1
|
Rezzani R, Favero G, Gianò M, Pinto D, Labanca M, van Noorden CJ, Rinaldi F. Transient Receptor Potential Channels in the Healthy and Diseased Blood-Brain Barrier. J Histochem Cytochem 2024; 72:199-231. [PMID: 38590114 PMCID: PMC11020746 DOI: 10.1369/00221554241246032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
The large family of transient receptor potential (TRP) channels are integral membrane proteins that function as environmental sensors and act as ion channels after activation by mechanical (touch), physical (heat, pain), and chemical stimuli (pungent compounds such as capsaicin). Most TRP channels are localized in the plasma membrane of cells but some of them are localized in membranes of organelles and function as intracellular Ca2+-ion channels. TRP channels are involved in neurological disorders but their precise role(s) and relevance in these disorders are not clear. Endothelial cells of the blood-brain barrier (BBB) express TRP channels such as TRP vanilloid 1-4 and are involved in thermal detection by regulating BBB permeability. In neurological disorders, TRP channels in the BBB are responsible for edema formation in the brain. Therefore, drug design to modulate locally activity of TRP channels in the BBB is a hot topic. Today, the application of TRP channel antagonists against neurological disorders is still limited.
Collapse
Affiliation(s)
- Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Gaia Favero
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Interdipartimental University Center of Research Adaption and Regeneration of Tissues and Organs - ARTO, University of Brescia, Brescia, Italy
| | - Marzia Gianò
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, Milan, Italy
| | - Mauro Labanca
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale - SISDO), Brescia, Italy
| | - Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, Milan, Italy
| |
Collapse
|
2
|
Hwang SM, Lee JY, Park CK, Kim YH. The Role of TRP Channels and PMCA in Brain Disorders: Intracellular Calcium and pH Homeostasis. Front Cell Dev Biol 2021; 9:584388. [PMID: 33585474 PMCID: PMC7876282 DOI: 10.3389/fcell.2021.584388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Brain disorders include neurodegenerative diseases (NDs) with different conditions that primarily affect the neurons and glia in the brain. However, the risk factors and pathophysiological mechanisms of NDs have not been fully elucidated. Homeostasis of intracellular Ca2+ concentration and intracellular pH (pHi) is crucial for cell function. The regulatory processes of these ionic mechanisms may be absent or excessive in pathological conditions, leading to a loss of cell death in distinct regions of ND patients. Herein, we review the potential involvement of transient receptor potential (TRP) channels in NDs, where disrupted Ca2+ homeostasis leads to cell death. The capability of TRP channels to restore or excite the cell through Ca2+ regulation depending on the level of plasma membrane Ca2+ ATPase (PMCA) activity is discussed in detail. As PMCA simultaneously affects intracellular Ca2+ regulation as well as pHi, TRP channels and PMCA thus play vital roles in modulating ionic homeostasis in various cell types or specific regions of the brain where the TRP channels and PMCA are expressed. For this reason, the dysfunction of TRP channels and/or PMCA under pathological conditions disrupts neuronal homeostasis due to abnormal Ca2+ and pH levels in the brain, resulting in various NDs. This review addresses the function of TRP channels and PMCA in controlling intracellular Ca2+ and pH, which may provide novel targets for treating NDs.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Ji Yeon Lee
- Gil Medical Center, Department of Anesthesiology and Pain Medicine, Gachon University, Incheon, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| | - Yong Ho Kim
- Gachon Pain Center, Department of Physiology, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
3
|
Irnaten M, O'Malley G, Clark AF, O'Brien CJ. Transient receptor potential channels TRPC1/TRPC6 regulate lamina cribrosa cell extracellular matrix gene transcription and proliferation. Exp Eye Res 2020; 193:107980. [PMID: 32088241 DOI: 10.1016/j.exer.2020.107980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
The lamina cribrosa (LC) in glaucoma is with augmented production of extracellular matrix proteins (ECM) and connective tissue fibrosis. Fundamental pathological mechanisms for this fibrosis comprise fibrotic growth factors and oxidative stress. Transient receptor potential canonical channels (TRPC) channels play a key role in ECM fibrosis. Here, we study TRPC expression in glaucomatous LC cells, and investigate the role of TRPC in oxidative stress induced-profibrotic ECM gene transcription and cell proliferation in normal LC cells. Age-matched human LC cells (normal, n = 3 donors; glaucoma, n = 3 donors) were used. Hydrogen peroxide (H2O2, 100 μM), was used to induce oxidative stress in LC cells in the presence or absence of the pan TRPC inhibitor SKF96365 (10 μM) or knockdown of TRPC1/6 with siRNA. After treatments, ECM gene transcription, LC cell viability and proliferation and the phosphorylation of the transcription factor NFATc3, were measured using real time RT-PCR, colorimetric cell counting with the methyl-thiazolyl tetrazolium salt (MTS) assay, and Western immunoblotting, respectively. Results showed that TRPC1/C6 transcript and protein expression levels were significantly (p < 0.05) enhanced in glaucoma LC cells. Both SKF96365 and siRNA-TRPC1/C6 treatments significantly reduced the oxidative stress induced-ECM gene expression (transforming growth factor-β1 (TGFβ1), alpha smooth muscle actin (α-SMA), and collagen type 1A1 (Col1A1)), and cell proliferation in normal and glaucoma LC cells. Also, SKF96365 treatment inhibited the H2O2-induced NFATc3 protein dephosphorylation in LC cells. In conclusion, TRPC1/C6 expression is enhanced in glaucoma LC cells. These channels may contribute to oxidative stress-induced ECM gene transcription and cell proliferation in normal and glaucoma LC cells through Ca2+-NFATc3 signaling pathway mechanism. TRPC1 and TRPC6 channels could be important therapeutic targets to prevent ECM remodeling and fibrosis development in glaucoma optic neuropathy.
Collapse
Affiliation(s)
- M Irnaten
- Department of Ophthalmology, Mater Misericordiae Hospital, Dublin 7, Ireland; School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - G O'Malley
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - A F Clark
- Dept. Pharmacology & Neuroscience and the North Texas Eye Research Institute, U. North Texas, Health Science Centre, Ft Worth, TX, USA
| | - C J O'Brien
- Department of Ophthalmology, Mater Misericordiae Hospital, Dublin 7, Ireland; School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
4
|
Yan FR, Zhu ZL, Mu YP, Zhuang XL, Lin DC, Wu ZJ, Gui LX, Lin MJ. Increased caveolin-1 expression enhances the receptor-operated Ca 2+ entry in the aorta of two-kidney, one-clip hypertensive rats. Exp Physiol 2019; 104:932-945. [PMID: 30840346 DOI: 10.1113/ep086924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to examine and compare the contributions of caveolin-1 to the contractile responses mediated by L-type voltage-dependent calcium channels, store-operated Ca2+ channels and receptor-operated Ca2+ channels in two different types of arteries from two-kidney, one-clip hypertensive rats. What is the main finding and its importance? We demonstrated that the density of caveolae and caveolin-1 expression were significantly upregulated in the aorta of two-kidney, one-clip hypertensive rats, but not in the third-order branches of mesenteric arteries. We highlight that caveolin-1 plays an important role in aortic constriction by enhancing receptor-operated Ca2+ entry in the hypertensive rat model. ABSTRACT Calcium and its multiple regulatory mechanisms are crucial for the development of hypertension. Among these regulatory mechanisms, store-operated Ca2+ entry (SOCE) and receptor-operated Ca2+ entry (ROCE) mediate agonist-induced calcium influx, contributing to vascular contraction. The SOCE and ROCE are regulated by a variety of mechanisms involving caveolin-1 (Cav1), which has been found to be strongly associated with hypertension in gene polymorphism. In the present study, we investigated the role of Cav1 during the enhanced activity of calcium channels in hypertensive arteries. We demonstrated that the expression level of Cav1 was significantly increased in the aorta of two-kidney, one-clip (2K1C) hypertensive rats. The disruption of caveolae by methyl-β-cyclodextrin did not cause a marked difference in agonist-induced vasoconstriction in the third-order branches of the mesenteric arteries but strongly suppressed the aortic contractile response to endothelin-1 in the 2K1C group, which was not found in the control group. The increase in Cav1 by introduction of Cav1 scaffolding domain enhancing peptide promoted the 1-oleoyl-2-acetyl-glycerol-induced ROCE in hypertensive aortic smooth muscle cells but did not enhance the cyclopiazonic acid-induced SOCE. In the resistance arteries, similar changes were not observed, and no statistical changes of Cav1 expression were evident in the third-order branches of the mesenteric arteries. Our results indicate that increased Cav1 expression might promote the altered [Ca2+ ]i -induced aortic vasoreactivity by enhancing ROCE and be involved in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Fu-Rong Yan
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China.,Center for Molecular Diagnosis and Therapy, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, PR China
| | - Zhuang-Li Zhu
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yun-Ping Mu
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Xiao-Ling Zhuang
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Da-Cen Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Zhi-Juan Wu
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Long-Xin Gui
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Mo-Jun Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
5
|
Abstract
TRPC channels are the first identified members in the TRP family. They function as either homo- or heterotetramers regulating intracellular Ca2+ concentration in response to numerous physiological or pathological stimuli. TRPC channels are nonselective cation channels permeable to Ca2+. The properties and the functional domains of TRPC channels have been identified by electrophysiological and biochemical methods. However, due to the large size, instability, and flexibility of their complexes, the structures of the members in TRPC family remain unrevealed. More efforts should be made on structure analysis and generating good tools, including specific antibodies, agonist, and antagonist.
Collapse
Affiliation(s)
- Shengjie Feng
- Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Wang Q, Wang D, Yan G, Sun L, Tang C. TRPC6 is required for hypoxia-induced basal intracellular calcium concentration elevation, and for the proliferation and migration of rat distal pulmonary venous smooth muscle cells. Mol Med Rep 2015; 13:1577-85. [PMID: 26718737 PMCID: PMC4732854 DOI: 10.3892/mmr.2015.4750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/19/2015] [Indexed: 11/09/2022] Open
Abstract
Hypoxia induces pulmonary vasoconstriction and reconstruction in the pulmonary arteries and pulmonary veins (PVs), and elevation of intracellular calcium concentration ([Ca2+]i) is a primary factor of these processes. In the present study, the role of transient receptor potential cation channels (TRPCs) in mediating the hypoxia-induced elevation of [Ca2+]i in rat distal pulmonary venous smooth muscle cells (PVSMCs) was investigated. Rats with chronic hypoxic pulmonary hypertension (CHPH) were used for in vivo experiments, and PVSMCs were isolated for in vitro experiments. [Ca2+]i was measured using fura-2-based fluorescence calcium imaging. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the mRNA and protein expression levels of TRPCs. Methyl thiazolyl tetrazolium and Transwell assays were used to investigate the proliferation and migration of PVSMCs, respectively. The results of the present study demonstrated that TRPC6 was increased in the distal PVs of CHPH rats, and in PVSMCs exposed to hypoxic conditions (4% O2, 72 h); however, TRPC1 was not. The 1-oleoyl-2-acetyl-sn-glycerol-induced [Ca2+]i elevation was increased in PVSMCs isolated from CHPH rats and in PVSMCs cultured under hypoxic conditions (4% O2, 72 h). Hypoxia induced PVSMC [Ca2+]i elevation, proliferation and migration. These alterations were inhibited following TRPC6 knockdown. Results from the present study suggest that TRPC6 expression is increased during chronic hypoxia, which contributes to Ca2+ entry into the cell, thus promoting proliferation and migration of PVSMCs.
Collapse
Affiliation(s)
- Qingjie Wang
- Department of Cardiology, Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Gaoling Yan
- Department of Cardiology, Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ling Sun
- Department of Cardiology, Changzhou Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
7
|
Abstract
STIM1 regulates TRPC6 heteromultimerization with other TRPC channels and internalization to the endoplasmic reticulum, thus reducing Ca2+ entry mediated by TRPC6.
Collapse
|
8
|
Isoform- and receptor-specific channel property of canonical transient receptor potential (TRPC)1/4 channels. Pflugers Arch 2013; 466:491-504. [DOI: 10.1007/s00424-013-1332-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
|
9
|
Xu X, Wang BM, Yu QX, Sun C. Expression of transient receptor potential channels and cholinergic muscarinic acetylcholine receptors in human gastrointestinal stromal tumors. Shijie Huaren Xiaohua Zazhi 2013; 21:845-850. [DOI: 10.11569/wcjd.v21.i10.845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of transient receptor potential channels (TRPCs) and cholinergic muscarinic acetylcholine receptors (CHRMs) in human gastrointestinal stromal tumors (GISTs).
METHODS: Immunohistochemical method was used to detect the expression of TRPC and CHRM in GISTs.
RESULTS: GISTs expressed TRPC1, TRPC3, CHRM2 and CHRM3, and the positive rate was 57.5%, 47.5%, 22.5% and 55.0%, respectively. The expression levels of TRPC and CHRM decreased as the malignant potential grade of biological behaviors GISTs increased.
CONCLUSION: Our finding that GISTs express TRPC1, TRPC3, CHRM2 and CHRM3 provides new evidence for the origination of GIST from interstitial cells of Cajal.
Collapse
|
10
|
Piron M, Villereal ML. Chronic exposure to stress hormones alters the subtype of store-operated channels expressed in H19-7 hippocampal neuronal cells. J Cell Physiol 2013; 228:1332-43. [DOI: 10.1002/jcp.24289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 11/12/2012] [Indexed: 11/07/2022]
|
11
|
Sukumaran P, Löf C, Kemppainen K, Kankaanpää P, Pulli I, Näsman J, Viitanen T, Törnquist K. Canonical transient receptor potential channel 2 (TRPC2) as a major regulator of calcium homeostasis in rat thyroid FRTL-5 cells: importance of protein kinase C δ (PKCδ) and stromal interaction molecule 2 (STIM2). J Biol Chem 2012; 287:44345-60. [PMID: 23144458 DOI: 10.1074/jbc.m112.374348] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mammalian non-selective transient receptor potential cation channels (TRPCs) are important in the regulation of cellular calcium homeostasis. In thyroid cells, including rat thyroid FRTL-5 cells, calcium regulates a multitude of processes. RT-PCR screening of FRTL-5 cells revealed the presence of TRPC2 channels only. Knockdown of TRPC2 using shRNA (shTRPC2) resulted in decreased ATP-evoked calcium peak amplitude and inward current. In calcium-free buffer, there was no difference in the ATP-evoked calcium peak amplitude between control cells and shTRPC2 cells. Store-operated calcium entry was indistinguishable between the two cell lines. Basal calcium entry was enhanced in shTRPC2 cells, whereas the level of PKCβ1 and PKCδ, the activity of sarco/endoplasmic reticulum Ca(2+)-ATPase, and the calcium content in the endoplasmic reticulum were decreased. Stromal interaction molecule (STIM) 2, but not STIM1, was arranged in puncta in resting shTRPC2 cells but not in control cells. Phosphorylation site Orai1 S27A/S30A mutant and non-functional Orai1 R91W attenuated basal calcium entry in shTRPC2 cells. Knockdown of PKCδ with siRNA increased STIM2 punctum formation and enhanced basal calcium entry but decreased sarco/endoplasmic reticulum Ca(2+)-ATPase activity in wild-type cells. Transfection of a truncated, non-conducting mutant of TRPC2 evoked similar results. Thus, TRPC2 functions as a major regulator of calcium homeostasis in rat thyroid cells.
Collapse
Affiliation(s)
- Pramod Sukumaran
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Influx of Ca(2+) is a central component of the receptor-evoked Ca(2+) signal. A ubiquitous form of Ca(2+) influx comes from Ca(2+) channels that are activated in response to depletion of the endoplasmic reticulum Ca(2+) stores and are thus named the store-operated Ca(2+) -influx channels (SOCs). One form of SOC is the transient receptor potential canonical (TRPC) channels. A major question in the field of Ca(2+) signalling is the molecular mechanism that regulates the opening and closing of these channels. All TRPC channels have a Homer-binding ligand and two conserved negative charges that interact with two terminal lysines of the stromal interacting molecule 1 (STIM1). The Homer and STIM1 sites are separated by only four amino acid residues. Based on available results, we propose a molecular mechanism by which Homer couples TRPC channels to IP(3) receptors (IP(3) Rs) to keep these channels in the closed state. Dissociation of the TRPCs-Homer-IP(3) Rs complex allows STIM1 access to the TRPC channels negative charges to gate open these channels.
Collapse
Affiliation(s)
- J P Yuan
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | | | | |
Collapse
|
13
|
Cheung KK, Yeung SS, Au SW, Lam LS, Dai ZQ, Li YH, Yeung EW. Expression and association of TRPC1 with TRPC3 during skeletal myogenesis. Muscle Nerve 2012; 44:358-65. [PMID: 21996795 DOI: 10.1002/mus.22060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION TRPC1 and TRPC3 proteins are widely expressed in skeletal muscles in forming calcium-permeable channels. Herein we characterize the expression pattern of TRPC transcripts during skeletal myogenesis in C2C12 myoblasts. METHODS We used polymerase chain reaction and Western blotting to detect expression levels, immunohistochemistry for subcellular localization, and co-immunoprecipitation techniques to assess interaction. RESULTS TRPC1 localizes to the cytoplasm and is enriched in the perinuclear region in undifferentiated myoblasts. Expression of TRPC1 increases significantly during myogenesis and resides mainly in differentiated myocytes and myotubes. TRPC3 is absent in undifferentiated myoblasts, is dramatically upregulated in differentiated culture, and is preferentially expressed in myotubes. Physical interaction of TRPC1-TRPC3 was observed, suggesting the possible existence of heteromers. CONCLUSIONS Expression of TRPC1 and TRPC3 is tightly regulated during myogensis. Evidence of TRPC1-TRPC3 interaction was first demonstrated in a muscle cell line. The functional consequences of this interaction remain to be established.
Collapse
Affiliation(s)
- Kwok-Kuen Cheung
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
15
|
Horinouchi T, Terada K, Higa T, Aoyagi H, Nishiya T, Suzuki H, Miwa S. Function and regulation of endothelin type A receptor-operated transient receptor potential canonical channels. J Pharmacol Sci 2011; 117:295-306. [PMID: 22129540 DOI: 10.1254/jphs.11162fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
The purpose of this study is to identify transient receptor potential canonical (TRPC) channels responsible for receptor-operated Ca(2+) entry (ROCE) triggered by activation of endothelin type A receptor (ET(A)R) and to clarify the importance of calmodulin (CaM) / inositol 1,4,5-trisphosphate (IP(3)) receptor binding (CIRB) domain at the C terminus of TRPC channels in ET(A)R-activated channel regulation. In HEK293 cells coexpressing ET(A)R and one of seven TRPC isoforms, ET(A)R stimulation induced ROCE through TRPC3, TRPC5, TRPC6, and TRPC7. The TRPC3- and TRPC6-mediated ROCE was inhibited by selective inhibitors of G(q) protein, phospholipase C (PLC), and CaM. The CIRB domain deletion mutants of TRPC3 and TRPC6 failed to induce ET(A)R-mediated ROCE. Either deletion of the CIRB domain or pharmacological inhibition of CaM did not inhibit the targeting of these channels to the plasma membrane. These results suggest that 1) TRPC3, TRPC5, TRPC6, and TRPC7 can function as ET(A)R-operated Ca(2+) channels; 2) G(q) protein, PLC, and CaM are involved in TRPC3- and TRPC6-mediated ROCE; 3) ET(A)R-mediated activation of TRPC3 and TRPC6 requires the CIRB domain; and 4) abolition of ET(A)R-induced ROCE by CIRB domain deletion and CaM inhibition is due to loss of CaM binding to the channels but not loss of cell surface TRPC3 and TRPC6.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Hokkaido 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Guo RW, Yang LX, Li MQ, Pan XH, Liu B, Deng YL. Stim1- and Orai1-mediated store-operated calcium entry is critical for angiotensin II-induced vascular smooth muscle cell proliferation. Cardiovasc Res 2011; 93:360-70. [PMID: 22108917 DOI: 10.1093/cvr/cvr307] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Despite the fact that angiotensin (Ang) II is a critical regulator of the proliferation and migration of vascular smooth muscle cells (VSMCs), the effect of Ang II on VSMC proliferation has remained unclear. In this study, we determined whether Stim1- and Orai1-mediated store-operated calcium (Ca(2+)) entry (SOCE) plays a critical role in Ang II-induced VSMC proliferation and Ang II-accelerated neointimal growth after balloon injury of rat carotid arteries. METHODS AND RESULTS Knockdown of Stim1 and Orai1, putative calcium sensors/modulators, suppressed Ang II-mediated Ca(2+) entry and cell proliferation in synthetic VSMCs. Stim1 and Orai1 short interfering RNAs (siRNAs) decreased neointimal growth induced by Ang II in balloon-injured rat carotid arteries. Ang II significantly increased the expression of Stim1 and Orai1 in neointima. In addition, our results showed that receptor subtype-1 (AT1) significantly contributed to Ang II-induced Ca(2+) entry and proliferation of synthetic VSMCs. However, we found that transient receptor potential canonical 1 (Trpc1) had no effect on Ang II-induced SOCE or cell proliferation of synthetic VSMCs. CONCLUSIONS We show for the first time that Stim1- and Orai1-mediated SOCE may be critical for Ang II-induced VSMC proliferation. This provides important information with respect to targeting cardiovascular diseases under the enhanced renin-Ang system.
Collapse
Affiliation(s)
- Rui-wei Guo
- Department of Cardiology, Kunming General Hospital of Chengdu Military Area, Yunnan 650032, China
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
A rise in cytoplasmic [Ca2+] due to store-operated Ca2+ entry (SOCE) triggers a plethora of responses, both acute and long term. This leads to the important question of how this initial signal is decoded to regulate specific cellular functions. It is now clearly established that local [Ca2+] at the site of SOCE can vary significantly from the global [Ca2+] in the cytosol. Such Ca2+ microdomains are generated by the assembly of key Ca2+ signaling proteins within the domains. For example, GPCR, IP 3 receptors, TRPC3 channels, the plasma membrane Ca2+ pump and the endoplasmic reticulum (ER) Ca2+ pump have all been found to be assembled in a complex and all of them contribute to the Ca2+ signal. Recent studies have revealed that two other critical components of SOCE, STIM1 and Orai1, are also recruited to these regions. Thus, the entire machinery for activation and regulation of SOCE is compartmentalized in specific cellular domains which facilitates the specificity and rate of protein-protein interactions that are required for activation of the channels. In the case of TRPC1-SOC channels, it appears that specific lipid domains, lipid raft domains (LRDs), in the plasma membrane, as well as cholesterol-binding scaffolding proteins such as caveolin-1 (Cav-1), are involved in assembly of the TRPC channel complexes. Thus, plasma membrane proteins and lipid domains as well as ER proteins contribute to the SOCE-Ca2+ signaling microdomain and modulation of the Ca2+ signals per se. Of further interest is that modulation of Ca2+ signals, i.e. amplitude and/or frequency, can result in regulation of specific cellular functions. The emerging data reveal a dynamic Ca2+ signaling complex composed of TRPC1/Orai1/STIM1 that is physiologically consistent with the dynamic nature of the Ca2+ signal that is generated. This review will focus on the recent studies which demonstrate critical aspects of the TRPC1 channelosome that are involved in the regulation of TRPC1 function and TRPC1-SOC-generated Ca2+ signals.
Collapse
Affiliation(s)
- Hwei Ling Ong
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
18
|
Schumacher MA, Eilers H. TRPV1 splice variants: structure and function. Front Biosci (Landmark Ed) 2010; 15:872-82. [PMID: 20515731 DOI: 10.2741/3651] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The capsaicin receptor (TRPV1) is a non-selective cation channel predominantly expressed in specialized sensory neurons that detect painful stimuli. Although its many functional roles continue to be revealed, it has been confirmed to play a critical role in the perception of peripheral inflammatory hyperalgesia and pain. TRPV1 not only is sensitized and/or activated under a wide range of conditions including inflammation and nerve injury but also undergoes changes in expressed levels in response to these same pathologic conditions. Just as our understanding of the structural requirements of TRPV1 activation has grown, there is evidence that TRPV1 forms heteromeric channel complexes. This review is focused on the structural and functional consequence of TRPV1 splice variants: VR.5'sv, TRPV1b/beta and TRPV1var. Through their co-expression and formation of heteromeric complexes with TRPV1, they have been shown to modulate TRPV1 activation. Moreover, TRPV1 splice variant subunits may also contribute unique properties of activation such as the detection of hypertonic conditions.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143-0427, USA.
| | | |
Collapse
|
19
|
Adebiyi A, Zhao G, Narayanan D, Thomas-Gatewood CM, Bannister JP, Jaggar JH. Isoform-selective physical coupling of TRPC3 channels to IP3 receptors in smooth muscle cells regulates arterial contractility. Circ Res 2010; 106:1603-12. [PMID: 20378853 DOI: 10.1161/circresaha.110.216804] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Inositol 1,4,5-trisphosphate (IP(3))-induced vasoconstriction can occur independently of intracellular Ca(2+) release and via IP(3) receptor (IP(3)R) and canonical transient receptor potential (TRPC) channel activation, but functional signaling mechanisms mediating this effect are unclear. OBJECTIVES Study mechanisms by which IP(3)Rs stimulate TRPC channels in myocytes of resistance-size cerebral arteries. METHODS AND RESULTS Immunofluorescence resonance energy transfer (immuno-FRET) microscopy using isoform-selective antibodies indicated that endogenous type 1 IP(3)Rs (IP(3)R1) are in close spatial proximity to TRPC3, but distant from TRPC6 or TRPM4 channels in arterial myocytes. Endothelin-1 (ET-1), a phospholipase C-coupled receptor agonist, elevated immuno-FRET between IP(3)R1 and TRPC3, but not between IP(3)R1 and TRPC6 or TRPM4. TRPC3, but not TRPC6, coimmunoprecipitated with IP(3)R1. TRPC3 and TRPC6 antibodies selectively inhibited recombinant channels, but only the TRPC3 antibody blocked IP(3)-induced nonselective cation current (I(Cat)) in myocytes. TRPC3 knockdown attenuated immuno-FRET between IP(3)R1 and TRPC3, IP(3)-induced I(Cat) activation, and ET-1 and IP(3)-induced vasoconstriction, whereas TRPC6 channel knockdown had no effect. ET-1 did not alter total or plasma membrane-localized TRPC3, as determined using surface biotinylation. RT-PCR demonstrated that C-terminal calmodulin and IP(3)R binding (CIRB) domains are present in myocyte TRPC3 and TRPC6 channels. A peptide corresponding to the IP(3)R N-terminal region that can interact with TRPC channels activated I(Cat). A TRPC3 CIRB domain peptide attenuated IP(3)- and ET-1-induced I(Cat) activation and vasoconstriction. CONCLUSIONS IP(3) stimulates direct coupling between IP(3)R1 and membrane-resident TRPC3 channels in arterial myocytes, leading to I(Cat) activation and vasoconstriction. Close spatial proximity between IP(3)R1 and TRPC3 establishes this isoform-selective functional interaction.
Collapse
Affiliation(s)
- Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38139, USA
| | | | | | | | | | | |
Collapse
|
20
|
Differential expression of TRPC channels in the left ventricle of spontaneously hypertensive rats. Mol Biol Rep 2009; 37:2645-51. [PMID: 19757180 DOI: 10.1007/s11033-009-9792-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
This study was designed to identify the differential expression of the canonical transient receptor potential (TRPC) channels in the left ventricle of spontaneously hypertensive rats (SHR). Echocardiography studies were performed to compare the left ventricular function in SHR vs. Wistar-Kyoto rats (WKY), and the mRNA level of the TRPC channels was determined by quantitative real-time RT-PCR (qRT-PCR). Western blots were performed to examine whether the mRNA expression corresponded with the protein expression. Compared with the WKY, the mRNA expression of TRPC4 and TRPC5 was significantly increased in the 10-week-old SHR (P = 0.032 for TRPC4 and P = 0.043 for TRPC5), so did the TRPC4/5 protein content. The midwall fractional shortening (mFS) of SHR was lower than WKY (P = 0.016). Furthermore, increased expression of TRPC4/5 was correlated with both increased blood pressure and decreased mFS. These findings suggest that TRPC4 and 5 seem to be the main subtypes expressed in the heart of the SHR at the beginning period of hypertension. Theses channels may participate in the development of left ventricular systolic dysfunction.
Collapse
|
21
|
Abstract
Calcium acts as a second messenger in many cell types, including lymphocytes. Resting lymphocytes maintain a low concentration of Ca2+. However, engagement of antigen receptors induces calcium influx from the extracellular space by several routes. A chief mechanism of Ca2+ entry in lymphocytes is through store-operated calcium (SOC) channels. The identification of two important molecular components of SOC channels, CRACM1 (the pore-forming subunit) and STIM1 (the sensor of stored calcium), has allowed genetic and molecular manipulation of the SOC entry pathway. In this review, we highlight advances in the understanding of Ca2+ signaling in lymphocytes with special emphasis on SOC entry. We also discuss outstanding questions and probable future directions of the field.
Collapse
Affiliation(s)
- Monika Vig
- Laboratory of Allergy and Immunology, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
22
|
Abstract
Ca(2+) influx evoked across the plasma membrane upon internal store depletion is essential for a myriad of cellular functions including gene expression, cell proliferation, differentiation and even apoptosis. Darier's disease (DD), an autosomal dominant inherited disorder of the skin, arising due to mutations in the isoform 2 of the sarco (endo) plasmic reticulum Ca(2+) ATPase (SERCA2), exemplifies an anomaly of Ca(2+) signaling disturbances. Owing to loss of function mutations in SERCA2, keratinocytes in DD patients have a reduced pool of endoplasmic reticulum (ER) Ca(2+). Importantly, the status of ER Ca(2+) is critical for the activation of a class of plasma membrane Ca(2+) channels referred to as store operated Ca(2+) channels (SOCs). The widely expressed transient receptor potential (TRP) family of channels is proposed to be SOCs. In this review we discuss DD from the viewpoint of Ca(2+) signaling and present a potential role for TRPC1 in the disease pathogenesis.
Collapse
Affiliation(s)
- B. Pani
- Department of Biochemistry and Molecular Biology, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202 USA
| | - B. B. Singh
- Department of Biochemistry and Molecular Biology, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202 USA
| |
Collapse
|
23
|
Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 2007; 455:1097-103. [PMID: 17957383 DOI: 10.1007/s00424-007-0359-3] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 09/22/2007] [Indexed: 02/07/2023]
Abstract
This article addresses whether TRPC1 or TRPC6 is an essential component of a mammalian stretch-activated mechano-sensitive Ca(2+) permeable cation channel (MscCa). We have transiently expressed TRPC1 and TRPC6 in African green monkey kidney (COS) or Chinese hamster ovary (CHO) cells and monitored the activity of the stretch-activated channels using a fast pressure clamp system. Although both TRPC1 and TRPC6 are highly expressed at the protein level, the amplitude of the mechano-sensitive current is not significantly altered by overexpression of these subunits. In conclusion, although several TRPC channel members, including TRPC1 and TRPC6, have been recently proposed to form MscCa in vertebrate cells, the functional expression of these TRPC subunits in heterologous systems remains problematic.
Collapse
|
24
|
Ambudkar IS, Ong HL. Organization and function of TRPC channelosomes. Pflugers Arch 2007; 455:187-200. [PMID: 17486362 DOI: 10.1007/s00424-007-0252-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 03/10/2007] [Indexed: 12/20/2022]
Abstract
TRPC proteins constitute a family of conserved Ca2+-permeable cation channels which are activated in response to agonist-stimulated PIP2 hydrolysis. These channels were initially proposed to be components of the store-operated calcium entry channel (SOC). Subsequent studies have provided substantial evidence that some TRPCs contribute to SOC activity. TRPC proteins have also been shown to form agonist-stimulated calcium entry channels that are not store-operated but are likely regulated by PIP2 or diacylglycerol. Further, and consistent with the presently available data, selective homomeric or heteromeric interactions between TRPC monomers generate distinct agonist-stimulated cation permeable channels. We suggest that interaction between TRPC monomers, as well as the association of these channels with accessory proteins, determines their mode of regulation as well as their cellular localization and function. Currently identified accessory proteins include key Ca2+ signaling proteins as well as proteins involved in vesicle trafficking, cytoskeletal interactions, and scaffolding. Studies reported until now demonstrate that TRPC proteins are segregated into specific Ca2+ signaling complexes which can generate spatially and temporally controlled [Ca2+]i signals. Thus, the functional organization of TRPC channelosomes dictates not only their regulation by extracellular stimuli but also serves as a platform to coordinate specific downstream cellular functions that are regulated as a consequence of Ca2+ entry. This review will focus on the accessory proteins of TRPC channels and discuss the functional implications of TRPC channelosomes and their assembly in microdomains.
Collapse
Affiliation(s)
- Indu S Ambudkar
- Secretory Physiology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|