1
|
Elashry MI, Speer J, De Marco I, Klymiuk MC, Wenisch S, Arnhold S. Extracellular Vesicles: A Novel Diagnostic Tool and Potential Therapeutic Approach for Equine Osteoarthritis. Curr Issues Mol Biol 2024; 46:13078-13104. [PMID: 39590374 PMCID: PMC11593097 DOI: 10.3390/cimb46110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive degenerative joint disease that affects a significant portion of the equine population and humans worldwide. Current treatment options for equine OA are limited and incompletely curative. Horses provide an excellent large-animal model for studying human OA. Recent advances in the field of regenerative medicine have led to the exploration of extracellular vesicles (EVs)-cargoes of microRNA, proteins, lipids, and nucleic acids-to evaluate their diagnostic value in terms of disease progression and severity, as well as a potential cell-free therapeutic approach for equine OA. EVs transmit molecular signals that influence various biological processes, including the inflammatory response, apoptosis, proliferation, and cell communication. In the present review, we summarize recent advances in the isolation and identification of EVs, the use of their biologically active components as biomarkers, and the distribution of the gap junction protein connexin 43. Moreover, we highlight the role of mesenchymal stem cell-derived EVs as a potential therapeutic tool for equine musculoskeletal disorders. This review aims to provide a comprehensive overview of the current understanding of the pathogenesis, diagnosis, and treatment strategies for OA. In particular, the roles of EVs as biomarkers in synovial fluid, chondrocytes, and plasma for the early detection of equine OA are discussed.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Julia Speer
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Isabelle De Marco
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Michele C. Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| |
Collapse
|
2
|
Mei Q, Fitzgerald DM, Liu J, Xia J, Pribis JP, Zhai Y, Nehring RB, Paiano J, Li H, Nussenzweig A, Hastings PJ, Rosenberg SM. Two mechanisms of chromosome fragility at replication-termination sites in bacteria. SCIENCE ADVANCES 2021; 7:eabe2846. [PMID: 34144978 PMCID: PMC8213236 DOI: 10.1126/sciadv.abe2846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/06/2021] [Indexed: 05/12/2023]
Abstract
Chromosomal fragile sites are implicated in promoting genome instability, which drives cancers and neurological diseases. Yet, the causes and mechanisms of chromosome fragility remain speculative. Here, we identify three spontaneous fragile sites in the Escherichia coli genome and define their DNA damage and repair intermediates at high resolution. We find that all three sites, all in the region of replication termination, display recurrent four-way DNA or Holliday junctions (HJs) and recurrent DNA breaks. Homology-directed double-strand break repair generates the recurrent HJs at all of these sites; however, distinct mechanisms of DNA breakage are implicated: replication fork collapse at natural replication barriers and, unexpectedly, frequent shearing of unsegregated sister chromosomes at cell division. We propose that mechanisms such as both of these may occur ubiquitously, including in humans, and may constitute some of the earliest events that underlie somatic cell mosaicism, cancers, and other diseases of genome instability.
Collapse
Affiliation(s)
- Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Devon M Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jingjing Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - John P Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yin Zhai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Ralf B Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Paiano
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Heyuan Li
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX 77030, USA
| |
Collapse
|
3
|
Shyian M, Shore D. Approaching Protein Barriers: Emerging Mechanisms of Replication Pausing in Eukaryotes. Front Cell Dev Biol 2021; 9:672510. [PMID: 34124054 PMCID: PMC8194067 DOI: 10.3389/fcell.2021.672510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
During nuclear DNA replication multiprotein replisome machines have to jointly traverse and duplicate the total length of each chromosome during each cell cycle. At certain genomic locations replisomes encounter tight DNA-protein complexes and slow down. This fork pausing is an active process involving recognition of a protein barrier by the approaching replisome via an evolutionarily conserved Fork Pausing/Protection Complex (FPC). Action of the FPC protects forks from collapse at both programmed and accidental protein barriers, thus promoting genome integrity. In addition, FPC stimulates the DNA replication checkpoint and regulates topological transitions near the replication fork. Eukaryotic cells have been proposed to employ physiological programmed fork pausing for various purposes, such as maintaining copy number at repetitive loci, precluding replication-transcription encounters, regulating kinetochore assembly, or controlling gene conversion events during mating-type switching. Here we review the growing number of approaches used to study replication pausing in vivo and in vitro as well as the characterization of additional factors recently reported to modulate fork pausing in different systems. Specifically, we focus on the positive role of topoisomerases in fork pausing. We describe a model where replisome progression is inherently cautious, which ensures general preservation of fork stability and genome integrity but can also carry out specialized functions at certain loci. Furthermore, we highlight classical and novel outstanding questions in the field and propose venues for addressing them. Given how little is known about replisome pausing at protein barriers in human cells more studies are required to address how conserved these mechanisms are.
Collapse
Affiliation(s)
- Maksym Shyian
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Dheekollu J, Wiedmer A, Ayyanathan K, Deakyne JS, Messick TE, Lieberman PM. Cell-cycle-dependent EBNA1-DNA crosslinking promotes replication termination at oriP and viral episome maintenance. Cell 2021; 184:643-654.e13. [PMID: 33482082 DOI: 10.1016/j.cell.2020.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/17/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP. EBNA1 tyrosine 518 (Y518) is essential for crosslinking to oriP and functionally required for episome maintenance and generation of EBV-transformed lymphoblastoid cell lines (LCLs). Mechanistically, Y518 is required for replication fork termination at oriP in vivo and for formation of SDS-resistant complexes in vitro. EBNA1-DNA crosslinking corresponds to single-strand endonuclease activity specific to DNA structures enriched at replication-termination sites, such as 4-way junctions. These findings reveal that EBNA1 forms tyrosine-dependent DNA-protein crosslinks and single-strand cleavage at oriP required for replication termination and viral episome maintenance.
Collapse
|
5
|
Kim JW, Bugata V, Cortés-Cortés G, Quevedo-Martínez G, Camps M. Mechanisms of Theta Plasmid Replication in Enterobacteria and Implications for Adaptation to Its Host. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0026-2019. [PMID: 33210586 PMCID: PMC7724965 DOI: 10.1128/ecosalplus.esp-0026-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 11/20/2022]
Abstract
Plasmids are autonomously replicating sequences that help cells adapt to diverse stresses. Theta plasmids are the most frequent plasmid class in enterobacteria. They co-opt two host replication mechanisms: replication at oriC, a DnaA-dependent pathway leading to replisome assembly (theta class A), and replication fork restart, a PriA-dependent pathway leading to primosome assembly through primer extension and D-loop formation (theta classes B, C, and D). To ensure autonomy from the host's replication and to facilitate copy number regulation, theta plasmids have unique mechanisms of replication initiation at the plasmid origin of replication (ori). Tight plasmid copy number regulation is essential because of the major and direct impact plasmid gene dosage has on gene expression. The timing of plasmid replication and segregation are also critical for optimizing plasmid gene expression. Therefore, we propose that plasmid replication needs to be understood in its biological context, where complex origins of replication (redundant origins, mosaic and cointegrated replicons), plasmid segregation, and toxin-antitoxin systems are often present. Highlighting their tight functional integration with ori function, we show that both partition and toxin-antitoxin systems tend to be encoded in close physical proximity to the ori in a large collection of Escherichia coli plasmids. We also propose that adaptation of plasmids to their host optimizes their contribution to the host's fitness while restricting access to broad genetic diversity, and we argue that this trade-off between adaptation to host and access to genetic diversity is likely a determinant factor shaping the distribution of replicons in populations of enterobacteria.
Collapse
Affiliation(s)
- Jay W Kim
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Vega Bugata
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Giselle Quevedo-Martínez
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| |
Collapse
|
6
|
Midgley-Smith SL, Dimude JU, Taylor T, Forrester NM, Upton AL, Lloyd RG, Rudolph CJ. Chromosomal over-replication in Escherichia coli recG cells is triggered by replication fork fusion and amplified if replichore symmetry is disturbed. Nucleic Acids Res 2019; 46:7701-7715. [PMID: 29982635 PMCID: PMC6125675 DOI: 10.1093/nar/gky566] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/13/2018] [Indexed: 01/04/2023] Open
Abstract
Chromosome duplication initiates via the assembly of replication forks at defined origins. Forks proceed in opposite directions until they fuse with a converging fork. Recent work highlights that fork fusions are highly choreographed both in pro- and eukaryotic cells. The circular Escherichia coli chromosome is replicated from a single origin (oriC), and a single fork fusion takes place in a specialised termination area opposite oriC that establishes a fork trap mediated by Tus protein bound at ter sequences that allows forks to enter but not leave. Here we further define the molecular details of fork fusions and the role of RecG helicase in replication termination. Our data support the idea that fork fusions have the potential to trigger local re-replication of the already replicated DNA. In ΔrecG cells this potential is realised in a substantial fraction of cells and is dramatically elevated when one fork is trapped for some time before the converging fork arrives. They also support the idea that the termination area evolved to contain such over-replication and we propose that the stable arrest of replication forks at ter/Tus complexes is an important feature that limits the likelihood of problems arising as replication terminates.
Collapse
Affiliation(s)
- Sarah L Midgley-Smith
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Toni Taylor
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Nicole M Forrester
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Amy L Upton
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Robert G Lloyd
- Medical School, Queen's Medical Centre, Nottingham University, Nottingham NG7 2UH, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
7
|
Rv0004 is a new essential member of the mycobacterial DNA replication machinery. PLoS Genet 2017; 13:e1007115. [PMID: 29176877 PMCID: PMC5720831 DOI: 10.1371/journal.pgen.1007115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/07/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022] Open
Abstract
DNA replication is fundamental for life, yet a detailed understanding of bacterial DNA replication is limited outside the organisms Escherichia coli and Bacillus subtilis. Many bacteria, including mycobacteria, encode no identified homologs of helicase loaders or regulators of the initiator protein DnaA, despite these factors being essential for DNA replication in E. coli and B. subtilis. In this study we discover that a previously uncharacterized protein, Rv0004, from the human pathogen Mycobacterium tuberculosis is essential for bacterial viability and that depletion of Rv0004 leads to a block in cell cycle progression. Using a combination of genetic and biochemical approaches, we found that Rv0004 has a role in DNA replication, interacts with DNA and the replicative helicase DnaB, and affects DnaB-DnaA complex formation. We also identify a conserved domain in Rv0004 that is predicted to structurally resemble the N-terminal protein-protein interaction domain of DnaA. Mutation of a single conserved tryptophan within Rv0004’s DnaA N-terminal-like domain leads to phenotypes similar to those observed upon Rv0004 depletion and can affect the association of Rv0004 with DnaB. In addition, using live cell imaging during depletion of Rv0004, we have uncovered a previously unappreciated role for DNA replication in coordinating mycobacterial cell division and cell size. Together, our data support that Rv0004 encodes a homolog of the recently identified DciA family of proteins found in most bacteria that lack the DnaC-DnaI helicase loaders in E. coli and B. subtilis. Therefore, the mechanisms of Rv0004 elucidated here likely apply to other DciA homologs and reveal insight into the diversity of bacterial strategies in even the most conserved biological processes. DNA is the molecule that encodes all of the genetic information of an organism. In order to pass genes onto the next generation, DNA has to first be copied through a process called DNA replication. Most of the initial studies on bacterial DNA replication were performed in Escherichia coli and Bacillus subtilis. While these studies were very informative, there is an increasing appreciation that more distantly related bacteria have diverged from these organisms in even the most fundamental processes. Mycobacteria, a group of bacteria that includes the human pathogen Mycobacterium tuberculosis, are distantly related to E. coli and B. subtilis and lack some of the proteins used for DNA replication in those model organisms. In this study, we discover that a previously uncharacterized protein in Mycobacteria, named Rv0004, is essential for bacterial viability and involved in DNA replication. Rv0004 is conserved in most bacteria but is absent from E. coli and B. subtilis. Since Rv0004 is essential for mycobacterial viability, this study both identifies a future target for antibiotic therapy and expands our knowledge on the diversity of bacterial DNA replication strategies, which may be applicable to other organisms.
Collapse
|
8
|
Abstract
Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.
Collapse
|
9
|
Cross-Regulation between Transposable Elements and Host DNA Replication. Viruses 2017; 9:v9030057. [PMID: 28335567 PMCID: PMC5371812 DOI: 10.3390/v9030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 12/27/2022] Open
Abstract
Transposable elements subvert host cellular functions to ensure their survival. Their interaction with the host DNA replication machinery indicates that selective pressures lead them to develop ancestral and convergent evolutionary adaptations aimed at conserved features of this fundamental process. These interactions can shape the co-evolution of the transposons and their hosts.
Collapse
|
10
|
Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Recent Advances in Helicobacter pylori Replication: Possible Implications in Adaptation to a Pathogenic Lifestyle and Perspectives for Drug Design. Curr Top Microbiol Immunol 2017; 400:73-103. [PMID: 28124150 DOI: 10.1007/978-3-319-50520-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA replication is an important step in the life cycle of every cell that ensures the continuous flow of genetic information from one generation to the next. In all organisms, chromosome replication must be coordinated with overall cell growth. Helicobacter pylori growth strongly depends on its interaction with the host, particularly with the gastric epithelium. Moreover, H. pylori actively searches for an optimal microniche within a stomach, and it has been shown that not every microniche equally supports growth of this bacterium. We postulate that besides nutrients, H. pylori senses different, unknown signals, which presumably also affect chromosome replication to maintain H. pylori propagation at optimal ratio allowing H. pylori to establish a chronic, lifelong infection. Thus, H. pylori chromosome replication and particularly the regulation of this process might be considered important for bacterial pathogenesis. Here, we summarize our current knowledge of chromosome and plasmid replication in H. pylori and discuss the mechanisms responsible for regulating this key cellular process. The results of extensive studies conducted thus far allow us to propose common and unique traits in H. pylori chromosome replication. Interestingly, the repertoire of proteins involved in replication in H. pylori is significantly different to that in E. coli, strongly suggesting that novel factors are engaged in H. pylori chromosome replication and could represent attractive drug targets.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Ul. Joliot-Curie 14A, 50-383, Wrocław, Poland
| |
Collapse
|
11
|
Gambus A. Termination of Eukaryotic Replication Forks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:163-187. [DOI: 10.1007/978-981-10-6955-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Shyian M, Mattarocci S, Albert B, Hafner L, Lezaja A, Costanzo M, Boone C, Shore D. Budding Yeast Rif1 Controls Genome Integrity by Inhibiting rDNA Replication. PLoS Genet 2016; 12:e1006414. [PMID: 27820830 PMCID: PMC5098799 DOI: 10.1371/journal.pgen.1006414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/10/2016] [Indexed: 12/27/2022] Open
Abstract
The Rif1 protein is a negative regulator of DNA replication initiation in eukaryotes. Here we show that budding yeast Rif1 inhibits DNA replication initiation at the rDNA locus. Absence of Rif1, or disruption of its interaction with PP1/Glc7 phosphatase, leads to more intensive rDNA replication. The effect of Rif1-Glc7 on rDNA replication is similar to that of the Sir2 deacetylase, and the two would appear to act in the same pathway, since the rif1Δ sir2Δ double mutant shows no further increase in rDNA replication. Loss of Rif1-Glc7 activity is also accompanied by an increase in rDNA repeat instability that again is not additive with the effect of sir2Δ. We find, in addition, that the viability of rif1Δ cells is severely compromised in combination with disruption of the MRX or Ctf4-Mms22 complexes, both of which are implicated in stabilization of stalled replication forks. Significantly, we show that removal of the rDNA replication fork barrier (RFB) protein Fob1, alleviation of replisome pausing by deletion of the Tof1/Csm3 complex, or a large deletion of the rDNA repeat array all rescue this synthetic growth defect of rif1Δ cells lacking in addition either MRX or Ctf4-Mms22 activity. These data suggest that the repression of origin activation by Rif1-Glc7 is important to avoid the deleterious accumulation of stalled replication forks at the rDNA RFB, which become lethal when fork stability is compromised. Finally, we show that Rif1-Glc7, unlike Sir2, has an important effect on origin firing outside of the rDNA locus that serves to prevent activation of the DNA replication checkpoint. Our results thus provide insights into a mechanism of replication control within a large repetitive chromosomal domain and its importance for the maintenance of genome stability. These findings may have important implications for metazoans, where large blocks of repetitive sequences are much more common.
Collapse
Affiliation(s)
- Maksym Shyian
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Stefano Mattarocci
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Lukas Hafner
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Aleksandra Lezaja
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Michael Costanzo
- University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - Charlie Boone
- University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - David Shore
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
13
|
Yadav P, Tripathi RK, Singh RK, Mohindra V. Expression profile and in silico characterization of novel RTF2h gene under oxidative stress in Indian catfish, Clarias magur (Hamilton 1822). Mol Biol Rep 2016; 44:63-77. [PMID: 27743114 DOI: 10.1007/s11033-016-4081-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
Abstract
During the investigation of genes involved in the hypoxia tolerance, novel transcript, Replication Termination Factor 2 homologue (RTF2h), was found to be differentially expressed in brain of Clarias magur (previous name, C. batrachus) whose function was still undefined. Thus, present study was aimed to examine the transcriptional response of novel RTF2h gene, for its possible involvement in hypoxia tolerance in C. magur. Novel transcripts expressed under hypoxic stress were identified from ESTs obtained from SSH libraries of C. magur. Homology analysis of novel transcript (JK487668) revealed it to have RING superfamily signature and was closely related with RTF2 homologue. To characterize the expression pattern of CmRTF2h gene in different tissues of C. magur, qRT-PCR analysis was performed which showed significant increased expression, in spleen following short-term hypoxia exposure (12 H; 2.33-fold), while after long-term hypoxia exposure, significant up-regulation was found three tissues: in spleen (6.57-fold), liver (2.31-fold) and head kidney (2.99-fold) and was down-regulated in brain (3.52-fold). Further, the consensus sequence, obtained from SSH EST sequence and transcripts from hypoxia induced transcriptome data, through multiple sequence alignments, homology modeling and phylogentic analysis together, confirmed it as a novel CmRTF2h gene. In-silico protein-protein interaction and docking studies suggested its closely related function to that of RTF2. The present study reports the expression pattern of CmRTF2h under hypoxia. The up-regulated expression of CmRTF2h under hypoxic conditions may contribute to defense mechanism against induced DNA damage, which in turn may of adaptive significance for hypoxia tolerance in C. magur.
Collapse
Affiliation(s)
- Prabhaker Yadav
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P. O. Dilkusha, Lucknow, 226002, U.p., India
| | - Ratnesh K Tripathi
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P. O. Dilkusha, Lucknow, 226002, U.p., India
- Imperial Life Sciences (P) Limited, Gurgaon, 122001, Haryana, India
| | - Rajeev K Singh
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P. O. Dilkusha, Lucknow, 226002, U.p., India
| | - Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P. O. Dilkusha, Lucknow, 226002, U.p., India.
| |
Collapse
|
14
|
Dimude JU, Midgley-Smith SL, Stein M, Rudolph CJ. Replication Termination: Containing Fork Fusion-Mediated Pathologies in Escherichia coli. Genes (Basel) 2016; 7:genes7080040. [PMID: 27463728 PMCID: PMC4999828 DOI: 10.3390/genes7080040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 01/18/2023] Open
Abstract
Duplication of bacterial chromosomes is initiated via the assembly of two replication forks at a single defined origin. Forks proceed bi-directionally until they fuse in a specialised termination area opposite the origin. This area is flanked by polar replication fork pause sites that allow forks to enter but not to leave. The precise function of this replication fork trap has remained enigmatic, as no obvious phenotypes have been associated with its inactivation. However, the fork trap becomes a serious problem to cells if the second fork is stalled at an impediment, as replication cannot be completed, suggesting that a significant evolutionary advantage for maintaining this chromosomal arrangement must exist. Recently, we demonstrated that head-on fusion of replication forks can trigger over-replication of the chromosome. This over-replication is normally prevented by a number of proteins including RecG helicase and 3’ exonucleases. However, even in the absence of these proteins it can be safely contained within the replication fork trap, highlighting that multiple systems might be involved in coordinating replication fork fusions. Here, we discuss whether considering the problems associated with head-on replication fork fusion events helps us to better understand the important role of the replication fork trap in cellular metabolism.
Collapse
Affiliation(s)
- Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Sarah L Midgley-Smith
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Monja Stein
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
| |
Collapse
|
15
|
Phosphorylation of CMG helicase and Tof1 is required for programmed fork arrest. Proc Natl Acad Sci U S A 2016; 113:E3639-48. [PMID: 27298353 DOI: 10.1073/pnas.1607552113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several important physiological transactions, including control of replicative life span (RLS), prevention of collision between replication and transcription, and cellular differentiation, require programmed replication fork arrest (PFA). However, a general mechanism of PFA has remained elusive. We previously showed that the Tof1-Csm3 fork protection complex is essential for PFA by antagonizing the Rrm3 helicase that displaces nonhistone protein barriers that impede fork progression. Here we show that mutations of Dbf4-dependent kinase (DDK) of Saccharomyces cerevisiae, but not other DNA replication factors, greatly reduced PFA at replication fork barriers in the spacer regions of the ribosomal DNA array. A key target of DDK is the mini chromosome maintenance (Mcm) 2-7 complex, which is known to require phosphorylation by DDK to form an active CMG [Cdc45 (cell division cycle gene 45), Mcm2-7, GINS (Go, Ichi, Ni, and San)] helicase. In vivo experiments showed that mutational inactivation of DDK caused release of Tof1 from the chromatin fractions. In vitro binding experiments confirmed that CMG and/or Mcm2-7 had to be phosphorylated for binding to phospho-Tof1-Csm3 but not to its dephosphorylated form. Suppressor mutations that bypass the requirement for Mcm2-7 phosphorylation by DDK restored PFA in the absence of the kinase. Retention of Tof1 in the chromatin fraction and PFA in vivo was promoted by the suppressor mcm5-bob1, which bypassed DDK requirement, indicating that under this condition a kinase other than DDK catalyzed the phosphorylation of Tof1. We propose that phosphorylation regulates the recruitment and retention of Tof1-Csm3 by the replisome and that this complex antagonizes the Rrm3 helicase, thereby promoting PFA, by preserving the integrity of the Fob1-Ter complex.
Collapse
|
16
|
Larsen NB, Hickson ID, Mankouri HW. Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes. Cell Cycle 2015; 13:2994-8. [PMID: 25486560 DOI: 10.4161/15384101.2014.958912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells.
Collapse
Affiliation(s)
- Nicolai B Larsen
- a Center for Healthy Aging; Department of Cellular and Molecular Medicine ; University of Copenhagen ; Copenhagen , Denmark
| | | | | |
Collapse
|
17
|
Choudhury M, Zaman S, Jiang JC, Jazwinski SM, Bastia D. Mechanism of regulation of 'chromosome kissing' induced by Fob1 and its physiological significance. Genes Dev 2015; 29:1188-201. [PMID: 26063576 PMCID: PMC4470286 DOI: 10.1101/gad.260844.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein-mediated "chromosome kissing" between two DNA sites in trans (or in cis) is known to facilitate three-dimensional control of gene expression and DNA replication. However, the mechanisms of regulation of the long-range interactions are unknown. Here, we show that the replication terminator protein Fob1 of Saccharomyces cerevisiae promoted chromosome kissing that initiated rDNA recombination and controlled the replicative life span (RLS). Oligomerization of Fob1 caused synaptic (kissing) interactions between pairs of terminator (Ter) sites that initiated recombination in rDNA. Fob1 oligomerization and Ter-Ter kissing were regulated by intramolecular inhibitory interactions between the C-terminal domain (C-Fob1) and the N-terminal domain (N-Fob1). Phosphomimetic substitutions of specific residues of C-Fob1 counteracted the inhibitory interaction. A mutation in either N-Fob1 that blocked Fob1 oligomerization or C-Fob1 that blocked its phosphorylation antagonized chromosome kissing and recombination and enhanced the RLS. The results provide novel insights into a mechanism of regulation of Fob1-mediated chromosome kissing.
Collapse
Affiliation(s)
- Malay Choudhury
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Shamsu Zaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - James C Jiang
- Tulane Center for Aging, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - S Michal Jazwinski
- Tulane Center for Aging, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | - Deepak Bastia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
| |
Collapse
|
18
|
Pandey M, Elshenawy MM, Jergic S, Takahashi M, Dixon NE, Hamdan SM, Patel SS. Two mechanisms coordinate replication termination by the Escherichia coli Tus-Ter complex. Nucleic Acids Res 2015; 43:5924-35. [PMID: 26007657 PMCID: PMC4499146 DOI: 10.1093/nar/gkv527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/10/2015] [Indexed: 11/28/2022] Open
Abstract
The Escherichia coli replication terminator protein (Tus) binds to Ter sequences to block replication forks approaching from one direction. Here, we used single molecule and transient state kinetics to study responses of the heterologous phage T7 replisome to the Tus–Ter complex. The T7 replisome was arrested at the non-permissive end of Tus–Ter in a manner that is explained by a composite mousetrap and dynamic clamp model. An unpaired C(6) that forms a lock by binding into the cytosine binding pocket of Tus was most effective in arresting the replisome and mutation of C(6) removed the barrier. Isolated helicase was also blocked at the non-permissive end, but unexpectedly the isolated polymerase was not, unless C(6) was unpaired. Instead, the polymerase was blocked at the permissive end. This indicates that the Tus–Ter mechanism is sensitive to the translocation polarity of the DNA motor. The polymerase tracking along the template strand traps the C(6) to prevent lock formation; the helicase tracking along the other strand traps the complementary G(6) to aid lock formation. Our results are consistent with the model where strand separation by the helicase unpairs the GC(6) base pair and triggers lock formation immediately before the polymerase can sequester the C(6) base.
Collapse
Affiliation(s)
- Manjula Pandey
- Department of Biochemistry and Molecular Biology, Rutgers, the State University of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Mohamed M Elshenawy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Slobodan Jergic
- Centre for Medical and Molecular Bioscience, University of Wollongong, New South Wales 2522, Australia
| | - Masateru Takahashi
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Nicholas E Dixon
- Centre for Medical and Molecular Bioscience, University of Wollongong, New South Wales 2522, Australia
| | - Samir M Hamdan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers, the State University of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|