqing Li
- Department of Endoscopy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| |
Collapse
|
2
|
Sun C, Xie F, Zhang H, Feng L, Wang Y, Huang C, Cui Z, Luo C, Zhang L, Wang Q. Paclitaxel/Luteolin Coloaded Dual-Functional Liposomes for Esophageal Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411930. [PMID: 40265971 PMCID: PMC12120766 DOI: 10.1002/advs.202411930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/01/2025] [Indexed: 04/24/2025]
Abstract
Combination therapy integrating chemotherapeutic agents with natural bioactive ingredients represents an attractive strategy for esophageal squamous cell carcinoma (ESCC) treatment, yet achieving tumor-specific co-delivery remains a critical challenge. Herein, we report that the combination of luteolin (LUT) and paclitaxel (PTX) exerts a remarkable synergy in ESCC treatment, while concurrently alleviating PTX-induced hepatotoxicity; EA2 aptamer has been identified for its exceptional specificity and strong affinity toward Catenin Alpha 1 protein (CTNNA1) in ESCC cells. Leveraging this specificity, nanosized EA2-modified pH-sensitive liposomes (EA2-PSL-PTX/LUT) are successfully developed with effective co-loading, controlled release, and good biostability. EA2-PSL-PTX/LUT exhibits stimuli-triggered release in the acidic tumor microenvironment and facilitates specific cellular uptake and endosomal escape in ESCC cells. In vivo imaging confirms precise tumor localization, deep tumor penetration, and prolonged retention of the nanocarrier. In vitro and in vivo findings validate that the nanocarrier potentiates synergistic inhibitions of PTX and LUT. Notably, EA2-PSL-PTX/LUT significantly activates the tumor microenvironment by promoting dendritic cell maturation and T cell infiltration. And the immunosuppressive microenvironment has been remodeled by decreasing myeloid-derived suppressor cells and regulatory T cell accumulation. This study provides a strategy for precise delivery of combinational chemotherapeutic drugs for ESCC targeted therapy.
Collapse
Affiliation(s)
- Congyong Sun
- The Comprehensive Cancer CenterDepartment of Central LaboratoryThe Affiliated Huai'an No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Fei Xie
- The Comprehensive Cancer CenterDepartment of Central LaboratoryThe Affiliated Huai'an No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Huiyun Zhang
- Department of Pharmaceutical EngineeringSchool of Chemistry and Chemical EngineeringYancheng Institute of TechnologyYanchengJiangsu224003China
| | - Lulu Feng
- The Comprehensive Cancer CenterDepartment of Central LaboratoryThe Affiliated Huai'an No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Yuting Wang
- The Comprehensive Cancer CenterDepartment of Central LaboratoryThe Affiliated Huai'an No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Chaofan Huang
- The Comprehensive Cancer CenterDepartment of Central LaboratoryThe Affiliated Huai'an No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Zhizhen Cui
- Department of Acute Infectious Disease Control and PreventionHuai'an Center for Disease Control and PreventionHuai'anJiangsu223003China
| | - Chao Luo
- The Comprehensive Cancer CenterDepartment of Central LaboratoryThe Affiliated Huai'an No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Li Zhang
- The Comprehensive Cancer CenterDepartment of Central LaboratoryThe Affiliated Huai'an No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| | - Qilong Wang
- The Comprehensive Cancer CenterDepartment of Central LaboratoryThe Affiliated Huai'an No.1 People's HospitalNanjing Medical UniversityHuai'anJiangsu223300China
| |
Collapse
|
3
|
Zhou X, Yang L, Deng J, Guo W, Liu D, Zhou J, Xu C. The role of squamous cell carcinoma antigen and cytokeratin 19 fragment in predicting the outcome of esophageal cancer patients: insights from a meta-analysis. World J Surg Oncol 2025; 23:146. [PMID: 40259318 PMCID: PMC12013089 DOI: 10.1186/s12957-025-03776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/23/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND The accurate prognostication and recurrence monitoring of esophageal cancer (EC) are pivotal yet challenging. Despite the promising roles of squamous cell carcinoma antigen (SCC) and cytokeratin 19 fragment (CK19 Fragment) as cancer biomarkers in EC, their prognostic value remains unquantified. This meta-analysis is the first to quantitatively assess the relationship between serum levels of SCC and CK19 Fragment and EC prognosis, aiming to bridge this knowledge gap. METHODS We conducted a comprehensive and systematic literature search across PubMed, Web of Science, Cochrane Library, and Embase databases, and Hazard ratios (HRs) and 95% confidence intervals (CIs) for overall survival (OS) and other survival outcomes were extracted and analyzed using random-effects or fixed-effects models depending on heterogeneity among the studies. RESULTS 7309 patients from 29 studies were finally included in this meta-analysis. The quantitively summarized data revealed that elevated level of SCC and CK19 Fragment in serum was significantly correlated to poorer prognosis of EC patients with the pooled HR of OS was 1.25 (95%CI: 1.04-1.50, P < 0.05) and 1.69 (95%CI: 1.25-1.27, P < 0.05), respectively. Subgroup analyses indicated that the prognostic value of these biomarkers varied across different patient populations and treatment modalities. CONCLUSION This meta-analysis demonstrated that SCC and CK19 Fragment levels in serum were both strong prognostic biomarkers of EC patients. The elevated level of SCC and CK19 Fragment in serum was significantly associated with worse survival outcomes, advocating for the integration of these biomarkers into prognostic assessments to improve decision-making processes in the management of EC. REGISTRATION NUMBER CRD42022311617.
Collapse
Affiliation(s)
- Xiaojiang Zhou
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Lin Yang
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingjing Deng
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, 550002, Guizhou Province, China
| | - Wankai Guo
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Di Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Chuan Xu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
4
|
Zuo CJ, Tian J. Global trends and emerging research in nanotechnology for esophageal cancer: a comprehensive bibliometric analysis. Discov Oncol 2025; 16:262. [PMID: 40029466 DOI: 10.1007/s12672-025-02018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Despite the growing body of research on nanotechnology for esophageal cancer (EC), a comprehensive bibliometric analysis in this field has yet to be conducted. This study aims to fill this gap by analyzing global research trends, key contributors, and emerging themes in nanotechnology for EC. METHODS A bibliometric analysis was performed on publications from 1980 to 2024, using data from the Web of Science Core Collection. The analysis was conducted using VOSviewer, CiteSpace, and the R package 'bibliometrix' to visualize research trends, collaboration networks, and thematic areas. RESULTS The analysis included 419 documents authored by 2952 researchers from 44 countries. A significant increase in publications was observed, particularly after 2011, with China, the United States, and Japan leading the contributions. Prominent institutions, including Zhengzhou University and the Chinese Academy of Sciences, were identified as key players. The research predominantly focused on drug delivery systems, nanomedicine, and cancer treatment mechanisms, with emerging trends in the development of advanced nanomaterials for personalized therapies. CONCLUSION This comprehensive bibliometric analysis of nanotechnology applications in EC highlights global research trends, key contributors, and emerging research areas. The findings underscore the crucial role of nanotechnology in advancing treatment strategies for EC and identify areas for future research and interdisciplinary collaboration.
Collapse
Affiliation(s)
- Chun-Jian Zuo
- Department of Thoracic Surgery, Army Medical Center of People'S Liberation Army of China (PLA), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| | - Jie Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, China.
- Lung Cancer Center, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
5
|
Xiao X, Luan SY, Zhang SH, Shang QX, Yang YS, Wen Y, Fang PH, Zhou JF, Li XK, Hu Y, Chen LQ, Yuan Y. The comparison of uniportal versus multiportal video-assisted thoracic surgery for esophageal cancer: a propensity-weighted analysis. Surg Endosc 2025; 39:1730-1739. [PMID: 39806182 DOI: 10.1007/s00464-024-11511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVES The utilization of uniportal video-assisted thoracoscopic surgery (VATS) has become prevalent, notwithstanding, there are few studies exploring its application specifically in esophagectomy. METHODS A retrospective analysis was conducted on data collected from patients diagnosed with clinical stage T1-3/N0/M0 thoracic esophageal cancer, who underwent surgery between January 2017 and December 2020. To evaluate the outcomes, an analysis was conducted utilizing the inverse probability of treatment weighting (IPTW) method. RESULTS This study identified 55 patients who underwent uniportal VATS and 212 patients who underwent multiportal VATS. Postoperative complications classified as Clavien-Dindo grades 1-2 occurred less frequently after uniportal than multiportal VATS in both unadjusted and IPTW-adjusted analyses (10.1% versus 28.8%, respectively; P = 0.018). Upon IPTW analysis, it indicated that the rate of pneumonia (grades 1-2) in the uniportal VATS group was 7.3%, notably lower than the corresponding rate of 23.2% observed in the multiportal VATS group (P = 0.037). Patients in uniportal VATS group had a shorter postoperative length of stay comparing with those in multiportal VATS group (9 versus 10 days, P = 0.006 after IPTW). The visual analog scale (VAS) was administered within 7 days following surgery and scores were significantly lower in uniportal VATS group (P < 0.001). No surgery-related mortality was observed in uniportal VATS group. The survival benefit observed between two groups was comparable before (P = 0.320) and after IPTW analysis (P = 0.824), indicating no significant difference. CONCLUSIONS The utilization of uniportal VATS for esophagectomy demonstrated a reduced occurrence of postoperative complications, accompanied by mitigated postoperative pain, thereby presenting as a viable and practical approach for treating esophageal cancer patients.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, China
| | - Si-Yuan Luan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, China
| | - Shu-Hao Zhang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, China
| | - Qi-Xin Shang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, China
| | - Yu-Shang Yang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, China
| | - Yue Wen
- School of Statistics, Southwestern University of Finance and Economics, Chengdu, China
| | - Pin-Hao Fang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, China
| | - Jian-Feng Zhou
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, China
| | - Xiao-Kun Li
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, China
| | - Yang Hu
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, China
| | - Long-Qi Chen
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Guoxue Alley, No. 37, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Zhang Q, Li X, Li J, Zhang Z. Prognostic value of c-MET in oesophageal squamous cell carcinoma: a study based on the mRNA expression in TCGA database and a meta-analysis. Front Med (Lausanne) 2025; 12:1548160. [PMID: 40078386 PMCID: PMC11897030 DOI: 10.3389/fmed.2025.1548160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Objective This study aims to assess the mesenchymal-epithelial transition factor's (c-MET) prognostic value in oesophageal carcinoma (ESCA) through a meta-analysis and bioinformatics. Methods We analysed c-MET expression in ESCA tissues using data from The Cancer Genome Atlas (TCGA) and conducted a meta-analysis to evaluate its association with clinicopathological factors and survival outcomes. The meta-analysis included studies reporting hazard ratios (HRs) and odds ratios (ORs) for survival and metastatic outcomes. Results The Cancer Genome Atlas analysis revealed elevated c-MET expression in ESCA, which was significantly correlated with lymph node metastasis, tumour grade and stage, though not with overall survival (OS). In the meta-analysis, 278 publications were identified, and 89 duplicates were removed. After screening, 176 articles were excluded, leaving 13 for full-text review. Of these, 5 studies lacked sufficient survival data, resulting in 8 eligible studies with a total of 1,488 patients. Meta-analysis findings indicated that high c-MET expression was associated with worse OS (HR = 1.54, 95% confidence interval [CI]: 1.17-2.01; p = 0.002), distant metastasis (OR = 1.97, 95% CI: 1.14-3.40; p = 0.02) and advanced stage (OR = 2.23, 95% CI: 1.41-3.53; p = 0.0006). Conclusion High c-MET expression is associated with poor prognosis and advanced disease in ESCA, highlighting its potential as a biomarker for risk stratification. Further studies are needed to confirm its prognostic value and explore therapeutic implications.
Collapse
Affiliation(s)
- Qiqi Zhang
- Department of Gastroenterology II, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Xiujuan Li
- Department of Pathophysiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Jian Li
- Department of Gastroenterology II, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Zhiqiang Zhang
- Department of Gastroenterology II, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| |
Collapse
|
7
|
Du C, Hu Y, Yang X, Zhang Z, Gu J, Zhang T, Wang R, Zhang S, Tan L, Yu G. SUMO-Specific Peptidase 5 Promotes Oesophageal Squamous Cell Carcinoma Growth through the NF-κB- SLC1A3 Axis. FRONT BIOSCI-LANDMRK 2025; 30:27047. [PMID: 39862098 DOI: 10.31083/fbl27047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms. METHODS Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples. The Kaplan‒Meier method and multivariate analysis were used to analyse the relationship between SENP5 expression and ESCC prognosis. Stable SENP5-knockdown (KD) cell lines and conditional knockout (cKO) mice were established to verify the biological function of SENP5. Further RNA-seq comparisons between short hairpin SENP5 (shSENP5)- and short hairpin negative control (shNC)-transfected ESCC cell lines were conducted, and the nuclear factor kappa B (NF-κB)-SLC1A3 axis was identified through bioinformatics analysis. The correlation of SENP5 with signalling pathway components was validated via real-time quantitative PCR (qPCR), western blotting (WB), and immunoprecipitation. RESULTS Our study revealed that SENP5 was upregulated in human and mouse ESCC samples, and clinical data analysis revealed a correlation between high SENP5 expression and poor patient prognosis. SENP5 knockdown inhibited tumorigenesis and growth in vivo and suppressed the proliferation, migration, and invasion of ESCC cell lines in vitro. Our study also revealed that SENP5 knockdown enhanced the SUMO1-mediated SUMOylation of NF-kappa-B inhibitor alpha (IκBα), thereby inhibiting the activation of the NF-κB-SLC1A3 axis, which subsequently suppresses ESCC cell energy metabolism and impedes ESCC progression. CONCLUSIONS Suppression of SENP5 slows the development of ESCC by inhibiting the NF-κB‒SLC1A3 axis through SUMO1-mediated SUMOylation of IκBα. Our research suggests that SENP5 could serve as a prognostic indicator and a target for therapeutic intervention for ESCC patients.
Collapse
Affiliation(s)
- Chaoxiang Du
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Department of Thoracic Surgery, Zhongshan Hospital (Xiamen), Fudan University, 361006 Xiamen, Fujian, China
| | - Yunfan Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Xinyu Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Zhe Zhang
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China
| | - Jianmin Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Tao Zhang
- Department of Thoracic Surgery, Zhongshan Hospital (Xiamen), Fudan University, 361006 Xiamen, Fujian, China
| | - Renfeng Wang
- Department of Thoracic Surgery, Zhongshan Hospital (Xiamen), Fudan University, 361006 Xiamen, Fujian, China
| | - Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China
| |
Collapse
|
8
|
Fu Q, Liu Y, Peng C, Muluh TA, Anayyat U, Liang L. Recent Advancement in Inhaled Nano-drug Delivery for Pulmonary, Nasal, and Nose-to-brain Diseases. Curr Drug Deliv 2025; 22:3-14. [PMID: 38275044 DOI: 10.2174/0115672018268047231207105652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024]
Abstract
Pulmonary, nasal, and nose-to-brain diseases involve clinical approaches, such as bronchodilators, inhaled steroids, oxygen therapy, antibiotics, antihistamines, nasal steroids, decongestants, intranasal drug delivery, neurostimulation, and surgery to treat patients. However, systemic medicines have serious adverse effects, necessitating the development of inhaled formulations that allow precise drug delivery to the airways with minimum systemic drug exposure. Particle size, surface charge, biocompatibility, drug capacity, and mucoadhesive are unique chemical and physical features that must be considered for pulmonary and nasal delivery routes due to anatomical and permeability considerations. The traditional management of numerous chronic diseases has a variety of drawbacks. As a result, targeted medicine delivery systems that employ nanotechnology enhancer drug efficiency and optimize the overall outcome are created. The pulmonary route is one of the most essential targeted drug delivery systems because it allows the administering of drugs locally and systemically to the lungs, nasal cavity, and brain. Furthermore, the lungs' beneficial characteristics, such as their ability to inhibit first-pass metabolism and their thin epithelial layer, help treat several health complications. The potential to serve as noninvasive self-administration delivery sites of the lung and nasal routes is discussed in this script. New methods for treating respiratory and some systemic diseases with inhalation have been explored and highlight particular attention to using specialized nanocarriers for delivering various drugs via the nasal and pulmonary pathways. The design and development of inhaled nanomedicine for pulmonary, nasal, and respiratory medicine applications is a potential approach for clinical translation.
Collapse
Affiliation(s)
- Qiuxia Fu
- Department of General Medicine, Luzhou People's Hospital, Luzhou 646000, Sichuan, China, (PRC)
| | - Yangjie Liu
- Department of General Medicine, Luzhou People's Hospital, Luzhou 646000, Sichuan, China, (PRC)
| | - Cao Peng
- Department of General Medicine, Luzhou People's Hospital, Luzhou 646000, Sichuan, China, (PRC)
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Umer Anayyat
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Liu Liang
- Department of Pharmacy, Luzhou People's Hospital, Luzhou 646000, Sichuan, China PRC
| |
Collapse
|
9
|
Akbari A, Adabi M, Masoodi M, Namazi A, Mansouri F, Tabaeian SP, Shokati Eshkiki Z. Artificial intelligence: clinical applications and future advancement in gastrointestinal cancers. Front Artif Intell 2024; 7:1446693. [PMID: 39764458 PMCID: PMC11701808 DOI: 10.3389/frai.2024.1446693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/02/2024] [Indexed: 04/01/2025] Open
Abstract
One of the foremost causes of global healthcare burden is cancer of the gastrointestinal tract. The medical records, lab results, radiographs, endoscopic images, tissue samples, and medical histories of patients with gastrointestinal malignancies provide an enormous amount of medical data. There are encouraging signs that the advent of artificial intelligence could enhance the treatment of gastrointestinal issues with this data. Deep learning algorithms can swiftly and effectively analyze unstructured, high-dimensional data, including texts, images, and waveforms, while advanced machine learning approaches could reveal new insights into disease risk factors and phenotypes. In summary, artificial intelligence has the potential to revolutionize various features of gastrointestinal cancer care, such as early detection, diagnosis, therapy, and prognosis. This paper highlights some of the many potential applications of artificial intelligence in this domain. Additionally, we discuss the present state of the discipline and its potential future developments.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Adabi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Masoodi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Namazi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mansouri
- Department of Microbiology, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Tian K, Yao Z, Pan D. Leveraging single-cell and multi-omics approaches to identify MTOR-centered deubiquitination signatures in esophageal cancer therapy. Front Immunol 2024; 15:1490623. [PMID: 39742278 PMCID: PMC11685190 DOI: 10.3389/fimmu.2024.1490623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) remains a significant challenge in oncology due to its aggressive nature and heterogeneity. As one of the deadliest malignancies, ESCC research lags behind other cancer types. The balance between ubiquitination and deubiquitination processes plays a crucial role in cellular functions, with its disruption linked to various diseases, including cancer. Methods Our study utilized diverse analytical approaches, encompassing Cox regression models, single-cell RNA sequencing, intercellular communication analysis, and Gene Ontology enrichment. We also conducted mutation profiling and explored potential immunotherapeutic agents. Furthermore, in vitro cellular experiments and in vivo mouse models were performed to validate findings. These methodologies aimed to establish deubiquitination-related gene signatures (DRGS) for predicting ESCC patient outcomes and response to immunotherapy. Results By integrating datasets from TCGA-ESCC and GSE53624, we developed a DRGS model based on 14 deubiquitination-related genes (DUBGs). This signature effectively forecasts ESCC prognosis, drug responsiveness, and immune cell infiltration patterns. It also influences the mutational landscape of patients. Those classified as high-risk exhibited reduced survival rates, increased genetic alterations, and more complex cellular interactions, potentially explaining their poor outcomes. Notably, in vitro and in vivo experiments identified MTOR, a key component of the signature, as a promising therapeutic target for ESCC treatment. Conclusion Our research highlights the significance of 14 DUBGs in ESCC progression. The risk score derived from this gene set enables clinical stratification of patients into distinct prognostic groups. Moreover, MTOR emerges as a potential target for personalized ESCC therapy, offering new avenues for treatment strategies.
Collapse
Affiliation(s)
- Kang Tian
- Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Ziang Yao
- Department of Traditional Chinese Medicine, Peking University People’s Hospital, Beijing, China
| | - Da Pan
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
11
|
Tang B, Huang R, Ma W. Advances in nanotechnology-based approaches for the treatment of head and neck squamous cell carcinoma. RSC Adv 2024; 14:38668-38688. [PMID: 39654926 PMCID: PMC11626385 DOI: 10.1039/d4ra07193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common types of cancers occurring in the head and neck region, is often associated with high mortality rates due to its invasiveness and morbidity. The mainstream treatment methods in clinical settings, including surgery, chemotherapy, and radiotherapy, may cause poor overall survival rate and prognosis, with issues such as drug resistance, damage to adjacent healthy tissues, and potential recurrences. Other treatment approaches such as immunotherapy, photodynamic therapy (PDT), and photothermal therapy (PPT) also suffer from inefficient tumor targeting and suboptimal therapeutic outcomes. Early detection is vital for HNSCC patients, but it is always limited by insensitivity and confusing clinical manifestations. Hence, it is highly desirable to develop optimized therapeutic and diagnostic strategies. With the boom in nanomaterials, nanotechnology-conducted HNSCC therapy has attracted widespread attention. Nanoparticles (NPs) are distinguished by their unique morphology and superior physicochemical property, and some can exhibit direct antitumor activity, while others serve as promising candidates for drug delivery. In addition, NPs offer the potential for structural modification for drug delivery and tumor targeting, enabling specific delivery to tumor cells through conjugation with biomarker ligands and improving cargo biocompatibility. This work reviews current therapies and diagnosis methods for HNSCC, highlights the characteristics of the major NPs, surveys their uses and advantages in the treatment of HNSCC, and discusses the obstacles and prospects in clinical applications, aiming to enlighten future research directions for nanotechnology-based therapy for HNSCC.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Rui Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
12
|
Huang J, Li T, Tang L, Hu Y, Hu Y, Gu Y. Development and Validation of an 18F-FDG PET/CT-based Radiomics Nomogram for Predicting the Prognosis of Patients with Esophageal Squamous Cell Carcinoma. Acad Radiol 2024; 31:5066-5077. [PMID: 38845294 DOI: 10.1016/j.acra.2024.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 05/16/2024] [Indexed: 11/30/2024]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to develop and validate a nomogram, integrating clinical factors and radiomics features, capable of predicting overall survival (OS) in patients diagnosed with esophageal squamous cell carcinoma (ESCC). METHODS In this study, we retrospectively analyzed the case data of 130 patients with ESCC who underwent 18F-FDG PET/CT before treatment. Radiomics features associated with OS were screened by univariate Cox regression (p < 0.05). Further selection was performed by applying the least absolute shrinkage and selection operator Cox regression to generate the weighted Radiomics-score (Rad-score). Independent clinical risk factors were obtained by multivariate Cox regression, and a nomogram was constructed by combining Rad-score and independent risk factors. The predictive performance of the model for OS was assessed using the time-dependent receiver operating characteristic curve, concordance index (C-index), calibration curve, and decision curve analysis. RESULTS Five radiomics features associated with prognosis were finally screened, and a Rad-score was established. Multivariate Cox regression analysis revealed that surgery and clinical M stage were identified as independent risk factors for OS in ESCC. The combined clinical-radiomics nomogram exhibited C-index values of 0.768 (95% CI: 0.699-0.837) and 0.809 (95% CI: 0.695-0.923) in the training and validation cohorts, respectively. Ultimately, calibration curves and decision curves for the 1-, 2-, and 3-year OS demonstrated the satisfactory prognostic prediction and clinical utility of the nomogram. CONCLUSION The developed nomogram, leveraging 18F-FDG PET/CT radiomics and clinically independent risk factors, demonstrates a reliable prognostic prediction for patients with ESCC, potentially serving as a valuable tool for guiding and optimizing clinical treatment decisions in the future.
Collapse
Affiliation(s)
- Jiahui Huang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Tiannv Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Lijun Tang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yuxiao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yao Hu
- Department of PET/CT Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yingying Gu
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.
| |
Collapse
|
13
|
Ling D, Jiang T, Sun J, Wang Y, Wang Y, Wang L. An Ensemble Learning System Based on Stacking Strategy for Survival Risk Prediction of Patients with Esophageal Cancer. Ing Rech Biomed 2024; 45:100860. [DOI: 10.1016/j.irbm.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Lei XY, He KY, Li QT, Zhang L, Wu DH, Yang JY, Guo JR, Liu MJ, Zhao ZL, Li JQ, Liu H, Zhao Y, Li YJ, Sun QH, Wu CG, Wang YF, Cao GS, Wang G, Jian YP, Xu ZX. PARylation of HMGA1 desensitizes esophageal squamous cell carcinoma to olaparib. Clin Transl Med 2024; 14:e70111. [PMID: 39690136 DOI: 10.1002/ctm2.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
As a chromatin remodelling factor, high mobility group A1 (HMGA1) plays various roles in both physiological and pathological conditions. However, its role in DNA damage response and DNA damage-based chemotherapy remains largely unexplored. In this study, we report the poly ADP-ribosylation (PARylation) of HMGA1 during DNA damage, leading to desensitization of esophageal squamous cell carcinoma (ESCC) cells to the poly(ADP-ribose) polymerase 1 (PARP1) inhibitor, olaparib. We found that HMGA1 accumulates at sites of DNA damage, where it interacts with PARP1 and undergoes PARylation at residues E47 and E50 in its conserved AT-hook domain. This modification enhances the accumulation of Ku70/Ku80 at the site of DNA damage and activates the DNA-dependent protein kinase catalytic subunit, facilitating nonhomologous end-joining repair. In both subcutaneous tumour models and genetically engineered mouse models of in situ esophageal cancer, HMGA1 interference increased tumour sensitivity to olaparib. Moreover, HMGA1 was highly expressed in ESCC tissues and positively correlated with PARP1 levels as well as poor prognosis in ESCC patients. Taken together, these findings reveal a mechanistic link between HMGA1 and PARP1 in regulating cell responses to DNA damage and suggest that targeting HMGA1 could be a promising strategy to increase cancer cell sensitivity to olaparib.
Collapse
Affiliation(s)
- Xin-Yuan Lei
- School of Life Sciences, Henan University, Kaifeng, China
| | - Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Qiu-Tong Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Lei Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Dan-Hui Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jing-Yu Yang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jin-Rong Guo
- School of Life Sciences, Henan University, Kaifeng, China
| | - Meng-Jie Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zi-Long Zhao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Huai Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan Zhao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yu-Jia Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Qian-Hui Sun
- School of Life Sciences, Henan University, Kaifeng, China
| | - Chen-Guang Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yun-Fan Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Geng-Sheng Cao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Gang Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Zhou Y, Zhou J, Cai X, Ge S, Sang S, Yang Y, Zhang B, Deng S. Integrating 18F-FDG PET/CT radiomics and body composition for enhanced prognostic assessment in patients with esophageal cancer. BMC Cancer 2024; 24:1402. [PMID: 39543534 PMCID: PMC11566154 DOI: 10.1186/s12885-024-13157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND This study aimed to develop a predictive model utilizing radiomics and body composition features derived from 18F-FDG PET/CT scans to forecast progression-free survival (PFS) and overall survival (OS) outcomes in patients with esophageal squamous cell carcinoma (ESCC). METHODS We analyzed data from 91 patients who underwent baseline 18F-FDG PET/CT imaging. Radiomic features extracted from PET and CT images and subsequent radiomics scores (Rad-scores) were calculated. Body composition metrics were also quantified, including muscle and fat distribution at the L3 level from CT scans. Multiparametric survival models were constructed using Cox regression analysis, and their performance was assessed using the area under the time-dependent receiver operating characteristic (ROC) curve (AUC) and concordance index (C-index). RESULTS Multivariate analysis identified Rad-scorePFS (P = 0.003), sarcopenia (P < 0.001), and visceral adipose tissue index (VATI) (P < 0.001) as independent predictors of PFS. For OS, Rad-scoreOS (P = 0.001), sarcopenia (P = 0.002), VATI (P = 0.037), stage (P = 0.042), and body mass index (BMI) (P = 0.008) were confirmed as independent prognostic factors. Integration of the Rad-score with clinical variables and body composition parameters enhanced predictive accuracy, yielding C-indices of 0.810 (95% CI: 0.737-0.884) for PFS and 0.806 (95% CI: 0.720-0.891) for OS. CONCLUSIONS This study underscored the potential of combining Rad-score with clinical and body composition data to refine prognostic assessment in ESCC patients.
Collapse
Affiliation(s)
- Yeye Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jin Zhou
- Department of Nuclear Medicine, Shuyang Hospital Affiliated to Medical College of Yangzhou University, Suqian, China
| | - Xiaowei Cai
- Department of Nuclear Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Shushan Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang, 621099, China
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yi Yang
- Department of Nuclear Medicine, Affiliated Hospital of Medical School, Suzhou Hospital, Nanjing University, Suzhou, China.
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang, 621099, China.
| |
Collapse
|
16
|
Tang Z, Jiang Y, Zong Y, Ding S, Wu C, Tang Z, Liao L, Jiang S, Tang R, Li F, Luo P. LncRNA SSTR5-AS1 promotes esophageal carcinoma through regulating ITGB6/JAK1/STAT3 signaling. Epigenomics 2024; 16:1133-1148. [PMID: 39234955 PMCID: PMC11457597 DOI: 10.1080/17501911.2024.2388018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Aim: To investigate function of somatostatin receptor 5 antisense RNA 1 (SSTR5-AS1) in esophageal carcinoma (ESCA).Materials & methods: The cellular function was assessed using EdU staining and Transwell assay. The localization of SSTR5-AS1 was measured using fluorescence in situ hybridization staining.Results: SSTR5-AS1 shRNA repressed invasion and migration and induced apoptosis in ESCA cells. SSTR5-AS1 was distributed in cytoplasm, and it regulated its subunit integrin beta 6 (ITGB6) via eukaryotic translation initiation factor 4A3 (EIF4A3). SSTR5-AS1 shRNA inactivated ITGB6 and JAK1/STAT3 signaling. SSTR5-AS1 silencing attenuated the malignant behavior of ESCA cells through the ITGB6-mediated JAK1/STAT3 axis.Conclusion: SSTR5-AS1 promotes tumorigenesis of ESCA by interacting with EIF4A3 to regulate ITGB6/JAK1/STAT3 axis, which serves a basis for discovering strategies against ESCA.
Collapse
Affiliation(s)
- Zhaohui Tang
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Yongjun Jiang
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Yuyu Zong
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Sijuan Ding
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Chen Wu
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Zhangwen Tang
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Lin Liao
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Shaohui Jiang
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Ruoting Tang
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Fang Li
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| | - Pengfei Luo
- Department of Oncology, The Central Hospital of Yongzhou, Hunan Province, Yongzhou, 425000, China
| |
Collapse
|
17
|
Periferakis A, Tsigas G, Periferakis AT, Tone CM, Hemes DA, Periferakis K, Troumpata L, Badarau IA, Scheau C, Caruntu A, Savulescu-Fiedler I, Caruntu C, Scheau AE. Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Curr Issues Mol Biol 2024; 46:9721-9759. [PMID: 39329930 PMCID: PMC11430067 DOI: 10.3390/cimb46090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Somatostatin is a peptide that plays a variety of roles such as neurotransmitter and endocrine regulator; its actions as a cell regulator in various tissues of the human body are represented mainly by inhibitory effects, and it shows potent activity despite its physiological low concentrations. Somatostatin binds to specific receptors, called somatostatin receptors (SSTRs), which have different tissue distributions and associated signaling pathways. The expression of SSTRs can be altered in various conditions, including tumors; therefore, they can be used as biomarkers for cancer cell susceptibility to certain pharmacological agents and can provide prognostic information regarding disease evolution. Moreover, based on the affinity of somatostatin analogs for the different types of SSTRs, the therapeutic range includes conditions such as tumors, acromegaly, post-prandial hypotension, hyperinsulinism, and many more. On the other hand, a number of somatostatin antagonists may prove useful in certain medical settings, based on their differential affinity for SSTRs. The aim of this review is to present in detail the principal characteristics of all five SSTRs and to provide an overview of the associated therapeutic potential in neoplasias.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Georgios Tsigas
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Carla Mihaela Tone
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daria Alexandra Hemes
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs, 17236 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
18
|
Yuan L, Ji H, Cao Y, Yi H, Leng Q, Zhou J, Mei X. Exosomes in esophageal cancer: Promising nanocarriers in cancer progression, diagnosis, prognosis, and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1989. [PMID: 39217461 DOI: 10.1002/wnan.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Esophageal cancer (EC) is one of the most fatal cancers all over the world. Sensitive detection modalities for early-stage EC and efficient treatment methods are urgently needed for the improvement of the prognosis of EC. Exosomes are small vesicles for intercellular communication, mediating many biological responses including cancer progression, which are not only promising biomarkers for diagnosis and prognosis but also therapeutic tools for EC. This review provides an overview of the relationships between exosomes and EC progression, as well as the application of exosomes in the diagnosis, prognosis, and treatment of EC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ligong Yuan
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoran Ji
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Cao
- Peking University Health Science Center, Peking University, Beijing, China
| | - Hang Yi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qihao Leng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Xinyu Mei
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
19
|
Lan X, Feng M, Chen L, Zhang L, Han C, Wang Y, Zheng J, Wang X, Liu C, Liu R. Trends in research on nanomedicine in urologic cancer: a bibliometric and visualized analysis. Discov Oncol 2024; 15:366. [PMID: 39179938 PMCID: PMC11343939 DOI: 10.1007/s12672-024-01249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Increasing research efforts are focused on studying the synthesis and mechanisms of nanomedicine in urologic cancer. We performed a bibliometric study of the literature on nanomedicine in urologic cancer over the last 23 years, focusing on aspects such as researchers, institutions, nations, and keywords. We searched for papers in the Web of Science Core Collection from January 1, 2001, to December 29, 2023. Only reviews and original articles written in English were considered. A total of 2386 papers satisfied the given criteria for inclusion. The publications included in the study originated from 90 nations. The United States had the largest number of published papers, accounting for more than 31.01% of the total. The leading institution in this field is the Chinese Academy of Sciences, with a publishing output of 2.35%. Farokhzad, Omid C., is the most prolific author, with 21 articles, and has garnered the most citations, totaling 6271. The latest phrase to enter the top ten most common lists was "gold nanoparticles." We searched for papers in the Web of Science Core Collection from January 1, 2000, to November 28, 2023. Only reviews and original articles written in English were considered. This is the first bibliometric study of nanomedicine in urologic cancer. This article provides a comprehensive analysis of the current state of research on nanomedicine in urologic cancer over the last 23 years. On the basis of this study, future researchers can identify noteworthy publications, journals, and potential collaborators and explore cutting-edge research directions.
Collapse
Affiliation(s)
- Xiaopeng Lan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mei Feng
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Lili Chen
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Luchen Zhang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Chao Han
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Yizhen Wang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Jilu Zheng
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Xiaoyan Wang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Chunlei Liu
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Ranlu Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
20
|
Ruby L, Jayaprakasam VS, Fernandes MC, Paroder V. Advances in the Imaging of Esophageal and Gastroesophageal Junction Malignancies. Hematol Oncol Clin North Am 2024; 38:711-730. [PMID: 38575457 DOI: 10.1016/j.hoc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Accurate imaging is key for the diagnosis and treatment of esophageal and gastroesophageal junction cancers . Current imaging modalities, such as computed tomography (CT) and 18F-FDG (2-deoxy-2-[18F]fluoro-D-glucose) positron emission tomography (PET)/CT, have limitations in accurately staging these cancers. MRI shows promise for T staging and residual disease assessment. Novel PET tracers, like FAPI, FLT, and hypoxia markers, offer potential improvements in diagnostic accuracy. 18F-FDG PET/MRI combines metabolic and anatomic information, enhancing disease evaluation. Radiomics and artificial intelligence hold promise for early detection, treatment planning, and response assessment. Theranostic nanoparticles and personalized medicine approaches offer new avenues for cancer therapy.
Collapse
Affiliation(s)
- Lisa Ruby
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Vetri Sudar Jayaprakasam
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maria Clara Fernandes
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Viktoriya Paroder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
21
|
Xiao X, Fang PH, Zhou JF, Li XK, Shang QX, Yang YS, Luan SY, Chen LQ, Yuan Y. Impact of Skeletal Muscle Loss and Sarcopenia on Outcomes of Locally Advanced Esophageal Cancer during Neoadjuvant Chemoradiation. Ann Surg Oncol 2024; 31:3819-3829. [PMID: 38245646 DOI: 10.1245/s10434-024-14936-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND The impact of changes in skeletal muscle and sarcopenia on outcomes during neoadjuvant chemoradiotherapy (NACR) for patients with esophageal cancer remains controversial. PATIENTS AND METHODS We retrospectively analyzed the data of patients with locally advanced esophageal squamous cell cancer who received NACR followed by esophagectomy between June 2013 and December 2021. The images at third lumbar vertebra were analyzed to measure the cross-sectional area and calculate skeletal muscle index (SMI) before and after NACR. SMI less than 52.4 cm2/m2 for men and less than 38.5 cm2/m2 for women were defined as sarcopenia. The nonlinearity of the effect of percent changes in SMI (ΔSMI%) to survival outcomes was assessed by restricted cubic splines. RESULTS Overall, data of 367 patients were analyzed. The survival outcomes between sarcopenia and non-sarcopenia groups had no significant differences before NACR. However, patients in post-NACR sarcopenia group showed poor overall survival (OS) benefit (P = 0.016) and poor disease-free survival (DFS) (P = 0.043). Severe postoperative complication rates were 11.9% in post-NACR sarcopenia group and 5.0% in post-NACR non-sarcopenia group (P = 0.019). There was a significant non-linear relationship between ΔSMI% and survival outcomes (P < 0.05 for non-linear). On the multivariable analysis of OS, ΔSMI% > 12% was the independent prognostic factor (HR 1.76, 95% CI 1.03-2.99, P = 0.039) and significant difference was also found on DFS analysis (P = 0.025). CONCLUSIONS Patients with post-neoadjuvant chemoradiotherapy sarcopenia have worse survival and adverse short-term outcomes. Moreover, greater loss in SMI is associated with increased risks of death and disease progression during neoadjuvant chemoradiotherapy, with maximum impact noted with SMI loss greater than 12%.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Thoracic Surgery, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, China
| | - Pin-Hao Fang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, China
| | - Jian-Feng Zhou
- Department of Thoracic Surgery, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, China
| | - Xiao-Kun Li
- Department of Thoracic Surgery, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, China
| | - Qi-Xin Shang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, China
| | - Yu-Shang Yang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, China
| | - Si-Yuan Luan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, China
| | - Long-Qi Chen
- Department of Thoracic Surgery, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Yan X, Li Z, Chen H, Yang F, Tian Q, Zhang Y. Photodynamic therapy inhibits cancer progression and induces ferroptosis and apoptosis by targeting P53/GPX4/SLC7A11 signaling pathways in cholangiocarcinoma. Photodiagnosis Photodyn Ther 2024; 47:104104. [PMID: 38679154 DOI: 10.1016/j.pdpdt.2024.104104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant tumor with a poor prognosis. The specific mechanism of photodynamic therapy (PDT) in treating CCA remains unclear. This study aims to investigate the mechanisms of PDT in the treatment of CCA and try to improve the therapeutic effect of PDT by intervening associated signaling pathways. METHODS The Cell Counting Kit-8 (CCK-8) was used to examine the cytotoxicity of CCA cell lines following PDT. Apoptosis and reactive oxygen species (ROS) levels were measured by flow cytometry. A transmission electron microscope was used to study the changes in cell mitochondria after PDT. The levels of glutathione (GSH), malondialdehyde (MDA), ferrous iron (Fe2+), lactate dehydrogenase (LDH), and lipid peroxide (LPO) were determined. Changes in the expression of apoptosis and ferroptosis-related proteins were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Xenograft tumor models were developed to investigate the effects of PDT on tumor proliferation, apoptosis, and ferroptosis in vivo. RESULTS PDT inhibited tumor proliferation and induced apoptosis both in vivo and in vitro. This treatment led to swelling and damage of the mitochondria in affected cells. Furthermore, ROS levels rose, accompanied by an increase in the proportion of apoptotic-positive cells. The expressions of Bax and Caspase-3 were upregulated, while the Bcl-2 was downregulated. Meanwhile, PDT triggered ferroptosis, marked by decreased expressions of GPX4 and SLC7A11, and reduced GSH levels. This was accompanied by upregulation of P53 expression and heightened levels of Fe2+, LPO, MDA, and LDH. After inducing the ferroptosis pathway, the therapeutic effect of PDT was enhanced, the tumor tissue was further reduced, and the degree of malignancy was reduced. CONCLUSION PDT promotes apoptosis and ferroptosis of cholangiocarcinoma cells by activating the P53/SLC7A11/GPX4 signaling pathway and inhibits the growth of cholangiocarcinoma. Inducing ferroptosis can enhance the effectiveness of photodynamic therapy.
Collapse
Affiliation(s)
- Xiaodong Yan
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Zhongmin Li
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyu Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Fu Yang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Tian
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China.
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China.
| |
Collapse
|
23
|
Ju M, Yang L, Wang G, Zong F, Shen Y, Wu S, Tang X, Yu D. A type I and type II chemical biology toolbox to overcome the hypoxic tumour microenvironment for photodynamic therapy. Biomater Sci 2024; 12:2831-2840. [PMID: 38683541 DOI: 10.1039/d4bm00319e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality employed for the treatment of various types of cancers, localized infections, and other diseases. Upon illumination, the photo-excited photosensitizer generates singlet oxygen and other reactive species, thereby inducing cytotoxicity in the target cells. The hypoxic tumour microenvironment (TME), however, poses a limitation on the supply of oxygen in tumour tissues. Moreover, under such conditions, tumour metastasis and drug resistance frequently occur, further compromising the efficacy of PDT in combating tumours. Traditionally, type I photosensitizers with lower oxygen consumption demonstrate significant potential in overcoming hypoxic environments and play a crucial role in determining the therapeutic efficacy of PDT because type I photosensitizers can generate highly cytotoxic free radicals. In comparison, type II photosensitizers exhibit high oxygen dependence. The rate of reactive oxygen species (ROS) generation in the type II process is significantly higher than that in the type I process. Thus, the efficiency and selectivity of PDT depend on the properties of the photosensitizer. Here, the recent development and application of type I and type II photosensitizers, mainly in the past year, are summarized. The design methods, electronic structures, photophysical properties, lipophilic properties, electric charge, and other molecular characteristics of these photosensitizers are discussed in detail. These modifications alter the microstructure of photosensitizers and directly impact the results of PDT. The main content of this paper will have a positive promoting and inspiring effect on the future development of PDT.
Collapse
Affiliation(s)
- Minzi Ju
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guowei Wang
- Department of Specialist Clinic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Feng Zong
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Yu Shen
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Xuna Tang
- Department of Specialist Clinic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Decai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
24
|
Jiang M, Li L, Liu H, Xie H. Multidisciplinary treatment of esophageal cancer with hepatocellular carcinoma: A case report. SAGE Open Med Case Rep 2024; 12:2050313X241252743. [PMID: 38803361 PMCID: PMC11129564 DOI: 10.1177/2050313x241252743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer remains a major cause of death globally. Esophageal cancer is one of the most aggressive malignancies and has limited treatment options, thus resulting in high morbidity and mortality. We reported the case of a 65-year-old patient who came to the hospital for abdominal distension and loss of appetite. The patient's endoscopy before admission indicated the possibility of esophageal cancer. After admission, an enhanced computed tomography (CT) scan of the chest and abdomen revealed esophageal stenosis and a liver tumor. The patient's final diagnosis was esophageal cancer concurrent with liver cancer, and a series of treatments were administered. However, esophageal cancer with liver cancer is rare. The patient was treated with targeted therapy, immunotherapy, and transcatheter arterial chemoembolization simultaneously. Then, regular follow-up was performed at 1 month, and at 3 months, the patient was discharged after immunotherapy. We hope that through this case, we can improve the clinical understanding of these two types of tumors and thereby contribute to their treatment. Research and collaboration among health-care professionals are essential for improving tumor diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Hongjie Liu
- Department of Oncology, Xuancheng Hospital Affiliated to Wannan Medical College, Anhui Province, China
| | - Hua Xie
- Department of Oncology, Xuancheng Hospital Affiliated to Wannan Medical College, Anhui Province, China
| |
Collapse
|
25
|
Wang C, Li Y, Wang L, Han Y, Gao X, Li T, Liu M, Dai L, Du R. SPP1 represents a therapeutic target that promotes the progression of oesophageal squamous cell carcinoma by driving M2 macrophage infiltration. Br J Cancer 2024; 130:1770-1782. [PMID: 38600327 PMCID: PMC11130281 DOI: 10.1038/s41416-024-02683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment (TME). However, the crosstalk between oesophageal squamous cell carcinoma (ESCC) cells and TAMs remains largely unexplored. METHODS Clinical samples and the TCGA database were used to evaluate the relevance of SPP1 and TAM infiltration in ESCC. Mouse models were constructed to investigate the roles of macrophages educated by SPP1 in ESCC. Macrophage phenotypes were determined using qRT‒PCR and immunohistochemical staining. RNA sequencing was performed to elucidate the mechanism. RESULTS Increasing expression of SPP1 correlated with M2-like TAM accumulation in ESCC, and they both predicted poor prognosis in the ESCC cohort. Knockdown of SPP1 significantly inhibited the infiltration of M2 TAMs in xenograft tumours. In vivo mouse model experiments showed that SPP1-mediated education of macrophages plays an essential role in the progression of ESCC. Mechanistically, SPP1 recruited macrophages and promoted M2 polarisation via CD44/PI3K/AKT signalling activation and then induced VEGFA and IL6 secretion to sustain ESCC progression. Finally, blockade of SPP1 with RNA aptamer significantly inhibited tumour growth and M2 TAM infiltration in xenograft mouse models. CONCLUSIONS This study highlights SPP1-mediated crosstalk between ESCC cells and TAMs in ESCC. SPP1 could serve as a potential target in ESCC therapy.
Collapse
Affiliation(s)
- Chen Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Nuclear Medicine, Xinxiang Central Hospital, Xinxiang, 453002, Henan, China
| | - Yutong Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linhong Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaohui Gao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Man Liu
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, 450000, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Renle Du
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
26
|
Zhang XJ, Yu Y, Zhao HP, Guo L, Dai K, Lv J. Mechanisms of tumor immunosuppressive microenvironment formation in esophageal cancer. World J Gastroenterol 2024; 30:2195-2208. [PMID: 38690024 PMCID: PMC11056912 DOI: 10.3748/wjg.v30.i16.2195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
As a highly invasive malignancy, esophageal cancer (EC) is a global health issue, and was the eighth most prevalent cancer and the sixth leading cause of cancer-related death worldwide in 2020. Due to its highly immunogenic nature, emer-ging immunotherapy approaches, such as immune checkpoint blockade, have demonstrated promising efficacy in treating EC; however, certain limitations and challenges still exist. In addition, tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment (TIME); thus, understanding the TIME is urgent and crucial, especially given the im-portance of an immunosuppressive microenvironment in tumor progression. The aim of this review was to better elucidate the mechanisms of the suppressive TIME, including cell infiltration, immune cell subsets, cytokines and signaling pathways in the tumor microenvironment of EC patients, as well as the downregulated expression of major histocompatibility complex molecules in tumor cells, to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies. Therefore, personalized treatments could be developed to maximize the advantages of immunotherapy.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Lei Guo
- Department of Spinal Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Kun Dai
- Department of Clinical Laboratory, Yanliang Railway Hospital of Xi’an, Xi’an 710089, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
27
|
Zhang M, Zhang Y, Hang L, Zhang T, Luo C, Li W, Sun Y, Wen H, Chen Y, Jiang G, Ma X. Bionic nanotheranostic for multimodal imaging-guided NIR-II-photothermal cancer therapy. NANOSCALE 2024; 16:6095-6108. [PMID: 38444228 DOI: 10.1039/d4nr00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
In photothermal therapy (PTT), the photothermal conversion of the second near-infrared (NIR-II) window allows deeper penetration and higher laser irradiance and is considered a promising therapeutic strategy for deep tissues. Since cancer remains a leading cause of deaths worldwide, despite the numerous treatment options, we aimed to develop an improved bionic nanotheranostic for combined imaging and photothermal cancer therapy. We combined a gold nanobipyramid (Au NBP) as a photothermal agent and MnO2 as a magnetic resonance enhancer to produce core/shell structures (Au@MnO2; AM) and modified their surfaces with homologous cancer cell plasma membranes (PM) to enable tumour targeting. The performance of the resulting Au@MnO2@PM (AMP) nanotheranostic was evaluated in vitro and in vivo. AMP exhibits photothermal properties under NIR-II laser irradiation and has multimodal in vitro imaging functions. AMP enables the computed tomography (CT), photothermal imaging (PTI), and magnetic resonance imaging (MRI) of tumours. In particular, AMP exhibited a remarkable PTT effect on cancer cells in vitro and inhibited tumour cell growth under 1064 nm laser irradiation in vivo, with no significant systemic toxicity. This study achieved tumour therapy guided by multimodal imaging, thereby demonstrating a novel strategy for the use of bionic gold nanoparticles for tumour PTT under NIR-II laser irradiation.
Collapse
Affiliation(s)
- Meng Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, China.
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Yuxuan Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, China.
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chuangcai Luo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, China.
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wuming Li
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hua Wen
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Yiyu Chen
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Guihua Jiang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510282, China.
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Xiaofen Ma
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
28
|
Sun H, Yang Z, Zhu J, Li J, Gong J, Chen L, Wang Z, Yin Y, Ren G, Cai J, Zhao L. Pseudo-medical image-guided technology based on 'CBCT-only' mode in esophageal cancer radiotherapy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 245:108007. [PMID: 38241802 DOI: 10.1016/j.cmpb.2024.108007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Purpose To minimize the various errors introduced by image-guided radiotherapy (IGRT) in the application of esophageal cancer treatment, this study proposes a novel technique based on the 'CBCT-only' mode of pseudo-medical image guidance. Methods The framework of this technology consists of two pseudo-medical image synthesis models in the CBCT→CT and the CT→PET direction. The former utilizes a dual-domain parallel deep learning model called AWM-PNet, which incorporates attention waning mechanisms. This model effectively suppresses artifacts in CBCT images in both the sinogram and spatial domains while efficiently capturing important image features and contextual information. The latter leverages tumor location and shape information provided by clinical experts. It introduces a PRAM-GAN model based on a prior region aware mechanism to establish a non-linear mapping relationship between CT and PET image domains. As a result, it enables the generation of pseudo-PET images that meet the clinical requirements for radiotherapy. Results The NRMSE and multi-scale SSIM (MS-SSIM) were utilized to evaluate the test set, and the results were presented as median values with lower quartile and upper quartile ranges. For the AWM-PNet model, the NRMSE and MS-SSIM values were 0.0218 (0.0143, 0.0255) and 0.9325 (0.9141, 0.9410), respectively. The PRAM-GAN model produced NRMSE and MS-SSIM values of 0.0404 (0.0356, 0.0476) and 0.9154 (0.8971, 0.9294), respectively. Statistical analysis revealed significant differences (p < 0.05) between these models and others. The numerical results of dose metrics, including D98 %, Dmean, and D2 %, validated the accuracy of HU values in the pseudo-CT images synthesized by the AWM-PNet. Furthermore, the Dice coefficient results confirmed statistically significant differences (p < 0.05) in GTV delineation between the pseudo-PET images synthesized using the PRAM-GAN model and other compared methods. Conclusion The AWM-PNet and PRAM-GAN models have the capability to generate accurate pseudo-CT and pseudo-PET images, respectively. The pseudo-image-guided technique based on the 'CBCT-only' mode shows promising prospects for application in esophageal cancer radiotherapy.
Collapse
Affiliation(s)
- Hongfei Sun
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiarui Zhu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jie Li
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Gong
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liting Chen
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhongfei Wang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yutian Yin
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ge Ren
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
29
|
Garg A, Karhana S, Khan MA. Nanomedicine for the eradication of Helicobacter pylori: recent advances, challenges and future perspective. Future Microbiol 2024; 19:431-447. [PMID: 38381027 DOI: 10.2217/fmb-2023-0189] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/31/2023] [Indexed: 02/22/2024] Open
Abstract
Helicobacter pylori infection is linked to gastritis, ulcers and gastric cancer. Nanomedicine offers a promising solution by utilizing nanoparticles for precise drug delivery, countering antibiotic resistance and delivery issues. Nanocarriers such as liposomes and nanoparticles enhance drug stability and circulation, targeting infection sites through gastric mucosa characteristics. Challenges include biocompatibility, stability, scalability and personalized therapies. Despite obstacles, nanomedicine's potential for reshaping H. pylori eradication is significant and showcased in this review focusing on benefits, limitations and future prospects of nanomedicine-based strategies.
Collapse
Affiliation(s)
- Aakriti Garg
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
- Centre for Translational & Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Sonali Karhana
- Centre for Translational & Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd A Khan
- Centre for Translational & Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
30
|
Li X, Li J, He S, Luan S, Zhang H, Yang Y, Chen X, Chen Y, Zhou J, Fang P, Xiao X, Liang Z, Zeng X, Gao H, Yuan Y. Self-Assembled Acid-Responsive Nanosystem for Synergistic Anti-Angiogenic/Photothermal/Ferroptosis Therapy against Esophageal Cancer. Adv Healthc Mater 2024; 13:e2302787. [PMID: 37988243 DOI: 10.1002/adhm.202302787] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Esophageal cancer (EC) treatment via anti-angiogenic therapy faces challenges due to non-cytotoxicity and non-specific biodistribution of the anti-angiogenic agents. Hence, the quest for a synergistic treatment modality and a targeted delivery approach to effectively address EC has become imperative. In this study, an acid-responsive release nanosystem (Bev-IR820@FeIII TA) that involves the conjugation of bevacizumab, an anti-angiogenic monoclonal antibody, with TA and Fe3+ to form a metal-phenolic network, followed by loading with the near-infrared photothermal agent (IR820) to achieve combinational therapy, is designed. The construction of Bev-IR820@FeIII TA can be realized through a facile self-assembly process. The Bev-IR820@FeIII TA exhibits tumor-targeting capabilities and synergistic therapeutic effects, encompassing anti-angiogenic therapy, photothermal therapy (PTT), and ferroptosis therapy (FT). Bev-IR820@FeIII TA exhibits remarkable proficiency in delivering drugs to EC tissue through its pH-responsive release properties. Consequently, bevacizumab exerts its therapeutic effects by obstructing tumor angiogenesis, thereby impeding tumor growth. Meanwhile, PTT facilitates localized thermal ablation at the tumor site, directly eradicating EC cells. FT synergistically collaborates with PTT, giving rise to the formation of a reactive oxygen species (ROS) storm, subsequently culminating in the demise of EC cells. In summary, this amalgamated treatment modality carries substantial promise for synergistically impeding EC progression and showcases auspicious prospects for future EC treatment.
Collapse
Affiliation(s)
- Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Jiamei Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610044, China
| | - Siqin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610044, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Haowen Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Yilong Chen
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Jianfeng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Pinhao Fang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xin Xiao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Zhiwen Liang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610044, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610044, China
| |
Collapse
|
31
|
Cao L, Ouyang H. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via exosomes in gastrointestinal tumors. Front Oncol 2024; 14:1374742. [PMID: 38463229 PMCID: PMC10920350 DOI: 10.3389/fonc.2024.1374742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Gastrointestinal (GI) tumors are a significant global health threat, with high rates of morbidity and mortality. Exosomes contain various biologically active molecules like nucleic acids, proteins, and lipids and can serve as messengers for intercellular communication. They play critical roles in the exchange of information between tumor cells and the tumor microenvironment (TME). The TME consists of mesenchymal cells and components of the extracellular matrix (ECM), with fibroblasts being the most abundant cell type in the tumor mesenchyme. Cancer-associated fibroblasts (CAFs) are derived from normal fibroblasts and mesenchymal stem cells that are activated in the TME. CAFs can secrete exosomes to modulate cell proliferation, invasion, migration, drug resistance, and other biological processes in tumors. Additionally, tumor cells can manipulate the function and behavior of fibroblasts through direct cell-cell interactions. This review provides a summary of the intercellular crosstalk between GI tumor cells and CAFs through exosomes, along with potential underlying mechanisms.
Collapse
Affiliation(s)
- Longyang Cao
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| | - Hong Ouyang
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| |
Collapse
|
32
|
Sun H, Zhang L, Zhao N, Xin H. Cu 2+-Citrate-Chitosan Complex Nanoparticles for the Chemodynamic Therapy of Lung Cancer. ACS OMEGA 2024; 9:8425-8433. [PMID: 38405439 PMCID: PMC10883013 DOI: 10.1021/acsomega.3c09619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Lung cancer poses a significant threat to human health. Surgical intervention is the preferred treatment modality for lung cancer, but a large number of patients are deprived of the opportunity for surgery for various reasons and are compelled to undergo radiotherapy and chemotherapy, which entail systemic adverse reactions. In recent years, with the advancement of nanomedicine, chemodynamic therapy (CDT) based on free radicals has been extensively investigated. In this study, we fabricated copper-citrate-chitosan composite nanoparticles (CuCC NPs) by encapsulating copper-citrate complexes with natural chitosan polymers, resulting in a substantial reduction in the biotoxicity of copper ions. The CuCC NPs selectively accumulated in tumor tissues through the enhanced permeability and retention effect (EPR) and gradually degraded within the acidic and glutathione (GSH)-rich microenvironment of the tumor, thereby releasing the loaded copper ions. Through CDT, the copper ions converted the overexpressed hydrogen peroxide (H2O2) in the tumor tissue into hydroxyl radicals (•OH), leading to the eradication of tumor cells. In animal experiments, CuCC NPs exhibited remarkable efficacy in CDT. Further histopathological and hematological analyses demonstrated that CuCC NPs could induce substantial apoptosis in tumor tissues while maintaining an extremely high level of safety.
Collapse
Affiliation(s)
- Hechen Sun
- Department of Thoracic
Surgery, China-Japan Union Hospital of Jilin
University, Changchun 130031, PR China
| | - Lening Zhang
- Department of Thoracic
Surgery, China-Japan Union Hospital of Jilin
University, Changchun 130031, PR China
| | - Nan Zhao
- Department of Thoracic
Surgery, China-Japan Union Hospital of Jilin
University, Changchun 130031, PR China
| | - Hua Xin
- Department of Thoracic
Surgery, China-Japan Union Hospital of Jilin
University, Changchun 130031, PR China
| |
Collapse
|
33
|
Wei DD, Fang JM, Wang HZ, Chen J, Kong S, Jiang YY, Jiang Y. Perioperative immunotherapy for esophageal squamous cell carcinoma. Front Immunol 2024; 15:1330785. [PMID: 38440724 PMCID: PMC10910041 DOI: 10.3389/fimmu.2024.1330785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the main prevalent histological subtype and accounts for 85% of esophageal cancer cases worldwide. Traditional treatment for ESCC involves chemotherapy, radiotherapy, and surgery. However, the overall prognosis remains unfavorable. Recently, immune checkpoint blockade (ICB) therapy using anti-programmed cell death-1 (PD-1)/PD-1 ligand (PD-L1) antibodies have not only achieved remarkable benefits in the clinical management of ESCC but have also completely changed the treatment approach for this cancer. In just a few years, ICB therapy has rapidly advanced and been added to standard first-line treatment regimen in patients with ESCC. However, preoperative immunotherapy is yet to be approved. In this review, we summarize the ICB antibodies commonly used in clinical immunotherapy of ESCC, and discuss the advances of immunotherapy combined with chemotherapy and radiotherapy in the perioperative treatment of ESCC, aiming to provide reference for clinical management of ESCC patients across the whole course of treatment.
Collapse
Affiliation(s)
- Dan D. Wei
- Esophageal and Gastrointestinal Tumor Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Jin M. Fang
- Esophageal and Gastrointestinal Tumor Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Huan Z. Wang
- Esophageal and Gastrointestinal Tumor Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Jian Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shuai Kong
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yan-Yi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yuan Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| |
Collapse
|
34
|
Liu Y, Gu Y, Zhou J, Zhang H, Shang Q, Yang Y, Chen L. Mendelian randomization analysis of atopic dermatitis and esophageal cancer in East Asian and European populations. World Allergy Organ J 2024; 17:100868. [PMID: 38293274 PMCID: PMC10825168 DOI: 10.1016/j.waojou.2023.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Background Emerging observational studies showed an association between atopic dermatitis (AD) and gastrointestinal cancers. However, it remains unclear whether this association is causal, particularly in the case of cancers like esophageal cancer, which exhibit ancestral genetic traits. Methods To assess the potential causal relationship between AD and esophageal cancer across diverse ancestral backgrounds, we conducted a 2-sample Mendelian randomization study. Independent genetic instruments for AD from the FinnGen consortium (N case = 7024 and N control = 198 740), BioBank Japan (N case = 2385 and N control = 209 651) and Early Genetics and Lifecourse Epidemiology (EAGLE) eczema consortium (N case = 18 900 and N control = 84 166, without the 23andMe study) were used to investigate the association with esophageal cancer in the UK Biobank study (N case = 740 and N control = 372 016) and BioBank Japan esophageal cancer sample (N case = 1300 and N control = 197 045). Results When esophageal cancer extracted from East Asian ancestry was used as a outcome factor, AD data extracted from BioBank Japan (OR = 0.90, 95% CI: 0.83-0.98), FinnGen consortium (OR = 0.86, 95% CI: 0.77-0.96), and EAGLE consortium (OR = 0.92, 95% CI: 0.81-1.06) were negatively associated with esophageal cancer susceptibility. However, AD as a whole did not show an association with esophageal cancer from European ancestry. Conclusion This study provides support for a causal relationship between AD and esophageal cancer in East Asian populations but not between AD and esophageal cancer from European ancestry. The specific associations between esophageal cancer and AD appear to exhibit significant disparities between the East Asian and European regions.
Collapse
Affiliation(s)
| | | | | | - Hanlu Zhang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qixin Shang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yushang Yang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Barba-Rosado LV, Carrascal-Hernández DC, Insuasty D, Grande-Tovar CD. Graphene Oxide (GO) for the Treatment of Bone Cancer: A Systematic Review and Bibliometric Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:186. [PMID: 38251150 PMCID: PMC10820493 DOI: 10.3390/nano14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a severe disease that, in 2022, caused more than 9.89 million deaths worldwide. One worrisome type of cancer is bone cancer, such as osteosarcoma and Ewing tumors, which occur more frequently in infants. This study shows an active interest in the use of graphene oxide and its derivatives in therapy against bone cancer. We present a systematic review analyzing the current state of the art related to the use of GO in treating osteosarcoma, through evaluating the existing literature. In this sense, studies focused on GO-based nanomaterials for potential applications against osteosarcoma were reviewed, which has revealed that there is an excellent trend toward the use of GO-based nanomaterials, based on their thermal and anti-cancer activities, for the treatment of osteosarcoma through various therapeutic approaches. However, more research is needed to develop highly efficient localized therapies. It is suggested, therefore, that photodynamic therapy, photothermal therapy, and the use of nanocarriers should be considered as non-invasive, more specific, and efficient alternatives in the treatment of osteosarcoma. These options present promising approaches to enhance the effectiveness of therapy while also seeking to reduce side effects and minimize the damage to surrounding healthy tissues. The bibliometric analysis of photothermal and photochemical treatments of graphene oxide and reduced graphene oxide from January 2004 to December 2022 extracted 948 documents with its search strategy, mainly related to research papers, review papers, and conference papers, demonstrating a high-impact field supported by the need for more selective and efficient bone cancer therapies. The central countries leading the research are the United States, Iran, Italy, Germany, China, South Korea, and Australia, with strong collaborations worldwide. At the same time, the most-cited papers were published in journals with impact factors of more than 6.0 (2021), with more than 290 citations. Additionally, the journals that published the most on the topic are high impact factor journals, according to the analysis performed, demonstrating the high impact of the research field.
Collapse
Affiliation(s)
- Lemy Vanessa Barba-Rosado
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| | - Domingo César Carrascal-Hernández
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| |
Collapse
|
36
|
Saraswat I, Goel A. Cervical Cancer Therapeutics: An In-depth Significance of Herbal and Chemical Approaches of Nanoparticles. Anticancer Agents Med Chem 2024; 24:627-636. [PMID: 38299417 DOI: 10.2174/0118715206289468240130051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Cervical cancer emerges as a prominent health issue, demanding attention on a global level for women's well-being, which frequently calls for more specialized and efficient treatment alternatives. Traditional therapies may have limited tumour targeting and adverse side effects. Recent breakthroughs have induced a transformative shift in the strategies employed against cervical cancer. biocompatible herbal nanoparticles and metallic particles made of gold, silver, and iron have become promising friends in the effort to fight against this serious disease and understand the possibility of these nanoparticles for targeted medication administration. this review article delves into the latest advancements in cervical cancer research. The safety and fabrication of these nanomaterials and their remarkable efficacy against cervical tumour spots are addressed. This review study, in short, provides an extensive introduction to the fascinating field of metallic and herbal nanoparticles in cervical cancer treatment. The information that has been examined points to a bright future in which women with cervical cancer may experience fewer side effects, more effective therapy, and an improved quality of life. This review holds promise and has the potential to fundamentally reshape the future of cervical cancer treatment by addressing urgent issues and unmet needs in the field.
Collapse
Affiliation(s)
- Istuti Saraswat
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
37
|
Pan X, Lu Y, Fan S, Tang H, Tan H, Cao C, Cheng Y, Liu Y. Gold Nanocage-Based Multifunctional Nanosensitizers for Programmed Photothermal /Radiation/Chemical Coordinated Therapy Guided by FL/MR/PA Multimodal Imaging. Int J Nanomedicine 2023; 18:7237-7255. [PMID: 38076731 PMCID: PMC10710274 DOI: 10.2147/ijn.s436931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Radiotherapy is one of the main clinical methods for the treatment of malignant tumors at present. However, its application is limited by the radiation resistance of some tumor cells and the irradiation damage to the surrounding normal tissues, and the limitation of radiotherapy dose also affects the therapeutic effect. Therefore, developing diagnostic and therapeutic agents with imaging and radiosensitizing functions is urgently needed to improve the accuracy and efficacy of radiotherapy. MATERIALS AND STRATEGY Herein, we synthesized multifunctional nanotheranostic FRNPs nanoparticles based on gold nanocages (GNCs) and MnO2 for magnetic resonance (MR)/photoacoustic (PA) imaging and combined photothermal, radiosensitive and chemical therapy. A programmed therapy strategy based on FRNPs is proposed. First, photothermal therapy is applied to ablate large tumors and increase the sensitivity of the tumor tissue to radiotherapy, then X-ray radiation is performed to further reduce the tumor size, and finally chemotherapeutic agents are used to eliminate smaller residual tumors and distant metastases. RESULTS As revealed by fluorescence, MR and PA imaging, FRNPs achieved efficient aggregation and retention at tumor sites of mice after intravenous injection. In vivo studies have shown that the programmed treatment of FRNPs-injected nude mice which were exposed to X-ray after 808 laser irradiation achieved the greatest inhibition of tumor growth compared with other treatment groups. Moreover, no obvious systemic toxicity was observed in all groups of mice, indicating the good biocompatibility of FRNPs and the safety of the treatment scheme. CONCLUSION To sum up, our work not only showed a new radiosensitizer, but also provided a promising theranostic strategy for cancer treatment.
Collapse
Affiliation(s)
- Xinni Pan
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yi Lu
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shanshan Fan
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hao Tang
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Cheng Cao
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yanlei Liu
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
38
|
Wang Y, Yao N, Sun J. Upregulation of miR-194-5p or silencing of PRC1 enhances radiotherapy sensitivity in esophageal squamous carcinoma cells. Heliyon 2023; 9:e22282. [PMID: 38046164 PMCID: PMC10686870 DOI: 10.1016/j.heliyon.2023.e22282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Background To investigate the possible molecular mechanism of miR-194-5p/PRC1/Wnt/β-catenin signaling axis that regulates the invasive metastatic ability and radiotherapy sensitivity of esophageal squamous cell carcinoma (ESCC) cells. Methods ESCC-related differentially expressed miRNAs were identified by microarray analysis, followed by the identification of a putative target. The targeting relationship between miR-194-5p and PRC1 was assayed. A series of mimic and shRNA were transfected into ESCC cells to find out the mechanism of miR-194-5p in ESCC by regulating PRC1 through Wnt/β-catenin signaling pathway and their effect on cell proliferation, migration, invasion, and radiosensitivity as well as xenograft tumor growth and metastasis in nude mice. Results We demonstrated low miR-194-5p expression and high PRC1 expression in ESCC tissues and cells. PRC1 was confirmed as a putative target for miR-194-5p. High miR-194-5p or silenced PRC1 enhanced ESCC cell radiosensitivity but reduced proliferation, invasion, and migration via PRC1 through modulation of the Wnt/β-catenin signaling pathway. Animal experiments also validated that overexpression of miR-194-5p suppressed tumorigenesis and in vivo metastasis in nude mice.Conclusion: miR-194-5p can inhibit the Wnt/β-catenin signaling pathway through down-regulation of the PRC1 gene, thereby enhancing the sensitivity of ESCC cells to radiotherapy and attenuating the invasion and metastasis ability of ESCC cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, PR China
| | - Ninghua Yao
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, PR China
| | - Jie Sun
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, PR China
| |
Collapse
|
39
|
Lv X, Wu X, Liu K, Zhao X, Pan C, Zhao J, Chang J, Guo H, Gao X, Zhi X, Ren C, Chen Q, Jiang H, Wang C, Li Y. Development and Validation of a Nomogram Model for the Risk of Cardiac Death in Patients Treated with Chemotherapy for Esophageal Cancer. Cardiovasc Toxicol 2023; 23:377-387. [PMID: 37804372 DOI: 10.1007/s12012-023-09807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/05/2023] [Indexed: 10/09/2023]
Abstract
The primary cause of mortality in esophageal cancer survivors is cardiac death. Early identification of cardiac mortality risk during chemotherapy for esophageal cancer is crucial for improving the prognosis. We developed and validated a nomogram model to identify patients with high cardiac mortality risk after chemotherapy for esophageal cancer for early screening and clinical decision-making. We randomly allocated 37,994 patients with chemotherapy-treated esophageal cancer into two groups using a 7:3 split ratio: model training (n = 26,598) and validation (n = 11,396). 5- and 10-year survival rates were used as endpoints for model training and validation. Decision curve analysis and the consistency index (C-index) were used to evaluate the model's net clinical advantage. Model performance was evaluated using receiver operating characteristic curves and computing the area under the curve (AUC). Kaplan-Meier survival analysis based on the prognostic index was performed. Patient risk was stratified according to the death probability. Age, surgery, sex, and year were most closely related to cardiac death and used to plot the nomograms. The C-index for the training and validation datasets were 0.669 and 0.698, respectively, indicating the nomogram's net clinical advantage in predicting cardiac death risk at 5 and 10 years. The 5- and 10-year AUCs were 0.753 and 0.772 for the training dataset and 0.778 and 0.789 for the validation dataset, respectively. The accuracy of the model in predicting cardiac death risk was moderate. This nomogram can identify patients at risk of cardiac death after chemotherapy for esophageal cancer at an early stage.
Collapse
Affiliation(s)
- Xinfang Lv
- Department of Geriatrics, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou City, Gansu Province, China
- School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Xue Wu
- Department of Cardiology, The Second Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
- School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Kai Liu
- School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Xinke Zhao
- School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Chenliang Pan
- Cardiovascular Disease Center, The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Jing Zhao
- Cardiovascular Disease Center, The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Juan Chang
- Department of Traditional Medicine, Gansu Provincial Hospital, Lanzhou City, Gansu Province, China
| | - Huan Guo
- Center for Translational Medicine, Gansu Provincial Academic Institute for Medical Research, Lanzhou City, Gansu Province, China
| | - Xiang Gao
- School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Xiaodong Zhi
- School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Chunzhen Ren
- School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Qilin Chen
- School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Hugang Jiang
- School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Chunling Wang
- School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Yingdong Li
- School of Integrative Medicine, Gansu University of Chinese Medicine, Lanzhou City, Gansu Province, China.
| |
Collapse
|
40
|
Yang KY, Mukundan A, Tsao YM, Shi XH, Huang CW, Wang HC. Assessment of hyperspectral imaging and CycleGAN-simulated narrowband techniques to detect early esophageal cancer. Sci Rep 2023; 13:20502. [PMID: 37993660 PMCID: PMC10665456 DOI: 10.1038/s41598-023-47833-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
The clinical signs and symptoms of esophageal cancer (EC) are often not discernible until the intermediate or advanced phases. The detection of EC in advanced stages significantly decreases the survival rate to below 20%. This study conducts a comparative analysis of the efficacy of several imaging techniques, including white light image (WLI), narrowband imaging (NBI), cycle-consistent adversarial network simulated narrowband image (CNBI), and hyperspectral imaging simulated narrowband image (HNBI), in the early detection of esophageal cancer (EC). In conjunction with Kaohsiung Armed Forces General Hospital, a dataset consisting of 1000 EC pictures was used, including 500 images captured using WLI and 500 images captured using NBI. The CycleGAN model was used to generate the CNBI dataset. Additionally, a novel method for HSI imaging was created with the objective of generating HNBI pictures. The evaluation of the efficacy of these four picture types in early detection of EC was conducted using three indicators: CIEDE2000, entropy, and the structural similarity index measure (SSIM). Results of the CIEDE2000, entropy, and SSIM analyses suggest that using CycleGAN to generate CNBI images and HSI model for creating HNBI images is superior in detecting early esophageal cancer compared to the use of conventional WLI and NBI techniques.
Collapse
Affiliation(s)
- Kai-Yao Yang
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st Rd., Lingya District, Kaohsiung, 80284, Taiwan
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, 62102, Chiayi, Taiwan
| | - Yu-Ming Tsao
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, 62102, Chiayi, Taiwan
| | - Xian-Hong Shi
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, 62102, Chiayi, Taiwan
| | - Chien-Wei Huang
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st Rd., Lingya District, Kaohsiung, 80284, Taiwan.
- Department of Nursing, Tajen University, 20, Weixin Rd., Yanpu, 90741, Pingtung, Taiwan.
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, 62102, Chiayi, Taiwan.
- Hitspectra Intelligent Technology Co., Ltd., 4F., No. 2, Fuxing 4th Rd., Qianzhen District, Kaohsiung, 80661, Taiwan.
- Department of Medical Research, Dalin Tzu Chi General Hospital, 2, Min-Sheng Rd., Dalin, 62247, Chiayi, Taiwan.
| |
Collapse
|
41
|
Sadeghi MS, Sangrizeh FH, Jahani N, Abedin MS, Chaleshgari S, Ardakan AK, Baeelashaki R, Ranjbarpazuki G, Rahmanian P, Zandieh MA, Nabavi N, Aref AR, Salimimoghadam S, Rashidi M, Rezaee A, Hushmandi K. Graphene oxide nanoarchitectures in cancer therapy: Drug and gene delivery, phototherapy, immunotherapy, and vaccine development. ENVIRONMENTAL RESEARCH 2023; 237:117027. [PMID: 37659647 DOI: 10.1016/j.envres.2023.117027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The latest advancements in oncology involves the creation of multifunctional nanostructures. The integration of nanoparticles into the realm of cancer therapy has brought about a transformative shift, revolutionizing the approach to addressing existing challenges and limitations in tumor elimination. This is particularly crucial in combating the emergence of resistance, which has significantly undermined the effectiveness of treatments like chemotherapy and radiotherapy. GO stands as a carbon-derived nanoparticle that is increasingly finding utility across diverse domains, notably in the realm of biomedicine. The utilization of GO nanostructures holds promise in the arena of oncology, enabling precise transportation of drugs and genetic material to targeted sites. GO nanomaterials offer the opportunity to enhance the pharmacokinetic behavior and bioavailability of drugs, with documented instances of these nanocarriers elevating drug accumulation at the tumor location. The GO nanostructures encapsulate genes, shielding them from degradation and facilitating their uptake within cancer cells, thereby promoting efficient gene silencing. The capability of GO to facilitate phototherapy has led to notable advancements in reducing tumor progression. By PDT and PTT combination, GO nanomaterials hold the capacity to diminish tumorigenesis. GO nanomaterials have the potential to trigger both cellular and innate immunity, making them promising contenders for vaccine development. Additionally, types of GO nanoparticles that respond to specific stimuli have been applied in cancer eradication, as well as for the purpose of cancer detection and biomarker diagnosis. Endocytosis serves as the mechanism through which GO nanomaterials are internalized. Given these advantages, the utilization of GO nanomaterials for tumor elimination comes highly recommended.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negar Jahani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahdi Sadegh Abedin
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Chaleshgari
- Department of Avian Diseases, Faculty of Veterinary Medicine, Chamran University, Ahvaz, Iran
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Reza Baeelashaki
- Department of Food Hygiene and Quality Control, Division of Animal Feed Hygiene, Faculty of Veterinary Medicine, Islamic Azad University, Shabestar Branch, Shabestar, Iran
| | - Golnaz Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
42
|
Zhang L, Li X, Yue G, Guo L, Hu Y, Cui Q, Wang J, Tang J, Liu H. Nanodrugs systems for therapy and diagnosis of esophageal cancer. Front Bioeng Biotechnol 2023; 11:1233476. [PMID: 37520291 PMCID: PMC10373894 DOI: 10.3389/fbioe.2023.1233476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
With the increasing incidence of esophageal cancer, its diagnosis and treatment have become one of the key issues in medical research today. However, the current diagnostic and treatment methods face many unresolved issues, such as low accuracy of early diagnosis, painful treatment process for patients, and high recurrence rate after recovery. Therefore, new methods for the diagnosis and treatment of esophageal cancer need to be further explored, and the rapid development of nanomaterials has brought new ideas for solving this problem. Nanomaterials used as drugs or drug delivery systems possess several advantages, such as high drug capacity, adjustably specific targeting capability, and stable structure, which endow nanomaterials great application potential in cancer therapy. However, even though the nanomaterials have been widely used in cancer therapy, there are still few reviews on their application in esophageal cancer, and systematical overview and analysis are deficient. Herein, we overviewed the application of nanodrug systems in therapy and diagnosis of esophageal cancer and summarized some representative case of their application in diagnosis, chemotherapy, targeted drug, radiotherapy, immunity, surgery and new therapeutic method of esophageal cancer. In addition, the nanomaterials used for therapy of esophageal cancer complications, esophageal stenosis or obstruction and oesophagitis, are also listed here. Finally, the challenge and the future of nanomaterials used in cancer therapy were discussed.
Collapse
Affiliation(s)
- Lihan Zhang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xing Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Guangxing Yue
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Lihao Guo
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, China
| | - Yanhui Hu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Qingli Cui
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Wang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jingwen Tang
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
43
|
Doghish AS, El-Husseiny AA, Abdelmaksoud NM, El-Mahdy HA, Elsakka EGE, Abdel Mageed SS, Mahmoud AMA, Raouf AA, Elballal MS, El-Dakroury WA, AbdelRazek MMM, Noshy M, El-Husseiny HM, Abulsoud AI. The interplay of signaling pathways and miRNAs in the pathogenesis and targeted therapy of esophageal cancer. Pathol Res Pract 2023; 246:154529. [PMID: 37196470 DOI: 10.1016/j.prp.2023.154529] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-β signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed M M AbdelRazek
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
44
|
Chen F, Xie C, Ren K, Xu X. Prognostic Value of the Naples Prognostic Score in Patients with Gastrointestinal Cancers: A Meta-Analysis. Nutr Cancer 2023:1-11. [PMID: 37177915 DOI: 10.1080/01635581.2023.2212426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This meta-analysis was conducted to systematically evaluate the prognostic role of the Naples prognostic score (NPS) in patients with gastrointestinal (GI) cancers. A comprehensive literature search of several major databases was performed for studies published until October 16, 2022. Hazard ratios (HRs) with 95% confidence intervals (CIs) were extracted and pooled by fixed-effects or random-effects models to analyze the associations between the NPS and overall survival (OS), cancer-specific survival (CSS), and recurrence-free/disease-free survival (RFS/DFS) in GI cancers. Thirteen studies were included in the meta-analysis. Pooled results indicated that a high NPS predicted poor OS (HR = 2.28, 95% CI: 1.90-2.74, p < 0.001), CSS (HR = 2.77, 95% CI: 2.10-3.66, p < 0.001), and RFS/DFS (HR = 2.77, 95% CI: 2.26-3.40, p < 0.001). For OS-related and RFS/DFS-related studies, subgroup analyses showed that a high NPS was significantly associated with poor OS and RFS/DFS irrespective of NPS group, calculation of the NPS, and tumor type. In the study that focused on CSS, subgroup analyses by NPS group and calculation of the NPS revealed similar results. The NPS may represent an effective prognostic indicator in patients with GI cancers.
Collapse
Affiliation(s)
- Fengmei Chen
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - Chen Xie
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kai Ren
- Department of Nursing, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - Xiaomin Xu
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| |
Collapse
|
45
|
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023; 15:868. [PMID: 36986729 PMCID: PMC10058002 DOI: 10.3390/pharmaceutics15030868] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.
Collapse
Affiliation(s)
- Bharath Govindan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
46
|
Yu Y, Meng Y, Xu X, Tong T, He C, Wang L, Wang K, Zhao M, You X, Zhang W, Jiang L, Wu J, Zhao M. A Ferroptosis-Inducing and Leukemic Cell-Targeting Drug Nanocarrier Formed by Redox-Responsive Cysteine Polymer for Acute Myeloid Leukemia Therapy. ACS NANO 2023; 17:3334-3345. [PMID: 36752654 DOI: 10.1021/acsnano.2c06313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ferroptosis is an alternative strategy to overcome chemoresistance, but effective therapeutic approaches to induce ferroptosis for acute myeloid leukemia (AML) treatment are limited. Here, we developed glutathione (GSH)-responsive cysteine polymer-based ferroptosis-inducing nanomedicine (GCFN) as an efficient ferroptosis inducer and chemotherapeutic drug nanocarrier for AML treatment. GCFN depleted intracellular GSH and inhibited glutathione peroxidase 4, a GSH-dependent hydroperoxidase, to cause lipid peroxidation and ferroptosis in AML cells. Furthermore, GCFN-loaded paclitaxel (PTX@GCFN) targeted AML cells and spared normal hematopoietic cells to limit the myeloablation side effects caused by paclitaxel. PTX@GCFN treatment extended the survival of AML mice by specifically releasing paclitaxel and simultaneously inducing ferroptosis in AML cells with restricted myeloablation and tissue damage side effects. Overall, the dual-functional GCFN acts as an effective ferroptosis inducer and a chemotherapeutic drug carrier for AML treatment.
Collapse
Affiliation(s)
- Yanhui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Department of Hematology, People's Hospital of Zhangzi, Changzhi, Shanxi 046000,China
| | - Yabin Meng
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xi Xu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tong Tong
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chong He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Liying Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Kaitao Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Minyi Zhao
- Department of Hematology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518000, China
| | - Xinru You
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Wenwen Zhang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Linjia Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
| | - Jun Wu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510410, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
47
|
Fang P, Zhou J, Xiao X, Yang Y, Luan S, Liang Z, Li X, Zhang H, Shang Q, Zeng X, Yuan Y. The prognostic value of sarcopenia in oesophageal cancer: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2023; 14:3-16. [PMID: 36415154 PMCID: PMC9891912 DOI: 10.1002/jcsm.13126] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
The loss of skeletal muscle mass and function is defined as sarcopenia, which might develop in elderly patients with cancers. It has been indicated as a potential negative factor in the survival of patients with malignant tumours. The aim of this systematic review and meta-analysis was to evaluate the associations between sarcopenia and survival outcomes or postoperative complications in patients with oesophageal cancer (EC). Web of Science, Embase, Medline, and Cochrane Library databases were searched until 10 May 2022, using keywords: sarcopenia, oesophageal cancer, and prognosis. Studies investigating the prognostic value of sarcopenia on EC survival were included. Forest plots and summary effect models were used to show the result of this meta-analysis. The quality of included studies was evaluated with the Newcastle-Ottawa Scale (NOS). A total of 1436 studies were identified from the initial search of four databases, and 41 studies were included for the final quantitative analysis. This meta-analysis revealed a significant association between sarcopenia and overall survival (OS) [hazard ratios (HR):1.68, 95% confidence interval (CI):1.54-1.83, P = 0.004, I2 = 41.7%] or disease-free survival (DFS) 1.97 (HR: 1.97, 95% CI: 1.44-2.69, P = 0.007, I2 = 61.9%) of EC patients. Subgroup analysis showed that sarcopenia remained a consistent negative predictor of survival when stratified by different treatment methods, populations, or sarcopenia measurements. Sarcopenia was also a risk factor for postoperative complications with a pooled odds ratio of 1.47 (95% CI: 1.21-1.77, P = 0.094, I2 = 32.7%). The NOS scores of all included studies were ≥6, and the quality of the evidence was relatively high. The results from the study suggested that sarcopenia was significantly associated with both survival outcomes and postoperative complications in EC patients. Sarcopenia should be appropriately diagnosed and treated for improving short-term and long-term outcomes of patients with EC.
Collapse
Affiliation(s)
- Pinhao Fang
- Department of Thoracic Surgery, Med+X Center for Informatics, West China HospitalSichuan UniversityChengduChina
| | - Jianfeng Zhou
- Department of Thoracic Surgery, Med+X Center for Informatics, West China HospitalSichuan UniversityChengduChina
| | - Xin Xiao
- Department of Thoracic Surgery, Med+X Center for Informatics, West China HospitalSichuan UniversityChengduChina
| | - Yushang Yang
- Department of Thoracic Surgery, Med+X Center for Informatics, West China HospitalSichuan UniversityChengduChina
| | - Siyuan Luan
- Department of Thoracic Surgery, Med+X Center for Informatics, West China HospitalSichuan UniversityChengduChina
| | - Zhiwen Liang
- Department of Thoracic Surgery, Med+X Center for Informatics, West China HospitalSichuan UniversityChengduChina
| | - Xiaokun Li
- Department of Thoracic Surgery, Med+X Center for Informatics, West China HospitalSichuan UniversityChengduChina
| | - Hanlu Zhang
- Department of Thoracic Surgery, Med+X Center for Informatics, West China HospitalSichuan UniversityChengduChina
| | - Qixin Shang
- Department of Thoracic Surgery, Med+X Center for Informatics, West China HospitalSichuan UniversityChengduChina
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, Med+X Center for Informatics, West China HospitalSichuan UniversityChengduChina
| | - Yong Yuan
- Department of Thoracic Surgery, Med+X Center for Informatics, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
48
|
Effects and Mechanisms Activated by Treatment with Cationic, Anionic and Zwitterionic Liposomes on an In Vitro Model of Porcine Pre-Pubertal Sertoli Cells. Int J Mol Sci 2023; 24:ijms24021201. [PMID: 36674712 PMCID: PMC9865246 DOI: 10.3390/ijms24021201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Liposomes have been successfully used as drug-delivery vehicles, but there are no clinical studies on improved fertility and the few reported experimental studies have been performed in animal models far from humans. The aim of this paper was to study the effects of treatment with cationic, anionic and zwitterionic liposomes on our superior mammalian model of porcine prepubertal Sertoli cells (SCs) to find a carrier of in vitro test drugs for SCs. Porcine pre-pubertal SCs cultures were incubated with different liposomes. Viability, apoptosis/necrosis status (Annexin-V/Propidium iodide assay), immunolocalisation of β-actin, vimentin, the phosphorylated form of AMP-activated protein Kinase (AMPK)α and cell ultrastructure (Transmission Electron Microscopy, TEM) were analysed. Zwitterionic liposomes did not determine changes in the cell cytoplasm. The incubation with anionic and cationic liposomes modified the distribution of actin and vimentin filaments and increased the levels of the phosphorylated form of AMPKα. The Annexin/Propidium Iodide assay suggested an increase in apoptosis. TEM analysis highlighted a cytoplasmic vacuolisation. In conclusion, these preliminary data indicated that zwitterionic liposomes were the best carrier to use in an in vitro study of SCs to understand the effects of molecules or drugs that could have a clinical application in the treatment of certain forms of male infertility.
Collapse
|
49
|
Zhang C, Xu F, Qiang Y, Cong ZZ, Wang Q, Zhang Z, Luo C, Qiu BM, Hu LW, Shen Y. Prognostic significance of tumor regression grade in esophageal squamous cell carcinoma after neoadjuvant chemoradiation. Front Surg 2023; 9:1029575. [PMID: 36684331 PMCID: PMC9852042 DOI: 10.3389/fsurg.2022.1029575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/02/2022] [Indexed: 01/07/2023] Open
Abstract
Backgrounds Trimodal therapy (neoadjuvant chemoradiotherapy followed by esophagectomy) for locally advanced esophageal squamous cell carcinoma (ESCC) is associated with a significant survival benefit. Modified Ryan score is an effective tool to evaluated the tumor regression grade (TRG) after neoadjuvant therapy. The aim of this study was to evaluate the prognostic value of TRG for overall survival (OS) and disease-free survival (DFS) in ESCC patients undergoing neoadjuvant chemoradiation. Methods The study retrospectively reviewed 523 ESCC patients who underwent neoadjuvant chemoradiotherapy and radical esophagectomy at Jinling Hospital from January 2014 to July 2020. Kaplan-Meier curves with log-rank test and Cox regression model were used to evaluate the prognostic factor of TRG based on modified Ryan scoring system on OS and DFS. Results After application of inclusion and exclusion criteria, 494 patients with ESCC following neoadjuvant chemoradiotherapy and radical esophagectomy were available for analysis. The TRG scores are significantly associated with smoke history (p = 0.02), lymphovascular invasion (LVI) and/or peripheral nerve invasion (PNI) (p < 0.01), and postoperative adjuvant therapy (p < 0.01). Meanwhile, tumor characteristics including tumor length (p < 0.01) and tumor differentiation grade (p < 0.01) are also significantly associated with TRG score. The results of multivariable Cox regression modal showed that TRG is not an independently prognostic factor for OS (p = 0.922) or DFS (p = 0.526) but tumor length is an independently prognostic factor for DFS (p = 0.046). Conclusions This study evaluated the prognostic value of modified Ryan scoring system for ESCC after trimodal therapy and concluded that modified Ryan scoring system can predict survival and recurrence rates but is not an independently prognostic factor for OS and DFS.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fei Xu
- Department of Cardiothoracic Surgery, Jinling Hospital, School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Qiang
- Department of Cardiothoracic Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhuang-Zhuang Cong
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qin Wang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zheng Zhang
- Department of Cardiothoracic Surgery, Jinling Hospital, School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chao Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bing-Mei Qiu
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, China,Correspondence: Yi Shen Li-Wen Hu Bing-Mei Qiu
| | - Li-Wen Hu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China,Correspondence: Yi Shen Li-Wen Hu Bing-Mei Qiu
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China,Department of Cardiothoracic Surgery, Jinling Hospital, School of Clinical Medicine, Nanjing Medical University, Nanjing, China,Department of Cardiothoracic Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China,Department of Cardiothoracic Surgery, Jinling Hospital, School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, China,Correspondence: Yi Shen Li-Wen Hu Bing-Mei Qiu
| |
Collapse
|
50
|
Wang QQ, Tan C, Qin G, Yao SK. Promising Clinical Applications of Hydrogels Associated With Precise Cancer Treatment: A Review. Technol Cancer Res Treat 2023; 22:15330338221150322. [PMID: 36604973 PMCID: PMC9829993 DOI: 10.1177/15330338221150322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Gastrointestinal cancer is one of the most malignant tumors with high morbidity and mortality, especially colorectal cancer, which has become the second leading cause of cancer-related deaths worldwide. Targeted drug treatment and precise endoscopic resection can significantly improve the overall survival rate and greatly extend the life span. Promising biomedical applications of hydrogels would represent hopeful therapeutic alternatives for patients with different kinds of diseases, particularly providing precise therapy for cancer patients. Although the intersection field of material science and biomedical science has made tremendous advances, major challenges remain. In this review, the application of hydrogel-based technology in cancer precision medicine is the focus of attention, which is the development trend of multidisciplinary cooperation in the future. First, we provide the current clinical landscape of hydrogel applications, and then we highlight precision oncology, including personalized drug treatment and accurate endoscopic intervention. Finally, we discuss major challenges for their clinical translation that have not yet been overcome and future perspectives on cancer precision medicine.
Collapse
Affiliation(s)
- Qian-qian Wang
- Peking University China-Japan Friendship School of Clinical
Medicine, Beijing, China
| | - Chang Tan
- Peking University China-Japan Friendship School of Clinical
Medicine, Beijing, China
| | - Geng Qin
- Department of Gastroenterology, China-Japan Friendship
Hospital, Beijing, China
| | - Shu-kun Yao
- Department of Gastroenterology, China-Japan Friendship
Hospital, Beijing, China
| |
Collapse
|