1
|
Shen Y, Hu Y, Li H, Shen G, Shen Y, Wang Z. CXCL Gene Clusters Regulated by Enhancer-Mediated DNA Looping Alteration in Pancreatic Cancer Cells. J Cell Mol Med 2025; 29:e70538. [PMID: 40194986 PMCID: PMC11975504 DOI: 10.1111/jcmm.70538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Pancreatic cancer is one of the deadliest cancers. Chemokines affect the progression of pancreatic cancer through various mechanisms. Most of the CXC chemokine genes, CC chemokine genes and CX3C chemokine genes are clustered together within a very short region of chromatin. Transcription activity of gene clusters is usually influenced by the chromatin architecture and spatial organisation. Nevertheless, the chromatin-mediated regulatory mechanism on transcription of chemokine gene clusters has never been studied in pancreatic cancer. Herein, we determined that the expression of C-X-C motif chemokine ligand 8 (CXCL8), CXCL6, CXCL4L1, CXCL1, CXCL4, CXCL7, CXCL5, CXCL3 and CXCL2 was up-regulated, whereas CXCL9, CXCL10 and CXCL11 were down-regulated in pancreatic cancer cells compared with normal duct epithelial cells and further uncovered that four enhancer elements showed robust interaction to form DNA looping containing the up-regulated eight CXCL genes, whereas the other enhancer controlled CXCL9, CXCL10 and CXCL11 to form another DNA loop. Furthermore, after these enhancers were respectively destroyed by CRISPR-Cas9, we observed that the interaction with other enhancers was weakened as well as the expression of CXCL gene clusters and the tumour malignancy of pancreatic cancer cells was significantly changed. Taken together, our research exhibits the regulatory mechanism on transcription of CXCL gene clusters via enhance-dependent DNA looping alteration in pancreatic cancer cells.
Collapse
Affiliation(s)
- Yifen Shen
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong University, Pancreas Center of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'anShaanxiChina
- Central LaboratorySuzhou Ninth People's HospitalSuzhouJiangsuChina
| | - Yanping Hu
- Department of Molecular PathologyThe Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer HospitalZhengzhouHenanChina
| | - Hua Li
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health CollegeSuzhouJiangsuChina
| | - Genhai Shen
- Department of General SurgerySuzhou Ninth People's HospitalSuzhouJiangsuChina
| | - Yihang Shen
- Central LaboratorySuzhou Ninth People's HospitalSuzhouJiangsuChina
- Department of General SurgerySuzhou Ninth People's HospitalSuzhouJiangsuChina
| | - Zheng Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong University, Pancreas Center of Xi'an Jiaotong University, Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
2
|
Khabipov A, Miebach L, Lenz M, Kersting S, Bekeschus S. RAW264.7 Macrophages as a Polarization Model in the Context of Pancreatic Cancer and Chemokine Release. BIOLOGY 2025; 14:320. [PMID: 40282185 PMCID: PMC12024713 DOI: 10.3390/biology14040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
The TME is a critical niche for determining the fate of cancer therapy. Tumor cells often polarize nontumor cells, including immune cells, in the TME to favor cancer growth. In pancreatic cancer, macrophages are associated with poor therapy outcomes and unfavorable survival, especially when rendered into M2 macrophages. The latter show features also found in so-called tumor-associated macrophages (TAM), which are described as protecting and propelling tumor growth. In this context, it has been understudied which pancreatic cancer chemokines contribute to macrophage polarization. To this end, we analyzed murine RAW264.7 macrophages and Panc02 and PDA6606 pancreatic cancer cells in mono- and coculture to identify release patterns of 13 chemokines. Artificial macrophage polarization confirmed prominent changes in surface receptor and chemokine secretion profiles. Strikingly, RAW264.7 cocultures with Panc02 or PDA6606 were congruent in showing elevated levels of CCL2, CCL5, CCL17, CCL20, CCL22, CXCL5, and CXCL10. Further underlining the suitability of our in vitro model, both pancreatic cancer cell lines showed similar modulation of the critical macrophage polarization markers arginase, CD206, and iNOS, as well as chemokine receptors CCR2 and CCR4. Collectively, we demonstrated that our model is suitable for testing the roles and functions of chemokines in macrophage polarization by pancreatic cancer cells.
Collapse
Affiliation(s)
- Aydar Khabipov
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Lea Miebach
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Maik Lenz
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Stephan Kersting
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
3
|
Zhang Z, Tang Y, Wang Y, Xu J, Yang X, Liu M, Mazzone M, Niu N, Sun Y, Tang Y, Xue J. SIN3B Loss Heats up Cold Tumor Microenvironment to Boost Immunotherapy in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402244. [PMID: 39316363 DOI: 10.1002/advs.202402244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/24/2024] [Indexed: 09/25/2024]
Abstract
Despite progress significant advances in immunotherapy for some solid tumors, pancreatic ductal adenocarcinoma (PDAC) remains unresponsive poorly responsive to such interventions, largely due to its highly immunosuppressive tumor microenvironment (TME) with limited CD8+ T cell infiltration. This study explores the role of the epigenetic factor Sin3B in the PDAC TME. Using murine PDAC models, we found that tumor cell-intrinsic Sin3B loss reshapes the TME, increasing CD8+ T cell infiltration and cytotoxicity, thus impeding tumor progression and enhancing sensitivity to anti-PD1 treatment. Sin3B-deficient tumor cells exhibited amplified CXCL9/10 secretion in response to Interferon-gamma (IFNγ), creating a positive feedback loop via the CXCL9/10-CXCR3 axis, thereby intensifying the anti-tumor immune response against PDAC. Mechanistically, extensive epigenetic regulation is uncovered by Sin3B loss, particularly enhanced H3K27Ac distribution on genes related to immune responses in PDAC cells. Consistent with the murine model findings, analysis of human PDAC samples revealed a significant inverse correlation between SIN3B levels and both CD8+ T cell infiltration and CXCL9/10 expression. Notebly, PDAC patients with lower SIN3B expression showed a more favorable response to anti-PD1 therapy. The findings suggest that targeting SIN3B can enhance cytotoxic T cell infiltration into the tumor site and improve immunotherapy efficacy in PDAC, offering potential avenues for therapeutic biomarker or target in this challenging disease.
Collapse
Affiliation(s)
- Zhengyan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yu Wang
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Junyi Xu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiaotong Yang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, 3000, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, Leuven, 3000, Belgium
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
4
|
Hong Z, Liu F, Zhang Z. Ubiquitin modification in the regulation of tumor immunotherapy resistance mechanisms and potential therapeutic targets. Exp Hematol Oncol 2024; 13:91. [PMID: 39223632 PMCID: PMC11367865 DOI: 10.1186/s40164-024-00552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Although immune checkpoint-based cancer immunotherapy has shown significant efficacy in various cancers, resistance still limits its therapeutic effects. Ubiquitination modification is a mechanism that adds different types of ubiquitin chains to proteins, mediating protein degradation or altering their function, thereby affecting cellular signal transduction. Increasing evidence suggests that ubiquitination modification plays a crucial role in regulating the mechanisms of resistance to cancer immunotherapy. Drugs targeting ubiquitination modification pathways have been shown to inhibit tumor progression or enhance the efficacy of cancer immunotherapy. This review elaborates on the mechanisms by which tumor cells, immune cells, and the tumor microenvironment mediate resistance to cancer immunotherapy and the details of how ubiquitination modification regulates these mechanisms, providing a foundation for enhancing the efficacy of cancer immunotherapy by intervening in ubiquitination modification.
Collapse
Affiliation(s)
- Zihang Hong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
Liu H, Lv Z, Zhang G, Yan Z, Bai S, Dong D, Wang K. Molecular understanding and clinical aspects of tumor-associated macrophages in the immunotherapy of renal cell carcinoma. J Exp Clin Cancer Res 2024; 43:242. [PMID: 39169402 PMCID: PMC11340075 DOI: 10.1186/s13046-024-03164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common tumors that afflicts the urinary system, accounting for 90-95% of kidney cancer cases. Although its incidence has increased over the past decades, its pathogenesis is still unclear. Tumor-associated macrophages (TAMs) are the most prominent immune cells in the tumor microenvironment (TME), comprising more than 50% of the tumor volume. By interacting with cancer cells, TAMs can be polarized into two distinct phenotypes, M1-type and M2-type TAMs. In the TME, M2-type TAMs, which are known to promote tumorigenesis, are more abundant than M1-type TAMs, which are known to suppress tumor growth. This ratio of M1 to M2 TAMs can create an immunosuppressive environment that contributes to tumor cell progression and survival. This review focused on the role of TAMs in RCC, including their polarization, impacts on tumor proliferation, angiogenesis, invasion, migration, drug resistance, and immunosuppression. In addition, we discussed the potential of targeting TAMs for clinical therapy in RCC. A deeper understanding of the molecular biology of TAMs is essential for exploring innovative therapeutic strategies for the treatment of RCC.
Collapse
Affiliation(s)
- Han Liu
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Zongwei Lv
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Gong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Zhenhong Yan
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Song Bai
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China.
| | - Dan Dong
- College of Basic Medical Science, China Medical University, #77 Puhe Road, Shenyang, Liaoning, 110122, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
6
|
Song N, Cui K, Zeng L, Fan Y, Wang Z, Shi P, Su W, Wang H. Calpain 8 as a potential biomarker regulates the progression of pancreatic cancer via EMT and AKT/ERK pathway. J Proteomics 2024; 301:105182. [PMID: 38697284 DOI: 10.1016/j.jprot.2024.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Calpain is a non-lysozyme, calcium-dependent intracellular cysteine protease that has been shown to play a role in tumor proliferation, survival, migration, invasion, and apoptosis. Dysregulation of calpain expression is closely related to tumorigenesis. However, the role of calpain-8 (CAPN8), as a member of the calpain family, in pancreatic cancer (PC) is remains unclear. In elucidating the mechanism of CAPN8 in PC, a comprehensive bioinformatics analysis and in vitro experiments were conducted. The TCGA database was used to explore the expression level of CAPN8, and the results in PC tissues and cell lines were verified. Then, the correlation between CAPN8 and clinicopathological features was analyzed. Additionaly, promoter methylation, immune infiltration, and GO/KEGG enrichment analyses were performed. Lastly, the molecular mechanism of CAPN8 in PC was investigated by using cell counting kit (CCK) 8, transwell, wound healing, Western blot assays, and so on. Results indicate that CAPN8 was highly expressed in PC and correlated with poor prognosis and advanced TNM stage. In addition, a low level of immune infiltration was closely associated with the high expression level of CAPN8. Based on these findings, we hypothesized that CAPN8 is a potential biomarker that regulates progression of PC via EMT and the AKT/ERK pathway. SIGNIFICANCE: Through comprehensive biological information and in vitro experiments, CAPN8 has been confirmed to play an important role in regulating pancreatic cancer (PC) proliferation, migration and invasion. CAPN8 is found to be closely related to the diagnosis, survival and prognosis of PC. Above all, CAPN8 may be a potential biomarker for the diagnosis and prognosis of PC.
Collapse
Affiliation(s)
- Na Song
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China; Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Kai Cui
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Liqun Zeng
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Yanwu Fan
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Ziwei Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Pingyu Shi
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Wei Su
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China.
| | - Haijun Wang
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China; Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China.
| |
Collapse
|
7
|
Dai Z, Lin X, Wang X, Zou X, Yan Y, Wang R, Chen Y, Tasiheng Y, Ma M, Wang X, Cheng H, Yu X, Liu C. Ectopic CXCR2 expression cells improve the anti-tumor efficiency of CAR-T cells and remodel the immune microenvironment of pancreatic ductal adenocarcinoma. Cancer Immunol Immunother 2024; 73:61. [PMID: 38430267 PMCID: PMC10908625 DOI: 10.1007/s00262-024-03648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Recent progressions in CAR-T cell therapy against pancreatic ductal adenocarcinoma (PDAC) remain disappointing, which are partially attributed to the immunosuppressive microenvironment including macrophage-mediated T cell repletion. METHODS We first characterized the expression patterns of macrophage-relevant chemokines and identified CXCR2 as the key factor regulating T cell trafficking and tumor-specific accumulation in PDAC microenvironment. After that, we synthesized and introduced a CXCR2 expression cascade into Claudin18.2 CAR-T cells and compared the behaviors of CAR-T cells in vitro and in vivo. The therapeutic potential of CXCR2 CAR-T was evaluated in two different allogeneic models: subcutaneous allografts and metastatic PDAC models. RESULTS The results showed that CXCR2 CAR-T not only reduced the size of allografted PDAC tumors, but also completely eliminated the formation of metastases. Lastly, we investigated the tumor tissues and found that expression of ectopic CXCR2 significantly improved tumor-targeted infiltration and residence of T cells and reduced the presence of MDSCs and CXCR2 + macrophages in PDAC microenvironment. CONCLUSION Our studies suggested that ectopic CXCR2 played a significant and promising role in improving the efficiency of CAR-T therapy against primary and metastatic PDAC and partially reversed the immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Zhengjie Dai
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
- Cancer Research Institute, Shanghai Key Laboratory of Radiation Oncology, , Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Xuan Zou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yu Yan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ruijie Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yusheng Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yesiboli Tasiheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Mingjian Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Xu-Hui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Yan J, Xiao G, Yang C, Liu Q, Lv C, Yu X, Zhou Z, Lin S, Bai Z, Lin H, Zhang R, Liu C. Cancer-Associated Fibroblasts Promote Lymphatic Metastasis in Cholangiocarcinoma via the PDGF-BB/PDGFR-β Mediated Paracrine Signaling Network. Aging Dis 2024; 15:369-389. [PMID: 37307823 PMCID: PMC10796099 DOI: 10.14336/ad.2023.0420] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/20/2023] [Indexed: 06/14/2023] Open
Abstract
Patients with cholangiocarcinoma (CCA) with lymph node metastasis (LNM) have the worst prognosis, even after complete resection; however, the underlying mechanism remains unclear. Here, we established CAF-derived PDGF-BB as a regulator of LMN in CCA. Proteomics analysis revealed upregulation of PDGF-BB in CAFs derived from patients with CCA with LMN (LN+CAFs). Clinically, the expression of CAF-PDGF-BB correlated with poor prognosis and increased LMN in patients with CCA, while CAF-secreted PDGF-BB enhanced lymphatic endothelial cell (LEC)-mediated lymphangiogenesis and promoted the trans-LEC migration ability of tumor cells. Co-injection of LN+CAFs and cancer cells increased tumor growth and LMN in vivo. Mechanistically, CAF-derived PDGF-BB activated its receptor PDGFR-β and its downstream ERK1/2-JNK signaling pathways in LECs to promote lymphoangiogenesis, while it also upregulated the PDGFR-β-GSK-P65-mediated tumor cell migration. Finally, targeting PDGF-BB/PDGFR-β or the GSK-P65 signaling axis prohibited CAF-mediated popliteal lymphatic metastasis (PLM) in vivo. Overall, our findings revealed that CAFs promote tumor growth and LMN via a paracrine network, identifying a promising therapeutic target for patients with advanced CCA.
Collapse
Affiliation(s)
- Jian Yan
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Gang Xiao
- Department of Thoracic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
- Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
| | - Caini Yang
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qinqin Liu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Cui Lv
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianhuan Yu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ziyu Zhou
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shusheng Lin
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhenhua Bai
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Haoming Lin
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Rui Zhang
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Chao Liu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Lekan AA, Weiner LM. The Role of Chemokines in Orchestrating the Immune Response to Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:559. [PMID: 38339310 PMCID: PMC10854906 DOI: 10.3390/cancers16030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Chemokines are small molecules that function as chemotactic factors which regulate the migration, infiltration, and accumulation of immune cells. Here, we comprehensively assess the structural and functional role of chemokines, examine the effects of chemokines that are present in the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME), specifically those produced by cancer cells and stromal components, and evaluate their impact on immune cell trafficking, both in promoting and suppressing anti-tumor responses. We further explore the impact of chemokines on patient outcomes in PDAC and their role in the context of immunotherapy treatments, and review clinical trials that have targeted chemokine receptors and ligands in the treatment of PDAC. Lastly, we highlight potential strategies that can be utilized to harness chemokines in order to increase cytotoxic immune cell infiltration and the anti-tumor effects of immunotherapy.
Collapse
Affiliation(s)
| | - Louis M. Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA;
| |
Collapse
|
10
|
Li S, Dong R, Kang Z, Li H, Wu X, Li T. Exosomes: Another intercellular lipometabolic communication mediators in digestive system neoplasms? Cytokine Growth Factor Rev 2023; 73:93-100. [PMID: 37541791 DOI: 10.1016/j.cytogfr.2023.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 08/06/2023]
Abstract
Neoplasms are one of the most concerned public health problems worldwide. Digestive system neoplasms, with a high morbidity and mortality, is one of the most common malignant tumors in human being. It is found that exosomes act as an intercellular communication media to carry the metabolic and genetic information of parental cells to target cells. Likely, exosomes participate in lipid metabolism and regulates multiple processes in digestive system neoplasms, including the information transmission among cancer cells, the formation of neoplastic microenvironment, and the neoplastic biological behaviors like metastasis, invasion, and the chemotherapy resistance. In this review, we firstly introduce the main mechanisms whereas exosomes act as intercellular lipometabolic communication mediator in digestive system neoplasms. Thereafter we introduce the relationship between exosomes lipid metabolism and various type of digestive system neoplasms, including gastric cancer, hepatocellular carcinoma, pancreatic cancer, and colorectal cancer. Eventually, we summarized and prospected the development and implication of exosomes in digestive system neoplasms. The further research of exosomes as intercellular lipid metabolism mediator will contribute to accurate and efficient diagnosis and treatment of digestive system neoplasms.
Collapse
Affiliation(s)
- Shaodong Li
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China; Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China
| | - Ruizhi Dong
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China
| | - Zhenhua Kang
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China
| | - Hucheng Li
- Department of Hepato-Pancreato-Biliary Center, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China; Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
11
|
Khabipov A, Trung DN, van der Linde J, Miebach L, Lenz M, Erne F, von Bernstorff W, Schulze T, Kersting S, Bekeschus S, Partecke LI. CCR4 Blockade Diminishes Intratumoral Macrophage Recruitment and Augments Survival of Syngeneic Pancreatic Cancer-Bearing Mice. Biomedicines 2023; 11:1517. [PMID: 37371612 DOI: 10.3390/biomedicines11061517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic cancer is known for its tumor microenvironment (TME), which is rich in stromal and immune cells supporting cancer growth and therapy resistance. In particular, tumor-associated macrophages (TAMs) are known for their angiogenesis- and metastasis-promoting properties, which lead to the failure of conventional therapies for pancreatic cancer. Hence, treatment options targeting TAMs are needed. The C-C chemokine receptor type 4 (CCR4) is critical for immune cell recruitment into the TME, and in this paper we explore the effects of its genetic or immunotherapeutic blockade in pancreatic-cancer-bearing mice. Murine PDA6606 pancreatic cancer cells and murine peritoneal macrophages were used for in vitro migration assays. In vivo, a syngeneic, orthotropic pancreatic cancer model was established. Tumor growth and survival were monitored under prophylactic and therapeutic application of a CCR4 antagonist (AF-399/420/18025) in wildtype (CCR4wt) and CCR4-knockout (CCR4-/-) mice. Immune infiltration was monitored in tumor tissue sections and via flow cytometry of lysed tumors. PDA6606 cells induced less migration in CCR4-/- than in CCR4wt macrophages in vitro. Pancreatic TAM infiltration was higher, and survival was reduced in CCR4wt mice compared to CCR4-/- mice. Antagonizing CCR4 in wildtype mice revealed similar results as in CCR4-/- mice without antagonization. Prophylactic CCR4 antagonist application in wildtype mice was more efficient than therapeutic antagonization. CCR4 seems to be critically involved in TAM generation and tumor progression in pancreatic cancer. CCR4 blockade may help prolong the relapse-free period after curative surgery in pancreatic cancer and improve prognosis.
Collapse
Affiliation(s)
- Aydar Khabipov
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Dung Nguyen Trung
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Julia van der Linde
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Lea Miebach
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Maik Lenz
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Felix Erne
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Wolfram von Bernstorff
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Tobias Schulze
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Stephan Kersting
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Lars Ivo Partecke
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- Department of General, Visceral, and Thoracic Surgery, Helios Clinic Schleswig, St. Jurgener Str. 1-3, 24837 Schleswig, Germany
| |
Collapse
|
12
|
Parrasia S, Rossa A, Roncaglia N, Mattarei A, Honisch C, Szabò I, Ruzza P, Biasutto L. DA7R: A 7-Letter Zip Code to Target PDAC. Pharmaceutics 2023; 15:pharmaceutics15051508. [PMID: 37242749 DOI: 10.3390/pharmaceutics15051508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and is among the most aggressive and still incurable cancers. Innovative and successful therapeutic strategies are extremely needed. Peptides represent a versatile and promising tool to achieve tumor targeting, thanks to their ability to recognize specific target proteins (over)expressed on the surface of cancer cells. A7R is one such peptide, binding neuropilin-1 (NRP-1) and VEGFR2. Since PDAC expresses these receptors, the aim of this study was to test if A7R-drug conjugates could represent a PDAC-targeting strategy. PAPTP, a promising mitochondria-targeted anticancer compound, was selected as the cargo for this proof-of-concept study. Derivatives were designed as prodrugs, using a bioreversible linker to connect PAPTP to the peptide. Both the retro-inverso (DA7R) and the head-to-tail cyclic (cA7R) protease-resistant analogs of A7R were tested, and a tetraethylene glycol chain was introduced to improve solubility. Uptake of a fluorescent DA7R conjugate, as well as of the PAPTP-DA7R derivative into PDAC cell lines was found to be related to the expression levels of NRP-1 and VEGFR2. Conjugation of DA7R to therapeutically active compounds or nanovehicles might allow PDAC-targeted drug delivery, improving the efficacy of the therapy and reducing off-target effects.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Nicola Roncaglia
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- CNR Institute of Biomolecular Chemistry, Padua Unit, Via F. Marzolo 1, 35131 Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Claudia Honisch
- CNR Institute of Biomolecular Chemistry, Padua Unit, Via F. Marzolo 1, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Paolo Ruzza
- CNR Institute of Biomolecular Chemistry, Padua Unit, Via F. Marzolo 1, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Padua Unit, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
13
|
Zhang Z, Wang J, Han W, Zhao L. Novel chemokine related LncRNA signature correlates with the prognosis, immune landscape, and therapeutic sensitivity of esophageal squamous cell cancer. BMC Gastroenterol 2023; 23:132. [PMID: 37081402 PMCID: PMC10120245 DOI: 10.1186/s12876-023-02688-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is closely correlated with malignant biological characteristics and poor survival. Recently, chemokines have been reported to be involved in the progression of tumors, and they can also regulate the tumor microenvironment. However, it is unclear whether chemokine-related long noncoding RNAs (lncRNAs) affect the prognosis of ESCC. METHODS We downloaded RNA-seq and clinical data from the Gene Expression Omnibus (GEO database. Chemokine-related lncRNAs were screened by differential analysis and Pearson correlation analysis. Then, prognosis-related lncRNAs were screened by using univariate COX regression, and risk models were constructed after the least absolute shrinkage and selection operator (LASSO) regression and multivariate COX regression. The predictive value of the signature was assessed using Kaplan-Meier test, time-dependent receiver operating characteristic (ROC) curves, decision curve analysis (DCA) and calibration curve. Moreover, a nomogram to predict patients' 1-year 3-year and 5-year prognosis was constructed. Gene set enrichment analyses (GSEA), Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG), evaluation of immune cell infiltration, and estimation of drug sensitivity were also conducted. RESULTS In this study, 677 chemokine-related lncRNAs were first obtained by differential analysis and Pearson correlation. Then, six chemokine-related lncRNAs were obtained by using univariate COX, LASSO and multivariate COX to construct a novel chemokine-related lncRNAs risk model. The signature manifested favorable predictive validity and accuracy both in the testing and training cohorts. The chemokine-related signature could classify ESCC patients into two risk groups well, which indicated that high-risk group exhibited poor prognostic outcome. In addition, this risk model played an important role in predicting signaling pathways, immune cell infiltration, stromal score, and drug sensitivity in ESCC patients. CONCLUSIONS These findings elucidated the critical role of novel prognostic chemokine-related lncRNAs in prognosis, immune landscape, and drug therapy, thus throwing light on prognostic evaluation and therapeutic targets for ESCC patients.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, No. 1 Xinsi Road, Xi'an, China
| | - Jian Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Han
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, No. 1 Xinsi Road, Xi'an, China
| | - Li Zhao
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, No. 1 Xinsi Road, Xi'an, China.
| |
Collapse
|
14
|
Siddiqui JA, Nasser MW. Editorial: Role of chemokines in tumor heterogeneity. Semin Cancer Biol 2023; 92:128-129. [PMID: 37028577 DOI: 10.1016/j.semcancer.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
Sadhukhan P, Seiwert TY. The role of macrophages in the tumor microenvironment and tumor metabolism. Semin Immunopathol 2023; 45:187-201. [PMID: 37002376 DOI: 10.1007/s00281-023-00988-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
The complexity and plasticity of the tumor microenvironment (TME) make it difficult to fully understand the intratumoral regulation of different cell types and their activities. Macrophages play a crucial role in the signaling dynamics of the TME. Among the different subtypes of macrophages, tumor-associated macrophages (TAMs) are often associated with poor prognosis, although some subtypes of TAMs can at the same time improve treatment responsiveness and lead to favorable clinical outcomes. TAMs are key regulators of cancer cell proliferation, metastasis, angiogenesis, extracellular matrix remodeling, tumor metabolism, and importantly immunosuppression in the TME by modulating various chemokines, cytokines, and growth factors. TAMs have been identified as a key contributor to resistance to chemotherapy and cancer immunotherapy. In this review article, we aim to discuss the mechanisms by which TAMs regulate innate and adaptive immune signaling in the TME and summarize recent preclinical research on the development of therapeutics targeting TAMs and tumor metabolism.
Collapse
Affiliation(s)
- Pritam Sadhukhan
- Johns Hopkins University, Skip Viragh Outpatient Cancer Building, Baltimore, MD, 21287, USA
| | - Tanguy Y Seiwert
- Johns Hopkins University, Skip Viragh Outpatient Cancer Building, Baltimore, MD, 21287, USA.
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
16
|
A Novel Prognostic Chemokine-Related lncRNAs Signature Associated with Immune Landscape in Colon Adenocarcinoma. DISEASE MARKERS 2022; 2022:2823042. [PMID: 36393968 PMCID: PMC9649319 DOI: 10.1155/2022/2823042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Chemokines have been reported to be involved in tumorigenesis and progression and can also modulate the tumor microenvironment. However, it is still unclear whether chemokine-related long noncoding RNAs (lncRNAs) can affect the prognosis of colon adenocarcinoma (COAD). We summarized chemokine-related genes and downloaded RNA-seq and clinical data from The Cancer Genome Atlas (TCGA) database. A total of 52 prognostic chemokine-related lncRNAs were screened by univariate Cox regression analysis; patients were grouped according to cluster analysis results. Lasso regression analysis was applied to determine chemokine-related lncRNAs to construct a risk model for further research. This study first investigated the differences between the prognosis and immune status of two chemokine-related lncRNAs clusters by consensus clustering. Then, using various algorithms, we obtained ten chemokine-related lncRNAs to construct a new prognostic chemokine-related lncRNAs risk model. The risk model's predictive efficiency, validity, and accuracy were further validated and determined in the test and training cohorts. Furthermore, this risk model played a vital role in predicting immune cell infiltration, immune checkpoint gene expression, tumor mutational burden (TMB), immunotherapy score, and drug sensitivity in COAD patients. These findings elucidated the critical role of novel prognostic chemokine-related lncRNAs in prognosis, immune landscape, and drug therapy, thereby providing valuable insights for prognosis assessment and personalized treatment strategies for COAD patients.
Collapse
|