1
|
Schito L, Rey-Keim S. Editorial - Hypoxia as a molecular driver of cancer progression. Semin Cancer Biol 2025; 111:36-38. [PMID: 39978608 DOI: 10.1016/j.semcancer.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Affiliation(s)
- Luana Schito
- UCD School of Medicine, University College Dublin, Belfield, Dublin 4 D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 D04 C7X2, Ireland.
| | - Sergio Rey-Keim
- UCD School of Medicine, University College Dublin, Belfield, Dublin 4 D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 D04 C7X2, Ireland.
| |
Collapse
|
2
|
Wang J, Guo Q, He L, Song R, Du J, Zhou H, Hao Y, Yang X, Wang F, Li K, Li M, Yang Z, Sun L, Liu Z. A Nanoradiosensitizer Potentiates Tumor Radiotherapy through JFK Inhibition and Hypoxia Alleviation. NANO LETTERS 2025; 25:5435-5443. [PMID: 40125668 DOI: 10.1021/acs.nanolett.5c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Radiotherapy (RT) is a primary treatment for breast cancer, but its effectiveness is often compromised by hypoxia and intrinsic resistance mechanisms. The F-box protein JFK is overexpressed in breast cancer and is associated with reduced radiosensitivity, but specific JFK inhibitors are currently unavailable. Herein, we developed spherical nanoparticles (SNP-JC) designed to co-deliver small interfering RNA targeting JFK and catalase to the tumor, aiming to silence JFK and alleviate hypoxia to overcome RT resistance. Positron emission tomography imaging demonstrated that SNP-JC efficiently accumulated in the tumors. SNP-JC significantly increased DNA damage in tumor cells after RT and promoted the immunogenic cell death. The combination of SNP-JC and RT activated CD8+ T cells and elicited a robust antitumor immunity, resulting in suppressed primary tumor growth and reduced lung metastasis. Our findings demonstrate that a nanoplatform capable of simultaneously silencing JFK and mitigating hypoxia can enhance tumor radiosensitivity, improve antitumor efficacy, and prevent metastasis.
Collapse
Affiliation(s)
- Jianze Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Qianrui Guo
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Department of Biochemistry, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Rui Song
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Jinhong Du
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Haoyi Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Yameng Hao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Xiujie Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Feng Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Kui Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Zhi Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Luyang Sun
- Department of Biochemistry, School of Basic Medical Sciences, Peking University International Cancer Institute, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, and Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100191, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital and Institute, Beijing 100142, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Nuclear Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
3
|
Qin J, Hu S, Chen Y, Xu M, Xiao Q, Lou J, Ding M, Sun H, Xu T, Pan Y, Wang S. Hypoxia Promotes Malignant Progression of Colorectal Cancer by Inducing POSTN + Cancer-Associated Fibroblast Formation. Mol Carcinog 2025; 64:716-732. [PMID: 39835715 DOI: 10.1002/mc.23882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies. Hypoxia can promote the occurrence and development of CRC. However, how hypoxia regulates the CRC immune microenvironment needs to be further explored. The bulk RNA sequencing data and clinicopathological information of CRC patients were enrolled from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. The single-cell RNA sequencing (scRNA-seq) datasets of CRC were collected from and analyzed from the GEO database and the ArrayExpress database. The score of the hypoxia gene set was estimated using the "ssGSEA" algorithm in the "GSVA" R package. The functional characteristics of CAF subtypes were studied by bioinformatics analysis and in vitro experiments, and a prognostic model was constructed based on machine learning correlation. Hypoxia is associated with poor prognosis in CRC patients. Periostin (POSTN) + Fib is a cancer-associated fibroblast (CAF) closely associated with hypoxia, and high infiltration of POSTN + Fib is associated with adverse outcomes in overall survival (OS) and relapse-free survival (RFS) in CRC patients. Hypoxia can induce POSTN expression and secretion in CAFs. Hypoxia-induced increase of POSTN expression in CAFs can significantly promote the migration and proliferation of CRC cells. Hypoxia-induced increase of POSTN expression in CAFs can significantly promote the proliferation and migration of CRC cells. The POSTN+Fib Hypoxia-Related Risk Model (PFHRM) can predict the survival and immunotherapy response of CRC patients. Our study identified a POSTN+Fib cell subpopulation closely associated with hypoxia, which promotes the malignant progression of CRC. The development of PFHRM provides a theoretical basis for improving patient survival and prognosis.
Collapse
Affiliation(s)
- Jian Qin
- School of Medicine, Southeast University, Nanjing, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shangshang Hu
- School of Medicine, Southeast University, Nanjing, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuhan Chen
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qianni Xiao
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Jinwei Lou
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Muzi Ding
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, China
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Liu X, Kang X, Kang H, Yan H. The immunosuppressive role of MDSCs in HCC: mechanisms and therapeutic opportunities. Cell Commun Signal 2025; 23:155. [PMID: 40148954 PMCID: PMC11951757 DOI: 10.1186/s12964-025-02170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy with a significant global burden. Despite substantial advancements in HCC treatment in recent years, therapeutic efficacy remains constrained by immune evasion mechanisms within the tumor microenvironment (TME). Myeloid-derived suppressor cells (MDSCs), as critical immunosuppressive elements of the TME, have garnered increasing attention for their role in tumor progression. Recent studies emphasize their central involvement in promoting immune evasion, tolerance, and immunosuppression in HCC. This review examines the contributions of MDSCs to HCC pathogenesis, elucidates their underlying mechanisms, and discusses ongoing clinical trials, emphasizing their potential as therapeutic targets for improving clinical outcomes.
Collapse
Affiliation(s)
- Xiling Liu
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China
| | - Xichun Kang
- Beijing Fangshan District Center for Disease Control and Prevention, Beijing, 102488, China
| | - Haiyan Kang
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China
- Department of the Sixth Infection, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China
| | - Huimin Yan
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China.
| |
Collapse
|
5
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025; 25:167-188. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
7
|
Wang S, Chi Y, Wang D, Zhao K, Wang L. Regulation of Oxygen in the Tumor Microenvironment Synergizes with Immunotherapy to Suppress Tumor Progression. J Funct Biomater 2024; 15:357. [PMID: 39728157 PMCID: PMC11727667 DOI: 10.3390/jfb15120357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Hypoxia represents a crucial characteristic of the tumor microenvironment, which is closely related to cell proliferation, angiogenesis, and metabolic responses. These factors will further promote tumor progression, increase tumor invasion, and enhance tumor metastasis potential. A hypoxic microenvironment will also inhibit the activity of infiltrated immune cells in the tumor microenvironment, leading to the failure of cancer immunotherapy. Additionally, the hypoxic tumor microenvironment contributes to resistance to conventional therapies and leads to unfavorable prognoses. This review discusses advancements in strategies aimed at ameliorating tumor hypoxia within the microenvironment and modulating immune cell responses against tumors.
Collapse
Affiliation(s)
- Shoucheng Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (D.W.)
| | - Yongjie Chi
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (D.W.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danyang Wang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (D.W.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (D.W.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Ummarino A, Calà N, Allavena P. Extrinsic and Cell-Intrinsic Stress in the Immune Tumor Micro-Environment. Int J Mol Sci 2024; 25:12403. [PMID: 39596467 PMCID: PMC11594858 DOI: 10.3390/ijms252212403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
In continuously progressive tumor tissues, the causes of cellular stress are multiple: metabolic alterations, nutrient deprivation, chronic inflammation and hypoxia. To survive, tumor cells activate the stress response program, a highly conserved molecular reprogramming proposed to cope with challenges in a hostile environment. Not only cancer cells are affected, but stress responses in tumors also have a profound impact on their normal cellular counterparts: fibroblasts, endothelial cells and infiltrating immune cells. In recent years, there has been a growing interest in the interaction between cancer and immune cells, especially in difficult conditions of cellular stress. A growing literature indicates that knowledge of the molecular pathways activated in tumor and immune cells under stress conditions may offer new insights for possible therapeutic interventions. Counter-regulating the stress caused by the presence of a growing tumor can therefore be a weapon to limit disease progression. Here, we review the main pathways activated in cellular stress responses with a focus on immune cells present in the tumor microenvironment.
Collapse
Affiliation(s)
- Aldo Ummarino
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Nicholas Calà
- Etromapmacs Pole, Agorà Biomedical Sciences, 71010 Foggia, Italy;
| | | |
Collapse
|
9
|
Nawafleh H, Zeinelabdin N, Greene MK, Krishnan A, Ho L, Genead M, Kunimoto D, Scott CJ, Tolentino M, Chouaib S. Effect of Hypoxia on Siglec-7 and Siglec-9 Receptors and Sialoglycan Ligands and Impact of Their Targeting on NK Cell Cytotoxicity. Pharmaceuticals (Basel) 2024; 17:1443. [PMID: 39598355 PMCID: PMC11597189 DOI: 10.3390/ph17111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Tumor microenvironmental hypoxia is an established hallmark of solid tumors. It significantly contributes to tumor aggressiveness and therapy resistance and has been reported to affect the balance of activating/inhibitory surface receptors' expression and activity on NK cells. In the current study, we investigated the impact of hypoxia on the surface expression of Siglec-7 and Siglec-9 (Sig-7/9) and their ligands in NK cells and tumor target cells. The functional consequence of Siglec blockage using nanoparticles specifically designed to target and block Sig-7/9 receptors on NK cell cytotoxicity was elucidated. METHODS CD56⁺ CD3- NK cells were isolated from PBMCs along with an NK-92 clone and used as effector cells, while MCF-7 and K562 served as target cells. All cells were incubated under normoxic or hypoxic conditions for 24 h. To assess Siglec-7 and Siglec-9 receptor expression, U937, NK-92, and primary NK cells were stained with PE-labeled antibodies against CD328 Siglec-7/9. Interactions between Siglec-7/9 and their sialylated ligands, along with their functional impact on NK cell activity, were evaluated using polymeric nanoparticles coated with a sialic acid mimetic. Immunological synapse formation and live-cell imaging were performed with a ZEISS LSM 800 with Airyscan at 10× magnification for 24 h. RESULTS Our data indicate that hypoxia had no effect on the expression of Siglec-7/9 receptors by NK cells. In contrast, hypoxic stress resulted in an increase in Siglec-7 sialoglycan ligand expression by a sub-population of NK target cells. Using polymeric nanoparticles coated with a sialic acid mimetic that binds both Siglec-7 and -9 (Sig-7/9 NP), we demonstrated that incubation of these nanoparticles with NK cells resulted in increased immunological synapse formation, granzyme B accumulation, and killing of NK target cells. These studies indicate that hypoxic stress may have an impact on NK cell-based therapies and highlight the need to consider the hypoxic microenvironment for tumor-specific glycosylation. CONCLUSIONS Our findings point to the role of Siglec-sialylated glycan interactions in hypoxic stress-induced NK cell dysfunction and recommend the potential integration of the manipulation of this axis through the targeting of Siglecs in future cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Husam Nawafleh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (H.N.); (N.Z.)
| | - Nagwa Zeinelabdin
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (H.N.); (N.Z.)
| | - Michelle K. Greene
- Aviceda Glycotech, 97 Lisburn Road, Belfast BT9 7AE, UK; (M.K.G.); (C.J.S.)
| | - Anitha Krishnan
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (L.H.); (M.G.); (D.K.); (M.T.)
| | - Linus Ho
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (L.H.); (M.G.); (D.K.); (M.T.)
| | - Mohamed Genead
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (L.H.); (M.G.); (D.K.); (M.T.)
| | - Derek Kunimoto
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (L.H.); (M.G.); (D.K.); (M.T.)
| | - Christopher J. Scott
- Aviceda Glycotech, 97 Lisburn Road, Belfast BT9 7AE, UK; (M.K.G.); (C.J.S.)
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Michael Tolentino
- Aviceda Therapeutics Inc., Cambridge, MA 02142, USA; (A.K.); (L.H.); (M.G.); (D.K.); (M.T.)
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; (H.N.); (N.Z.)
| |
Collapse
|
10
|
Fan G, Xie T, Yang M, Li L, Tang L, Han X, Shi Y. Spatial analyses revealed S100P + TFF1 + tumor cells in spread through air spaces samples correlated with undesirable therapy response in non-small cell lung cancer. J Transl Med 2024; 22:917. [PMID: 39385235 PMCID: PMC11462816 DOI: 10.1186/s12967-024-05722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Spread through air spaces (STAS) is a recognized aggressive pattern in lung cancer, serving as a crucial risk factor for postoperative recurrence. However, its phenotype and related spatial structure have remained elusive. To address these limitations, we conducted a comprehensive study based on spatial data, analyzing over 30,000 spots from 14 non-STAS samples and one STAS sample. We observed increased proliferation activities and angiogenesis in STAS, identifying S100P as a potential biomarker for STAS. Furthermore, our investigation into the heterogeneity of STAS tumor cells revealed a subset identified as S100P + TFF1 +, exhibiting a negative impact on patients' survival in public datasets. This subtype exhibited the highest activities in the TGFb and hypoxia, suggesting its potential pro-tumor role within the tumor microenvironment. To assess the role of S100P + TFF1 + tumor cells in therapy response, we included data from two clinical trial cohorts (BPI-7711 for EGFR-TKI therapy and ORIENT-3 for immunotherapy). The presence of S100P + TFF1 + tumor cells correlated with worse responses to both EGFR-TKI therapy and immunotherapy. Notably, TFF1 emerged as a serum marker for predicting EGFR-TKI response. Cell-cell communication analysis revealed that the TGFb signaling pathway was the most activated in S100P + TFF1 + tumor cells, with TGFB2-TGFBR2 identified as the main ligand-receptor pair. This was further validated by multiplex immunofluorescence performed on twenty NSCLC samples. In summary, our study identified S100P as the biomarker for STAS and highlighted the adverse role of S100P + TFF1 + tumor cells in survival outcomes.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mengwei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
11
|
Li X, Xu J, Li X, Shi J, Wei C, Liang Q. Profiling hypoxia signaling reveals a lncRNA signature contributing to immunosuppression in high-grade glioma. Front Immunol 2024; 15:1471388. [PMID: 39416790 PMCID: PMC11479907 DOI: 10.3389/fimmu.2024.1471388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Background Hypoxic conditions in glioma are linked to tumor aggressiveness, poor prognosis, and treatment resistance. Long non-coding RNAs (lncRNAs) play key roles in the hypoxic and immune microenvironment of cancers, but their link to hypoxia-induced immunosuppression in high-grade glioma (HGG) is not well-studied. Methods Gene expression profiles from TCGA and CGGA, along with clinical and genomic data, were analyzed. Bioinformatics methods including Consensus Clustering, Pearson correlation, and Cox regression analyses were used. Cell proliferation was assessed using cell counting kit-8 and colony formation assays. Glioma-macrophage interactions were evaluated using a co-culture model. Results Hypoxia subtype clustering showed hypoxic stress correlates with worse HGG prognosis. Eight hypoxia-related lncRNAs (AP000695.4, OSMR-AS1, AC078883.3, RP11-545E17.3, LINC01057, LINC01503, TP73-AS1, and LINC00672) with prognostic value were identified, forming a risk signature that separated patients into distinct prognostic groups. Multivariate Cox regression confirmed the signature as an independent prognostic factor. High-risk patients had greater hypoxia, leading to an immunosuppressive environment and immunotherapy resistance via tumor-associated macrophages (TAMs). TP73-AS1 significantly influenced hypoxia-induced TAM infiltration and M2 polarization. Conclusions We profiled hypoxic stress in HGG and developed an 8-lncRNA hypoxia-related signature predicting patient survival and immunotherapy response, emphasizing its role in hypoxia-induced immunosuppression.
Collapse
Affiliation(s)
- Xinqiao Li
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingcheng Xu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Li
- International Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianghua Shi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunmi Wei
- Department of Radiotherapy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyu Liang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Yang G, Hu M, Cai S, Li C, Yang L, Zhao M, Jing H, Xing L, Sun X. Optimizing the spatial immune landscape of CD103 +CD8 + tissue-resident memory T cells in non-small cell lung cancer by neoadjuvant chemotherapy. Cell Oncol (Dordr) 2024; 47:1957-1971. [PMID: 39158668 DOI: 10.1007/s13402-024-00980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) combined with immunotherapy is increasingly used in non-small cell lung cancer (NSCLC). Tissue-resident memory T (TRM) cells are the primary subset responding to anti-cancer immunity. However, the immunomodulatory effects of NAC on TRM cells remain unknown. METHODS We established two NSCLC cohorts including patients undergoing upfront surgery (US) and NAC followed by surgery. Beyond the unpaired comparison between the US cohort (n = 122) and NAC cohort (n = 141) with resection samples, 58 matched pre-NAC biopsy samples were available for paired comparisons. Using multiplex immunofluorescence, we characterized TRM cells (CD103+CD8+) and four heterogeneous TRM subsets, including naive TRM1 (PD-1-Tim-3-), pre-exhausted TRM2 (PD-1+Tim-3-), TRM3 (PD-1-Tim-3+), and terminally exhausted TRM4 (PD-1+Tim-3+). Cell density, cytotoxicity, and two spatial features were defined to evaluate the effect of NAC on TRM subsets. RESULTS The cell densities, infiltration scores, and cancer-cell proximity scores of TRM cells, especially TRM1&2 subsets, were significantly increased after NAC and associated with better prognosis of patients. In Contrast, no significant change was observed in the TRM4 subset, which was associated with poor prognosis. Besides, the cytotoxicity of TRM subsets was unaltered after NAC. Compared with patients without major pathologic response (MPRs), patients with MPR had higher densities of TRM1&2 subsets and higher cancer-cell proximity scores of TRM2&3 subsets. Furthermore, increased density of CD31 + cancer microvessels was positively associated with both TRM and Tnon-RM cells after NAC. CONCLUSIONS NAC may remodel the cell density and spatial distribution of TRM subsets, which is associated with favorable therapeutic effect and prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Hongbiao Jing
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China.
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, No.440, Jiyan Road, Huaiyin District, Jinan, 250117, China.
| |
Collapse
|
13
|
Wang C, Xu S, Yang X. Hypoxia-Driven Changes in Tumor Microenvironment: Insights into Exosome-Mediated Cell Interactions. Int J Nanomedicine 2024; 19:8211-8236. [PMID: 39157736 PMCID: PMC11328847 DOI: 10.2147/ijn.s479533] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Hypoxia, as a prominent feature of the tumor microenvironment, has a profound impact on the multicomponent changes within this environment. Under hypoxic conditions, the malignant phenotype of tumor cells, the variety of cell types within the tumor microenvironment, as well as intercellular communication and material exchange, undergo complex alterations. These changes provide significant prospects for exploring the mechanisms of tumor development under different microenvironmental conditions and for devising therapeutic strategies. Exosomes secreted by tumor cells and stromal cells are integral components of the tumor microenvironment, serving as crucial mediators of intercellular communication and material exchange, and have consequently garnered increasing attention from researchers. This review focuses on the mechanisms by which hypoxic conditions promote the release of exosomes by tumor cells and alter their encapsulated contents. It also examines the effects of exosomes derived from tumor cells, immune cells, and other cell types under hypoxic conditions on the tumor microenvironment. Additionally, we summarize current research progress on the potential clinical applications of exosomes under hypoxic conditions and propose future research directions in this field.
Collapse
Affiliation(s)
- Churan Wang
- Dalian Medical University, Dalian, 116000, People’s Republic of China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| | - Xiao Yang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| |
Collapse
|
14
|
Shi YX, Dai PH, Chen T, Yan JH. Comprehensive analysis and experimental verification reveal the molecular characteristics of EGLN3 in pan-cancer and its relationship with the proliferation and apoptosis of lung cancer. Heliyon 2024; 10:e33206. [PMID: 39021988 PMCID: PMC11253545 DOI: 10.1016/j.heliyon.2024.e33206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background Egl-9 family hypoxia-inducible factor 3 (EGLN3) is involved in the regulation of tumor microenvironment and tumor progression. However, its biological function and clinical significance in various cancers remain unclear. Methods RNA-seq, immunofluorescence, and single-cell sequencing were used to investigate the expression landscape of EGLN3 in pan-cancer. The TISCH2 and CancerSEA databases were used for single-cell function analysis of EGLN3 in tumors. TIMER2.0 database was used to explain the relationship between EGLN3 expression and immune cell infiltration. In addition, the LinkedOmics database was used to perform KEGG enrichment analysis of EGLN3 in pan-cancer. siRNA was used to silence gene expression. CCK8, transwell migration assay, flow cytometry analysis, RT-PCR, and western blotting were used to explore biological function of EGLN3. Results The results showed that EGLN3 was highly expressed in a variety of tumors, and was mainly localized to the cytosol. EGLN3 expression is associated with immunoinfiltration of a variety of immune cells, including macrophages in the tumor immune microenvironment and tumor-associated fibroblasts. Functional experiments revealed that EGLN3 knockdown could inhibit cell proliferation, migration, and promote cell apoptosis. In addition, we found that Bax expression was up-regulated and Bcl-2 expression was down-regulated in the si-EGLN3 group. Taken together, as a potential oncogene, EGLN3 is involved in the regulation of tumor malignant process, especially tumor cell apoptosis. Conclusion We comprehensively investigated the expression pattern, single-cell function, immune infiltration level and regulated signaling pathway of EGLN3 in pan-cancer. We found that EGLN3 is an important hypoxia and immune-related gene that may serve as a potential target for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Peng-Hui Dai
- Department of Pathology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Tao Chen
- School of Medicine, Hunan Normal University, Changsha, China
| | - Jian-Hua Yan
- Department of Cardiac Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
15
|
Kirchner J, Plesca I, Rothe R, Resag A, Löck S, Benešová I, Rupp L, Linge A, Wehner R, Krause M, Schmitz M. Type I conventional dendritic cells and CD8 + T cells predict favorable clinical outcome of head and neck squamous cell carcinoma patients. Front Immunol 2024; 15:1414298. [PMID: 38938577 PMCID: PMC11208331 DOI: 10.3389/fimmu.2024.1414298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common tumor entities worldwide, with human papillomavirus (HPV) infection contributing to cancer development. Conventional therapies achieve only limited efficiency, especially in recurrent or metastatic HNSCC. As the immune landscape decisively impacts the survival of patients and treatment efficacy, this study comprehensively investigated the immunological tumor microenvironment (TME) and its association with patient outcome, with special focus on several dendritic cell (DC) and T lymphocyte subpopulations. Therefore, formalin-fixed paraffin-embedded tumor samples of 56 HNSCC patients, who have undergone resection and adjuvant radiotherapy, were analyzed by multiplex immunohistochemistry focusing on the detailed phenotypic characterization and spatial distribution of DCs, CD8+ T cells, and T-helper cell subsets in different tumor compartments. Immune cell densities and proportions were correlated with clinical characteristics of the whole HNSCC cohort and different HPV- or hypoxia-associated subcohorts. Tumor stroma was highly infiltrated by plasmacytoid DCs and T lymphocytes. Among the T-helper cells and CD8+ T cells, stromal regulatory T cells and intraepithelial exhausted CD8+ T cells expressing programmed cell death protein-1 (PD-1+) and/or lymphocyte-activation gene-3 (LAG-3+) were the predominant phenotypes, indicating an immunosuppressive TME. HPV-associated tumors showed significantly higher infiltration of type I and type II conventional DCs (cDC1, cDC2) as well as several CD8+ T cell phenotypes including exhausted, activated, and proliferating T cells. On the contrary, tumors with hypoxia-associated gene signatures exhibited reduced infiltration for these immune cells. By multivariate Cox regression, immune-related prognostic factors were identified. Patient clusters defined by high infiltration of DCs and T lymphocytes combined with HPV positivity or low hypoxia showed significantly prolonged survival. Thereby, cDC1 and CD8+ T cells emerged as independent prognostic factors for local and distant recurrence. These results might contribute to the implementation of an immune cell infiltration score predicting HNSCC patients' survival and such patient stratification might improve the design of future individualized radiochemo-(immuno)therapies.
Collapse
Affiliation(s)
- Johanna Kirchner
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ioana Plesca
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Rebecca Rothe
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonia Resag
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Steffen Löck
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iva Benešová
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Luise Rupp
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Annett Linge
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebekka Wehner
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Marc Schmitz
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|