1
|
Liu J, Wang H, Yang C, Hu T. A study to assess the vascular developmental toxicity of anticarcinogen toremifene in zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1169-1183. [PMID: 40197741 DOI: 10.1039/d4em00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Due to the increasing burden of disease and demand for medicines, more and more pharmaceutical compounds are appearing in the environment. Toremifene (TOR), a first-line drug in the therapy of breast cancer, is widely used in the treatment of related diseases. However, the toxicity assessment of TOR is insufficient. Here, a model organism zebrafish and human umbilical vein endothelial cells (HUVECs) were used to investigate the effects and mechanisms of TOR on angiogenesis. The results showed that TOR exposure reduced hatching and survival rates, and increased the malformation rate. TOR inhibited angiogenesis by inducing nuclear condensation in zebrafish endothelial cells and impeding cell migration, resulting in vascular malformation in zebrafish embryos. TOR disrupted the cytoskeleton, suppressed HUVEC migration, adhesion, activity and division, induced cell cycle arrest, and accelerated apoptosis. qRT-PCR indicated that transcriptional levels of Integrin β1, Rho, ROCK, and MLC-1 reduced in the TOR-exposed groups, and western blot indicated that TOR decreased the contents of Integrin β1, Rho, ROCK, MLC, and pMLC in the Rho/ROCK signaling pathway. Collectively, TOR may disturb endothelial cell behaviors by disrupting the cytoskeleton via the Rho/ROCK signaling pathway, ultimately resulting in abnormal angiogenesis. The study increases awareness of the toxicity of TOR to aquatic organisms and raises public concern about the health risks posed by anti-tumor drugs.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing 400030, China.
| | - Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing 400030, China.
| | - Chun Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing 400030, China.
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing 400030, China.
| |
Collapse
|
2
|
Bello ZM, de Azambuja Ribeiro RIM, Dos Santos HB, Thomé RG. Unveiling the therapeutic potential of medicinal plants in zebrafish caudal fin regeneration and wound healing: a systematic review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:80. [PMID: 40214856 DOI: 10.1007/s10695-025-01495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/30/2025] [Indexed: 04/19/2025]
Abstract
This systematic review aims to examine the existing literature on the therapeutic potential of medicinal plants to improve caudal fin regeneration and wound healing in zebrafish (Danio rerio), focusing on uncovering their pharmacological properties and potential use in enhancing tissue repair and regeneration. A thorough review of suitable and eligible full-text articles was performed on PubMed, Scopus, Web of Science, and Google Scholar from 1 st January 2014 to 31 st December 2024. These articles were searched using the Medical Subject Headings terms "zebrafish," "zebrafish larvae," "zebrafish embryo," "angiogenesis," "Medicinal plants," "Natural products," "Fin regeneration," "wound healing," and "inflammation." Here, 520 articles on medicinal plants and their potential in caudal fin regeneration and wound healing in zebrafish were identified across the databases searched, of which 26 were included in this study following screening. After thoroughly reviewing the articles, some were found to have used multiple medicinal plants. Thus, 38 medicinal plants were found to have promoted effects on zebrafish caudal fin regeneration and wound healing, and 21 revealed no effects on either caudal fin regeneration and wound healing. This systematic review explores the therapeutic potential of medicinal plants in caudal fin regeneration and wound healing in a zebrafish model. The results show a promising effect of various plant species in enhancing fin regeneration and wound healing. Further research is needed to understand the molecular mechanisms and to translate these findings into clinical applications for human wound healing and regenerative medicine.
Collapse
Affiliation(s)
- Zakariyya Muhammad Bello
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501 - 296, Brazil
| | - Rosy Iara Maciel de Azambuja Ribeiro
- Laboratório de Patologia Experimental - LAPATEX, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501 - 296, Brazil
| | - Hélio Batista Dos Santos
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501 - 296, Brazil
| | - Ralph Gruppi Thomé
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del-Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501 - 296, Brazil.
| |
Collapse
|
3
|
Vergroesen TM, Vermeulen V, Merks RMH. Falsifying computational models of endothelial cell network formation through quantitative comparison with in vitro models. PLoS Comput Biol 2025; 21:e1012965. [PMID: 40305554 PMCID: PMC12074657 DOI: 10.1371/journal.pcbi.1012965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 05/13/2025] [Accepted: 03/14/2025] [Indexed: 05/02/2025] Open
Abstract
During angiogenesis, endothelial cells expand the vasculature by migrating from existing blood vessels, proliferating and collectively organizing into new capillaries. In vitro and in vivo experimentation is instrumental for identifying the molecular players and cell behaviour that regulate angiogenesis. Alongside experimental work, computational and mathematical models of endothelial cell network formation have helped to analyse if the current molecular and cellular understanding of endothelial cell behaviour is sufficient to explain the formation of endothelial cell networks. As input, the models take (a subset of) the current knowledge or hypotheses of single cell behaviour and capture it into a dynamical, mathematical description. As output, they predict the multicellular behaviour following from the actions of many individual cells, i.e., formation of a vascular-like network. Paradoxically, computational modelling based on different assumptions, i.e., completely different, sometimes non-intersecting sets of observed single cell behaviour, can reproduce the same angiogenesis-like multicellular behaviour, making it practically impossible to decide which, if any, of these models is correct. Here we present dynamical analyses of time-lapses of in vitro endothelial cell network formation experiments and compare these with dynamic analyses of three mathematical models: (1) the cell elongation model; (2) the contact-inhibited chemotaxis model; and (3) the mechanical cell-cell communication model. We extract a variety of dynamical characteristics of endothelial cell network formation using a custom time-lapse video analysis pipeline in ImageJ. We compare the dynamical network characteristics of the in vitro experiments to those of the cellular networks produced by the computational models. We test the response of the in silico dynamical cell network characteristics to changes in cell density and make related changes in the in vitro experiments. Of the three computational models that we have considered, the cell elongation model best captures the remodelling phase of in vitro endothelial cell network formation. Furthermore, in the in vitro model, the final size and number of lacunae in the network are independent of the initial cell density. This observation is also reproduced in the cell elongation model, but not in the other two models that we have considered. Altogether, we present an approach to model validation based on comparisons of time-resolved data and variations of model conditions.
Collapse
Affiliation(s)
| | - Vincent Vermeulen
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Roeland M. H. Merks
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Huang LX, Sun T, Sun J, Wu ZM, Zhao YB, Li MY, Huo QY, Ling C, Zhang BY, Chen C, Wang H. The Role of Endothelial Cell Glycolysis in Schwann Cells and Peripheral Nerve Injury Repair: A Novel and Important Research Area. Neurochem Res 2025; 50:121. [PMID: 40100469 DOI: 10.1007/s11064-025-04374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Endothelial cell glycolysis plays a novel and significant role in Schwann cells and peripheral nerve injury repair, which represents an emerging and important area of research. Glycolysis in endothelial cells is a conserved and tightly regulated biological process that provides essential energy (ATP) and intermediates by ultimately converting glucose into lactate. This metabolic pathway is crucial for maintaining the normal function of endothelial cells. During peripheral nerve injury repair, endothelial cell glycolysis influences the function of Schwann cells and the efficiency of nerve regeneration. Beyond glycolysis, endothelial cells also secrete various factors, including growth factors and extracellular vesicles, which further modulate Schwann cell activity and contribute to the repair process. This review will summarize the role of endothelial cell glycolysis in Schwann cell function and peripheral nerve injury repair, aiming to provide new insights for the development of novel strategies for peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Li-Xin Huang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Zhi-Min Wu
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Yi-Bo Zhao
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Ming-Yang Li
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Qing-Yi Huo
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Bao-Yu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
5
|
Lu X, Wang X, Li B, Wang X, Duan X, Liu D. Monocyte-Derived cxcl12 Guides a Directional Migration of Blood Vessels in Zebrafish. Arterioscler Thromb Vasc Biol 2025; 45:386-397. [PMID: 39846165 PMCID: PMC11855996 DOI: 10.1161/atvbaha.124.321588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Sprouting blood vessels, reaching the aimed location, and establishing the proper connections are vital for building vascular networks. Such biological processes are subject to precise molecular regulation. So far, the mechanistic insights into understanding how blood vessels grow to the correct position are limited. In particular, the guide cues and the signaling-originating cells remain elusive. METHODS Live imaging analysis was used to observe the vascular developmental process of zebrafish. Whole-mount in situ hybridization and fluorescent in situ hybridization were used to detect the expression profiles of the genes. Single-cell sequencing analysis was conducted to identify the guiding protein and its originating cells. RESULTS Taking advantage of live imaging analysis, we described a directional blood vessel migration in the vascularization process of zebrafish pectoral fins. We demonstrated that pectoral fin vessel c migrated over long distances and was anastomosed with the second pair of intersegmental vessels. Furthermore, we found the cxcl12a-cxcr4a axis specifically guided this long-distance extension of pectoral fin vessel c-intersegmental vessel, and either inhibition or overexpression of cxcl12a-cxcr4a signaling both mislead the growth of pectoral fin vessel c to ectopic areas. Finally, based on an analysis of single-cell sequencing data, we revealed that a population of monocytes expresses the Cxcl12a, which guides the migration of the vascular sprout. CONCLUSIONS Our study identified Cxcl12a as the signaling molecule for orchestrating the organotypic-specific long-distance migration and anastomosis of the pectoral fin vessel and the intersegmental vessels in zebrafish. We discovered a specific cluster of gata1 (globin transcription factor 1)-positive monocytes responsible for expressing Cxcl12a. The findings offer novel insights into the mechanisms underlying organotypic vascularization in vertebrates.
Collapse
Affiliation(s)
- Xiaofeng Lu
- School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China
| | - Xiaoning Wang
- School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China
| | - Bowen Li
- School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China
| | - Xin Wang
- School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China
| | - Xuchu Duan
- School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China
| |
Collapse
|
6
|
Yin J, Schellinx N, Maggi L, Gundel K, Wiesner C, Kotini MP, Lee M, Phng LK, Belting HG, Affolter M. Initiation of lumen formation from junctions via differential actomyosin contractility regulated by dynamic recruitment of Rasip1. Nat Commun 2024; 15:9714. [PMID: 39521779 PMCID: PMC11550478 DOI: 10.1038/s41467-024-54143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
De novo lumen formation necessitates the precise segregation of junctional proteins from apical surfaces, yet the underlying mechanisms remain unclear. Using a zebrafish model, we develop a series of molecular reporters, photo-convertible and optogenetic tools to study the establishment of apical domains. Our study identifies Rasip1 as one of the earliest apical proteins recruited, which suppresses actomyosin contractility at junctional patches by inhibiting NMII, thereby allowing for the sustained outward flow of junctional complexes. Following the establishment of apical compartments, Rasip1 shuttles between junctions and the apical compartments in response to local high tension. Rasip1 confines Cdh5 to junctions by suppressing apical contractility. Conversely, the recruitment of Rasip1 to junctions is regulated by Heg1 and Krit1 to modulate contractility along junctions. Overall, de novo lumen formation and maintenance depend on the precise control of contractility within apical compartments and junctions, orchestrated by the dynamic recruitment of Rasip1.
Collapse
Affiliation(s)
- Jianmin Yin
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland.
| | - Niels Schellinx
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Ludovico Maggi
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Kathrin Gundel
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
- Universitätsklinikum Bonn, Bonn, Germany
| | - Cora Wiesner
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | - Minkyoung Lee
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland.
| | - Markus Affolter
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
7
|
Yin J, Maggi L, Wiesner C, Affolter M, Belting HG. Oscillatory contractile forces refine endothelial cell-cell interactions for continuous lumen formation governed by Heg1/Ccm1. Angiogenesis 2024; 27:845-860. [PMID: 39249713 PMCID: PMC11564304 DOI: 10.1007/s10456-024-09945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
The formation and organization of complex blood vessel networks rely on various biophysical forces, yet the mechanisms governing endothelial cell-cell interactions under different mechanical inputs are not well understood. Using the dorsal longitudinal anastomotic vessel (DLAV) in zebrafish as a model, we studied the roles of multiple biophysical inputs and cerebral cavernous malformation (CCM)-related genes in angiogenesis. Our research identifies heg1 and krit1 (ccm1) as crucial for the formation of endothelial cell-cell interfaces during anastomosis. In mutants of these genes, cell-cell interfaces are entangled with fragmented apical domains. A Heg1 live reporter demonstrated that Heg1 is dynamically involved in the oscillatory constrictions along cell-cell junctions, whilst a Myosin live reporter indicated that heg1 and krit1 mutants lack actomyosin contractility along these junctions. In wild-type embryos, the oscillatory contractile forces at junctions refine endothelial cell-cell interactions by straightening junctions and eliminating excessive cell-cell interfaces. Conversely, in the absence of junctional contractility, the cell-cell interfaces become entangled and prone to collapse in both mutants, preventing the formation of a continuous luminal space. By restoring junctional contractility via optogenetic activation of RhoA, contorted junctions are straightened and disentangled. Additionally, haemodynamic forces complement actomyosin contractile forces in resolving entangled cell-cell interfaces in both wild-type and mutant embryos. Overall, our study reveals that oscillatory contractile forces governed by Heg1 and Krit1 are essential for maintaining proper endothelial cell-cell interfaces and thus for the formation of a continuous luminal space, which is essential to generate a functional vasculature.
Collapse
Affiliation(s)
- Jianmin Yin
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland.
| | - Ludovico Maggi
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| | - Cora Wiesner
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| | - Markus Affolter
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland.
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland.
| |
Collapse
|
8
|
Wang WG, Jiang XF, Zhang C, Zhan XP, Cheng JG, Tao LM, Xu WP, Li Z, Zhang Y. Avermectin induced vascular damage in zebrafish larvae: association with mitochondria-mediated apoptosis and VEGF/Notch signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135376. [PMID: 39111175 DOI: 10.1016/j.jhazmat.2024.135376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
Avermectin is a highly effective insecticide that has been widely used in agriculture since the 1990s. In recent years, the safety of avermectin for non-target organisms has received much attention. The vasculature is important organs in the body and participate in the composition of other organs. However, studies on the vascular safety of avermectin are lacking. The vasculature of zebrafish larvae is characterized by ease of observation and it is a commonly used model for vascular studies. Therefore, zebrafish larvae were used to explore the potential risk of avermectin on the vasculature. The results showed that avermectin induced vascular damage throughout the body of zebrafish larvae, including the head, eyes, intestine, somite, tail and other vasculature. The main forms of damage are reduction in vascular diameter, vascular area and vascular abundance. Meanwhile, avermectin induced a decrease in the number of endothelial cells and apoptosis within the vasculature. In addition, vascular damage may be related to impairment of mitochondrial function and mitochondria-mediated apoptosis. Finally, exploration of the molecular mechanisms revealed abnormal alterations in the expression of genes related to the VEGF/Notch signaling pathway. Therefore, the VEGF/Notch signaling pathway may be an important mechanism for avermectin-induced vascular damage in zebrafish larvae. This study demonstrates the vascular toxicity of avermectin in zebrafish larvae and reveals the possible molecular mechanism, which would hopefully draw more attention to the safety of avermectin in non-target organisms.
Collapse
Affiliation(s)
- Wei-Guo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xu-Feng Jiang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Xiu-Ping Zhan
- Shanghai Agricultural Technology Extension Center, Shanghai 201103, China
| | - Jia-Gao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Chen J, Wei Y, Zhou J, Cao X, Yuan R, Lu Y, Guo Y, Shao X, Sun W, Jia M, Chen X. Tributyltin-induced oxidative stress causes developmental damage in the cardiovascular system of zebrafish (Danio rerio). ENVIRONMENTAL RESEARCH 2024; 252:118811. [PMID: 38555090 DOI: 10.1016/j.envres.2024.118811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Tributyltin (TBT) can be used as an antifouling agent with anticorrosive, antiseptic and antifungal properties and is widely used in wood preservation and ship painting. However, it has recently been found that TBT can be harmful to aquatic organisms. In this study, to gain insight into the effects of TBT with respect to the development of the cardiovascular system in zebrafish embryos, zebrafish embryos were exposed to different concentrations of TBT solutions (0.2 μg/L, 1 μg/L, and 2 μg/L) at 2 h post-fertilization (hpf) TBT exposure resulted in decreased hatchability and heart rate, deformed features such as pericardial edema, yolk sac edema, and spinal curvature in zebrafish embryos, and impaired heart development. Expression of cardiac development-related genes (vmhc, myh6, nkx2.5, tbx5a, gata4, tbx2b, nppa) is dysregulated. Transgenic zebrafish Tg (fli1: EGFP) were used to explore the effects of TBT exposure on vascular development. It was found that TBT exposure could lead to impaired development of intersegmental vessels (ISVs), common cardinal vein (CCV), subintestinal vessels (SIVs) and cerebrovascular. The expression of vascular endothelial growth factor (VEGF) signaling pathway-related genes (flt1, flt4, kdr, vegfa) was downregulated. Biochemical indices showed that ROS and MDA levels were significantly elevated and that SOD and CAT activities were significantly reduced. The expression of key genes for prostacyclin synthesis (pla2, ptgs2a, ptgs2b, ptgis, ptgs1) is abnormal. Therefore, it is possible that oxidative stress induced by TBT exposure leads to the blockage of arachidonic acid (AA) production in zebrafish embryos, which affects prostacyclin synthesis and consequently the normal development of the heart and blood vessels in zebrafish embryos.
Collapse
Affiliation(s)
- Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yinyin Wei
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yaoyajie Lu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yi Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xue Shao
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Weidi Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Mengtao Jia
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xiuli Chen
- Ecological Environment College, Baotou Teachers' College, Baotou, 014030, China.
| |
Collapse
|
10
|
Quax PHA, Deindl E. The Intriguing World of Vascular Remodeling, Angiogenesis, and Arteriogenesis. Int J Mol Sci 2024; 25:6376. [PMID: 38928082 PMCID: PMC11204171 DOI: 10.3390/ijms25126376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Vascular remodeling is a very general feature related to angiogenesis and arteriogenesis, which are involved in neovascularization processes [...].
Collapse
Affiliation(s)
- Paul H. A. Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152 Munich, Germany
| |
Collapse
|
11
|
Roghani AK, Garcia RI, Roghani A, Reddy A, Khemka S, Reddy RP, Pattoor V, Jacob M, Reddy PH, Sehar U. Treating Alzheimer's disease using nanoparticle-mediated drug delivery strategies/systems. Ageing Res Rev 2024; 97:102291. [PMID: 38614367 DOI: 10.1016/j.arr.2024.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
The administration of promising medications for the treatment of neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) is significantly hampered by the blood-brain barrier (BBB). Nanotechnology has recently come to light as a viable strategy for overcoming this obstacle and improving drug delivery to the brain. With a focus on current developments and prospects, this review article examines the use of nanoparticles to overcome the BBB constraints to improve drug therapy for AD The potential for several nanoparticle-based approaches, such as those utilizing lipid-based, polymeric, and inorganic nanoparticles, to enhance drug transport across the BBB are highlighted. To shed insight on their involvement in aiding effective drug transport to the brain, methods of nanoparticle-mediated drug delivery, such as surface modifications, functionalization, and particular targeting ligands, are also investigated. The article also discusses the most recent findings on innovative medication formulations encapsulated within nanoparticles and the therapeutic effects they have shown in both preclinical and clinical testing. This sector has difficulties and restrictions, such as the need for increased safety, scalability, and translation to clinical applications. However, the major emphasis of this review aims to provide insight and contribute to the knowledge of how nanotechnology can potentially revolutionize the worldwide treatment of NDDs, particularly AD, to enhance clinical outcomes.
Collapse
Affiliation(s)
- Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ali Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
12
|
Nayak R, Franěk R, Laurent A, Pšenička M. Genome-wide comparative methylation analysis reveals the fate of germ stem cells after surrogate production in teleost. BMC Biol 2024; 22:39. [PMID: 38360607 PMCID: PMC10870548 DOI: 10.1186/s12915-024-01842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Surrogate production by germline stem cell transplantation is a powerful method to produce donor-derived gametes via a host, a practice known as surrogacy. The gametes produced by surrogates are often analysed on the basis of their morphology and species-specific genotyping, which enables conclusion to be drawn about the donor's characteristics. However, in-depth information, such as data on epigenetic changes, is rarely acquired. Germ cells develop in close contact with supporting somatic cells during gametogenesis in vertebrates, and we hypothesize that the recipient's gonadal environment may cause epigenetic changes in produced gametes and progeny. Here, we extensively characterize the DNA methylome of donor-derived sperm and their intergenerational effects in both inter- and intraspecific surrogates. RESULTS We found more than 3000 differentially methylated regions in both the sperm and progeny derived from inter- and intraspecific surrogates. Hypermethylation in the promoter regions of the protocadherin gamma gene in the intraspecific surrogates was found to be associated with germline transmission. On the contrary, gene expression level and the embryonic development of the offspring remained unaffected. We also discovered MAPK/p53 pathway disruption in interspecific surrogates due to promoter hypermethylation and identified that the inefficient removal of meiotic-arrested endogenous germ cells in hybrid gonads led to the production of infertile spermatozoa. CONCLUSIONS Donor-derived sperm and progeny from inter- and intraspecific surrogates were more globally hypermethylated than those of the donors. The observed changes in DNA methylation marks in the surrogates had no significant phenotypic effects in the offspring.
Collapse
Affiliation(s)
- Rigolin Nayak
- The University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Roman Franěk
- The University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
- Department of Genetics, The Silberman Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Audrey Laurent
- Fish Physiology and Genomics Laboratory, INRAE, Campus de Beaulieu, 35000, Rennes, France
| | - Martin Pšenička
- The University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
13
|
Guo Y, Zhang S, Wang D, Heng BC, Deng X. Role of cell rearrangement and related signaling pathways in the dynamic process of tip cell selection. Cell Commun Signal 2024; 22:24. [PMID: 38195565 PMCID: PMC10777628 DOI: 10.1186/s12964-023-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/25/2023] [Indexed: 01/11/2024] Open
Abstract
Angiogenesis is a complex, highly-coordinated and multi-step process of new blood vessel formation from pre-existing blood vessels. When initiated, the sprouting process is spearheaded by the specialized endothelial cells (ECs) known as tip cells, which guide the organization of accompanying stalk cells and determine the function and morphology of the finally-formed blood vessels. Recent studies indicate that the orchestration and coordination of angiogenesis involve dynamic tip cell selection, which is the competitive selection of cells to lead the angiogenic sprouts. Therefore, this review attempt to summarize the underlying mechanisms involved in tip cell specification in a dynamic manner to enable readers to gain a systemic and overall understanding of tip cell formation, involving cooperative interaction of cell rearrangement with Notch and YAP/TAZ signaling. Various mechanical and chemical signaling cues are integrated to ensure the right number of cells at the right place during angiogenesis, thereby precisely orchestrating morphogenic functions that ensure correct patterning of blood vessels. Video Abstract.
Collapse
Affiliation(s)
- Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Dandan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
- Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
14
|
Ravindra J, Ug Y, Pandyanda Nanjappa D, Kalladka K, Dhakal R, Chakraborty A, Chakraborty G. Allicin extracted from Allium sativum shows potent anti-cancer and antioxidant properties in zebrafish. Biomed Pharmacother 2023; 169:115854. [PMID: 37951024 DOI: 10.1016/j.biopha.2023.115854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
Garlic (Allium sativum) is an important flavouring component in Indian cuisine. Allicin, a sulphur containing compound, is the most abundant component of garlic and has been widely studied for its antimicrobial and antioxidant properties. It is also known to play a role in the regulation of blood pressure and cholesterol levels. Despite the known health benefits associated with allicin, systematic studies on its anti-cancer properties using animal models are very limited. This study aimed to develop a simple method for the extraction of allicin from fresh garlic, study the stability of the extracted compound at various temperatures, and evaluate the antioxidant, anti-proliferative, pro-apoptotic and anti-angiogenic properties in zebrafish. A five-month stability study indicated that allicin remains significantly stable at temperatures 4 °C and below but shows extensive degradation if stored at room temperature. The in vivo studies in zebrafish using a combination of mutants and transgenic lines demonstrated the antioxidant, anti-proliferative, apoptotic and anti-angiogenic properties of allicin. The study highlights the importance of natural bioactive compounds as potential anti-cancer agents that can be studied further.
Collapse
Affiliation(s)
- Jeshma Ravindra
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India
| | - Yathisha Ug
- Department of Food Safety and Nutrition, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Mangalore 575018, India
| | - Dechamma Pandyanda Nanjappa
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India
| | - Krithika Kalladka
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India
| | - Rasik Dhakal
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India
| | - Anirban Chakraborty
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India.
| | - Gunimala Chakraborty
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India.
| |
Collapse
|
15
|
Gu J, Guo L, Hu J, Ji G, Yin D. Potential adverse outcome pathway (AOP) of emamectin benzoate mediated cardiovascular toxicity in zebrafish larvae (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165787. [PMID: 37499828 DOI: 10.1016/j.scitotenv.2023.165787] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Emamectin benzoate (EMB) is an efficient insecticide which widely used as an anthelmintic drug additive in aquaculture fish. However, its extensive use has resulted in widespread pollution in the aquatic environment. Previous studies have identified the potential developmental and neurotoxic effects of EMB, however, systematic studies pertaining to the cardiovascular toxic effects of EMB on fish are scarce. In this study, zebrafish embryos were exposed to EMB at concentrations of 0, 0.1, 0.25, 0.5, 1, 2, 4, and 8 mg/L for 3 days, aiming to investigate the cardiovascular toxic effects of EMB via examining morphology, cardiac function, and vascular development phenotypes. It revealed that EMB exposure led to marked deteriorated effects, including adverse effects on mortality, hatching rate, and general morphological traits, such as malformation, heart rate, body length, and eye area, in zebrafish embryos/larvae. Furthermore, EMB exposure resulted in abnormal cardiac function and vascular development, triggering neutrophil migration and aggregation toward the pericardial and dorsal vascular regions, and finalized apoptosis in the zebrafish heart region, these phenomena were further deciperred by the transcriptome analysis that the Toll-like receptor pathway, P53 pathway, and apoptotic pathway were significantly affected by EMB exposure. Moreover, the molecular docking and aspirin anti-inflammatory rescue assays indicated that TLR2 and TLR4 might be the potential targets of EMB. Taken together, our study provides preliminary evidence that EMB may induce apoptosis by affecting inflammatory signaling pathways and eventually lead to abnormal cardiovascular development in zebrafish. This study provides a simple toxicological AOP framework for safe pesticide use and management strategies.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Liguo Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jun Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
16
|
Song N, Tang Y, Wang Y, Guan X, Yu W, Jiang T, Lu L, Gu Y. A SIRT6 Inhibitor, Marine-Derived Pyrrole-Pyridinimidazole Derivative 8a, Suppresses Angiogenesis. Mar Drugs 2023; 21:517. [PMID: 37888452 PMCID: PMC10608785 DOI: 10.3390/md21100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Angiogenesis refers to the process of growing new blood vessels from pre-existing capillaries or post-capillary veins. This process plays a critical role in promoting tumorigenesis and metastasis. As a result, developing antiangiogenic agents has become an attractive strategy for tumor treatment. Sirtuin6 (SIRT6), a member of nicotinamide adenine (NAD+)-dependent histone deacetylases, regulates various biological processes, including metabolism, oxidative stress, angiogenesis, and DNA damage and repair. Some SIRT6 inhibitors have been identified, but the effects of SIRT6 inhibitors on anti-angiogenesis have not been reported. We have identified a pyrrole-pyridinimidazole derivative 8a as a highly effective inhibitor of SIRT6 and clarified its anti-pancreatic-cancer roles. This study investigated the antiangiogenic roles of 8a. We found that 8a was able to inhibit the migration and tube formation of HUVECs and downregulate the expression of angiogenesis-related proteins, including VEGF, HIF-1α, p-VEGFR2, and N-cadherin, and suppress the activation of AKT and ERK pathways. Additionally, 8a significantly blocked angiogenesis in intersegmental vessels in zebrafish embryos. Notably, in a pancreatic cancer xenograft mouse model, 8a down-regulated the expression of CD31, a marker protein of angiogenesis. These findings suggest that 8a could be a promising antiangiogenic and cancer therapeutic agent.
Collapse
Affiliation(s)
- Nannan Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
| | - Yanfei Tang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
| | - Yangui Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
| | - Xian Guan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266237, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266237, China
| | - Ling Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266237, China
| | - Yuchao Gu
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266237, China
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
17
|
Singhal SS, Garg R, Mohanty A, Garg P, Ramisetty SK, Mirzapoiazova T, Soldi R, Sharma S, Kulkarni P, Salgia R. Recent Advancement in Breast Cancer Research: Insights from Model Organisms-Mouse Models to Zebrafish. Cancers (Basel) 2023; 15:cancers15112961. [PMID: 37296923 DOI: 10.3390/cancers15112961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary 'Team Medicine' approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sravani Keerthi Ramisetty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Raffaella Soldi
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Sunil Sharma
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
18
|
Liu Q, Zhang H, An Y, Zhang Y, He Q, Liu K, Xia Q, Zhou H. Xinkeshu tablets promote angiogenesis in zebrafish embryos and human umbilical vein endothelial cells through multiple signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116636. [PMID: 37182673 DOI: 10.1016/j.jep.2023.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angiogenesis is particularly important in ischemic cardiovascular diseases such as coronary heart disease (CHD). Xinkeshu tablets (XKS) are a commonly used Chinese patent medicine for CHD with a defined clinical effect. However, the proangiogenic effect of XKS remains unknown. AIM OF THE STUDY We attempted to investigate the chemical composition and proangiogenic effect of XKS, as well as its underlying mechanisms. MATERIALS AND METHODS The chemical composition of a XKS methanol extract was analyzed using a UPLC-Q-Orbitrap-MS system. The compound's proangiogenic effects were evaluated in zebrafish embryos and human umbilical vein endothelial cells (HUVECs). Furthermore, the underlying mechanisms were investigated using transcriptome assays and real-time quantitative PCR validation. RESULTS We identified 116 chemical constituents of XKS. XKS significantly stimulated subintestinal vessel plexus (SIVs) growth and rescued tyrosine kinase inhibitor (PTK787)-induced intersegmental vessels (ISVs) injury in zebrafish in a concentration-dependent manner. XKS significantly rescued the proliferation, migration capacity and tube formation of Recombinant VEGFR tyrosine kinase inhibitor II (VRI)-injured HUVECs. XKS promoted angiogenesis through multiple signaling pathways, including metabolic pathways, the PPAR signaling pathway, the AGE-RAGE signaling pathway, the NOD-like receptor signaling pathway, the VEGF signaling pathway, and the PI3K/Akt signaling pathway. CONCLUSION Herein, we identified 116 chemical constituents of XKS for the first time and demonstrated that XKS may regulate angiogenesis through multiple signaling pathways to treat CHD.
Collapse
Affiliation(s)
- Qing Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; School of Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Huazheng Zhang
- Shandong Academy of Chinese Medicine, Jinan, 250014, China.
| | - Ying An
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; School of Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Honglei Zhou
- School of Pharmacology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
19
|
Leonard EV, Hasan SS, Siekmann AF. Temporally and regionally distinct morphogenetic processes govern zebrafish caudal fin blood vessel network expansion. Development 2023; 150:dev201030. [PMID: 36938965 PMCID: PMC10113958 DOI: 10.1242/dev.201030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/10/2023] [Indexed: 03/21/2023]
Abstract
Blood vessels form elaborate networks that depend on tissue-specific signalling pathways and anatomical structures to guide their growth. However, it is not clear which morphogenetic principles organize the stepwise assembly of the vasculature. We therefore performed a longitudinal analysis of zebrafish caudal fin vascular assembly, revealing the existence of temporally and spatially distinct morphogenetic processes. Initially, vein-derived endothelial cells (ECs) generated arteries in a reiterative process requiring vascular endothelial growth factor (Vegf), Notch and cxcr4a signalling. Subsequently, veins produced veins in more proximal fin regions, transforming pre-existing artery-vein loops into a three-vessel pattern consisting of an artery and two veins. A distinct set of vascular plexuses formed at the base of the fin. They differed in their diameter, flow magnitude and marker gene expression. At later stages, intussusceptive angiogenesis occurred from veins in distal fin regions. In proximal fin regions, we observed new vein sprouts crossing the inter-ray tissue through sprouting angiogenesis. Together, our results reveal a surprising diversity among the mechanisms generating the mature fin vasculature and suggest that these might be driven by separate local cues.
Collapse
Affiliation(s)
- Elvin V. Leonard
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Sana Safatul Hasan
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Park J, Hong T, An G, Park H, Song G, Lim W. Triadimenol promotes the production of reactive oxygen species and apoptosis with cardiotoxicity and developmental abnormalities in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160761. [PMID: 36502969 DOI: 10.1016/j.scitotenv.2022.160761] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various types of fungicides, especially triazole fungicides, are used to prevent fungal diseases on farmlands. However, the developmental toxicity of one of the triazole fungicides, triadimenol, remains unclear. Therefore, we used the zebrafish animal model, a representative toxicological model, to investigate it. Triadimenol induced morphological alterations in the eyes and body length along with yolk sac and heart edema. It also stimulated the production of reactive oxygen species and expression of inflammation-related genes and caused apoptosis in the anterior regions of zebrafish, especially in the heart. The phosphorylation levels of Akt, ERK, JNK, and p38 proteins involved in the PI3K and MAPK pathways, which are important for the development process, were also reduced by triadimenol. These changes led to malformation of the heart and vascular structures, as observed in the flk1:eGFP transgenic zebrafish models and a reduction in the heart rate. In addition, the expression of genes associated with cardiac and vascular development was also reduced. Therefore, we elucidated the mechanisms associated with triadimenol toxicity that leads to various abnormalities and developmental toxicity in zebrafish.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
21
|
Soto Veliz D, Lin K, Sahlgren C. Organ-on-a-chip technologies for biomedical research and drug development: A focus on the vasculature. SMART MEDICINE 2023; 2:e20220030. [PMID: 37089706 PMCID: PMC7614466 DOI: 10.1002/smmd.20220030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 04/25/2023]
Abstract
Current biomedical models fail to replicate the complexity of human biology. Consequently, almost 90% of drug candidates fail during clinical trials after decades of research and billions of investments in drug development. Despite their physiological similarities, animal models often misrepresent human responses, and instead, trigger ethical and societal debates regarding their use. The overall aim across regulatory entities worldwide is to replace, reduce, and refine the use of animal experimentation, a concept known as the Three Rs principle. In response, researchers develop experimental alternatives to improve the biological relevance of in vitro models through interdisciplinary approaches. This article highlights the emerging organ-on-a-chip technologies, also known as microphysiological systems, with a focus on models of the vasculature. The cardiovascular system transports all necessary substances, including drugs, throughout the body while in charge of thermal regulation and communication between other organ systems. In addition, we discuss the benefits, limitations, and challenges in the widespread use of new biomedical models. Coupled with patient-derived induced pluripotent stem cells, organ-on-a-chip technologies are the future of drug discovery, development, and personalized medicine.
Collapse
Affiliation(s)
- Diosangeles Soto Veliz
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
| | - Kai‐Lan Lin
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
| | - Cecilia Sahlgren
- Faculty of Science and EngineeringCell Biology, Åbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CenterÅbo Akademi University and University of TurkuTurkuFinland
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|
22
|
Min N, Park H, Hong T, An G, Song G, Lim W. Developmental toxicity of prometryn induces mitochondrial dysfunction, oxidative stress, and failure of organogenesis in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130202. [PMID: 36272374 DOI: 10.1016/j.jhazmat.2022.130202] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Prometryn, 2-methylthio-4,6-bis(isopropylamino)-1,3,5-triazine, is a selective thiomethyl triazine herbicide widely used to control unwanted weeds and harmful insects by inhibiting electron transport in target organisms. Despite having various advantages, herbicides pose as a major threat to the environment and human health due to persistent contamination, bioaccumulation, and damage to non-target organisms. In this study, the developmental toxicity of 5, 10, and 20 mg/L prometryn in zebrafish (Danio rerio) embryos was evaluated and compared to that of the solvent control for 96 h. Several transgenic zebrafish models (fli1a:eGFP, flk1:eGFP, olig2:dsRed and L-fabp:dsRed) were visually assessed to detect fluorescently tagged genes. Results showed that prometryn shortened body length, and induced yolk sac, heart edema, abnormal heart rate, and loss of viability. Fluorescence microscopy revealed that prometryn exposure caused defects in organ development, reactive oxygen species accumulation, and apoptotic cell death. Mitochondrial bioenergetics were also evaluated to determine the effect of prometryn on the electron transport chain activity and metabolic alterations. Prometryn was found to interfere with mitochondrial function, ultimately inhibiting energy metabolism and embryonic development. Collectively, our findings suggest that prometryn is a potential contaminate for non-target sites and organisms, especially aquatic, and emphasize the need to consider the toxic effects of prometryn.
Collapse
Affiliation(s)
- Nayoung Min
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
23
|
Margadant C. Cell Migration in Three Dimensions. Methods Mol Biol 2023; 2608:1-14. [PMID: 36653698 DOI: 10.1007/978-1-0716-2887-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell migration plays an essential role in many pathophysiological processes, including embryonic development, wound healing, immunity, and cancer invasion, and is therefore a widely studied phenomenon in many different fields from basic cell biology to regenerative medicine. During the past decades, a multitude of increasingly complex methods have been developed to study cell migration. Here we compile a series of current state-of-the-art methods and protocols to investigate cell migration in a variety of model systems ranging from cells, organoids, tissue explants, and microfluidic systems to Drosophila, zebrafish, and mice. Together they cover processes as diverse as nuclear deformation, energy consumption, endocytic trafficking, and matrix degradation, as well as tumor vascularization and cancer cell invasion, sprouting angiogenesis, and leukocyte extravasation. Furthermore, methods to study developmental processes such as neural tube closure, germ layer specification, and branching morphogenesis are included, as well as scripts for the automated analysis of several aspects of cell migration. Together, this book constitutes a unique collection of methods of prime importance to those interested in the analysis of cell migration.
Collapse
Affiliation(s)
- Coert Margadant
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Analysis of Vascular Morphogenesis in Zebrafish. Methods Mol Biol 2023; 2608:425-450. [PMID: 36653721 DOI: 10.1007/978-1-0716-2887-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Analysis of cardiovascular development in zebrafish embryos has become a major driver of vascular research in recent years. Imaging-based analyses have allowed the discovery or verification of morphologically distinct processes and mechanisms of, e.g., endothelial cell migration, angiogenic sprouting, tip or stalk cell behavior, and vessel anastomosis. In this chapter, we describe the techniques and tools used for confocal imaging of zebrafish endothelial development in combination with general experimental approaches for molecular dissection of involved signaling pathways.
Collapse
|
25
|
Abstract
The angiogenesis process was described in its basic concepts in the works of the Scottish surgeon John Hunter and terminologically assessed in the early twentieth century. An aberrant angiogenesis is a prerequisite for cancer cells in solid tumors to grow and metastasize. The sprouting of new blood vessels is one of the major characteristics of cancer and represents a gateway for tumor cells to enter both the blood and lymphatic circulation systems. In vivo, ex vivo, and in vitro models of angiogenesis have provided essential tools for cancer research and antiangiogenic drug screening. Several in vivo studies have been performed to investigate the various steps of tumor angiogenesis and in vitro experiments contributed to dissecting the molecular bases of this phenomenon. Moreover, coculture of cancer and endothelial cells in 2D and 3D matrices have contributed to improve the recapitulation of the complex process of tumor angiogenesis, including the peculiar conditions of tumor microenvironment.
Collapse
Affiliation(s)
- Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, Pisa, Italy
- Museum of Human Anatomy "Filippo Civinini", School of Medicine, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, School of Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
26
|
Hong T, Park H, An G, Song G, Lim W. Ethalfluralin induces developmental toxicity in zebrafish via oxidative stress and inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158780. [PMID: 36115403 DOI: 10.1016/j.scitotenv.2022.158780] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Ethalfluralin, of dinitroaniline herbicide family, is an effective weed controller. Following residue detection in herbicide-treated fields, ethalfluralin was reported to interfere with early stages of implantation in some vertebrate species. However, the role of ethalfluralin in the development of zebrafish embryos has not been elucidated yet. Therefore, in the present study, we investigated the morphological and physiological changes that occur in the embryonic development of zebrafish due to ethalfluralin exposure. Results indicated that ethalfluralin decreased survival rate along with reduction in the hatching ratio and heartbeat. It was observed to cause edema in the heart and yolk sac, and apoptosis in the anterior region of the developing zebrafish larvae; as visualized through acridine orange and TUNEL staining. In addition, ethalfluralin increased the expression of the apoptosis-associated genes including tp53, cyc1, casp8, casp9, and casp3. The Seahorse Mito Stress analysis revealed that ethalfluralin slightly reduced mitochondrial respiration in live zebrafish embryos. Reactive oxygen species (ROS) production was also observed to be elevated in zebrafish larvae in response to ethalfluralin. Treatment with ethalfluralin decreased blood vessel formation in brain and intestine in flk1 transgenic zebrafish embryos. The decrease in angiogenesis related gene expression was specifically observed in vegfc, flt1, and kdrl, and in the intestinal vasculature related genes apoa4a, aqp3, fabp2, and vil1. Moreover, an increase in inflammatory genes such as cox2a, cox2b, cxcl-c1c, il8, mcl1a, mcl1b, and nf-κb was observed using real-time PCR analysis. Collectively, these results indicate that oxidative stress generated by exposure to ethalfluralin induced ROS generation, apoptosis, inflammation and anti-angiogenic effects, and therefore, ethalfluralin may be toxic to the development of zebrafish embryos.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
27
|
Fan F, Liu F, Shen P, Tao L, Zhang H, Wu H. Salvianolic acid B, a new type I IRE1 kinase inhibitor, abrogates AngII-induced angiogenesis by interacting with IRE1 in its active conformation. Clin Exp Pharmacol Physiol 2023; 50:82-95. [PMID: 36153795 DOI: 10.1111/1440-1681.13726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Angiotensin II (AngII)-mediated pathological angiogenesis is one of the important factors promoting the progression of atherosclerosis, tumour metastasis, and diabetic retinopathy. Here, we first demonstrate that salvianolic acid B (Sal B) attenuated AngII-induced angiogenesis by downregulating the IRE1/ASK1/JNK/p38MAPK signalling pathway and protected vascular endothelial cells from hypoxia-induced damage. These pharmacological consequences could be ascribed to the unique interactions between Sal B and the ATP-binding cavity of IREIα, leading to bi-directional roles of IRE1 kinase and endonuclease activity; this may possibly be one of the essential mechanisms of the bi-directional regulation of angiogenesis in different conditions. Moreover, our results indicated that IRE1 was a novel anti-angiogenesis target and type I IRE1 kinase inhibitor (e.g., Sal B, APY29) and might be a potentially eligible low-toxicity drug for treating AngII-mediated pathological angiogenesis.
Collapse
Affiliation(s)
- Fangtian Fan
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy Bengbu Medical College, Bengbu, China
| | - Fang Liu
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, School of Pharmacy Bengbu Medical College, Bengbu, China
| | - Peiliang Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Tao
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Hongjiang Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China
| | - Hongyan Wu
- Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
28
|
Huo L, Liu X, Jaiswal Y, Xu H, Chen R, Lu R, Nong Y, Williams L, Liang Y, Jia Z. Design and Synthesis of Acridine-Triazole and Acridine-Thiadiazole Derivatives and Their Inhibitory Effect against Cancer Cells. Int J Mol Sci 2022; 24:ijms24010064. [PMID: 36613504 PMCID: PMC9820444 DOI: 10.3390/ijms24010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
We report herein the design and synthesis of a series of novel acridine-triazole and acridine-thiadiazole derivatives. The newly synthesized compounds and the key intermediates were all evaluated for their antitumor activities against human foreskin fibroblasts (HFF), human gastric cancer cells-803 (MGC-803), hepatocellular carcinoma bel-7404 (BEL-7404), large cell lung cancer cells (NCI-H460), and bladder cancer cells (T24). Most of the compounds exhibited high levels of antitumor activity against MGC-803 and T24 but low toxicity against human normal liver cells (LO2), and their effect was even better than the commercial anticancer drugs, 5-fluorouracil (5-FU) and cis-platinum. Further, pharmacological mechanisms such as topo I, cell cycle, cell apoptosis, and neovascularization were all evaluated. Only a few compounds exhibited potent topo I inhibitory activity at 100 μM. In addition, the most active compounds with an IC50 value of 5.52-8.93 μM were chosen, and they could induce cell apoptosis in the G2 stage of MGC-803 or mainly arrest T24 cells in the S stage. To our delight, most of the compounds exhibited lower zebrafish cytotoxicity but could strongly inhibit the formation of zebrafish sub-intestinal veins, indicating a potential for clinical application.
Collapse
Affiliation(s)
- Lini Huo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530222, China
| | - Xiaochen Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530222, China
| | - Yogini Jaiswal
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Hao Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530222, China
| | - Rui Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530222, China
- Correspondence: (R.C.); (R.L.)
| | - Rumei Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530222, China
- Correspondence: (R.C.); (R.L.)
| | - Yaqin Nong
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530222, China
| | - Leonard Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Yan Liang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhiruo Jia
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530222, China
| |
Collapse
|
29
|
Drapé E, Anquetil T, Larrivée B, Dubrac A. Brain arteriovenous malformation in hereditary hemorrhagic telangiectasia: Recent advances in cellular and molecular mechanisms. Front Hum Neurosci 2022; 16:1006115. [PMID: 36504622 PMCID: PMC9729275 DOI: 10.3389/fnhum.2022.1006115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by vessel dilatation, such as telangiectasia in skin and mucosa and arteriovenous malformations (AVM) in internal organs such as the gastrointestinal tract, lungs, and brain. AVMs are fragile and tortuous vascular anomalies that directly connect arteries and veins, bypassing healthy capillaries. Mutations in transforming growth factor β (TGFβ) signaling pathway components, such as ENG (ENDOGLIN), ACVRL1 (ALK1), and SMAD4 (SMAD4) genes, account for most of HHT cases. 10-20% of HHT patients develop brain AVMs (bAVMs), which can lead to vessel wall rupture and intracranial hemorrhages. Though the main mutations are known, mechanisms leading to AVM formation are unclear, partially due to lack of animal models. Recent mouse models allowed significant advances in our understanding of AVMs. Endothelial-specific deletion of either Acvrl1, Eng or Smad4 is sufficient to induce AVMs, identifying endothelial cells (ECs) as primary targets of BMP signaling to promote vascular integrity. Loss of ALK1/ENG/SMAD4 signaling is associated with NOTCH signaling defects and abnormal arteriovenous EC differentiation. Moreover, cumulative evidence suggests that AVMs originate from venous ECs with defective flow-migration coupling and excessive proliferation. Mutant ECs show an increase of PI3K/AKT signaling and inhibitors of this signaling pathway rescue AVMs in HHT mouse models, revealing new therapeutic avenues. In this review, we will summarize recent advances and current knowledge of mechanisms controlling the pathogenesis of bAVMs, and discuss unresolved questions.
Collapse
Affiliation(s)
- Elise Drapé
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département de Pharmacologie et de Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Typhaine Anquetil
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département De Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
| | - Bruno Larrivée
- Département d’Ophtalmologie, Université de Montréal, Montréal, QC, Canada,Centre De Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada,*Correspondence: Bruno Larrivée,
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département De Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada,Département d’Ophtalmologie, Université de Montréal, Montréal, QC, Canada,Alexandre Dubrac,
| |
Collapse
|
30
|
Wang M, Liu J, Wang H, Hu T. Spiromesifen contributes vascular developmental toxicity via disrupting endothelial cell proliferation and migration in zebrafish embryos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105242. [PMID: 36464354 DOI: 10.1016/j.pestbp.2022.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Spiromesifen (SPF) is a specific contact pesticide, which has been widely used to control the growth of sucking insects like mites and whiteflies on crops. Although its residues in crops and effects on organisms has been extensively reported, its impact on the vasculature is still not being reported. In the present study, using human umbilical vein endothelial cells (HUVECs) and zebrafish embryos, we investigated the effects of SPF on blood vessel development and its mechanism of action. SPF exposure triggered abnormal blood vessel development, including vascular deletions and malformations, inhibition of CCV remodeling, and decrease of SIV areas. SPF exposure also obstructed the migration of endothelial cell from caudal hematopoietic tissue in zebrafish embryos. SPF damaged cytoskeleton, caused cell cycle arrest, inhibited the viability and migration of HUVECs. In addition, SPF also inhibited the expression of the VEGF/VEGFR pathway-related genes (hif1a, vegfa, flt1, and kdrl), cell cycle-related genes (ccnd1, ccne1, cdk2, and pcna), and Rho/ROCK pathway-related genes (itgb1, rho, rock, mlc-1, and vim-1). Taken together, SPF may inhibit the proliferation and migration of vascular endothelial cells through disturbing cytoskeleton via the Rho/ ROCK pathway, resulting in vascular malformation. Our study contributes to potential insight into the mechanism of SPF toxicity in angiocardiopathy.
Collapse
Affiliation(s)
- Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
31
|
Nöth J, Michaelis P, Busch W, Scholz S. SOC-II-08 Analysis vascular disruptors in zebrafish embryos as an endpoint to predict developmental toxicity. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Fu S, Tan R, Feng Y, Yu P, Mo Y, Xiao W, Wang S, Zhang J. N-methyl-N-nitrosourea induces zebrafish anomalous angiogenesis through Wnt/β-catenin pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113674. [PMID: 35623148 DOI: 10.1016/j.ecoenv.2022.113674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
N-methyl-N-nitrosourea (MNU) is a prevalent environmental carcinogen, which leads to tumors in various organs in animal models, while the mechanisms involved were still not fully understood. It is well known that anomalous angiogenesis is a key step in tumorigenesis and progression. In this study, we found that MNU induced abnormal angiogenesis which was accompanied by upregulation of rspo1, p53 and vegfaa in zebrafish embryos. Moreover, it revealed that MNU-induced ectopic sprouting of blood vessels was significantly reduced in rspo1-knockdown but not p53-knockdown embryos, indicating that rspo1 was necessary for MNU-induced abnormal angiogenesis. Additionally, pharmaceutical activation or inhibition of Wnt/β-catenin signaling pathway using (2'Z,3'E)- 6-bromoindirubin-3'-oxime or CCT036477 significantly increased or inhibited the pro-angiogenic effect of MNU on developing zebrafish embryos, which was confirmed by the effect of proliferation and migration in MNU-treated bEnd.3 cells. These data together indicated that rspo1/Wnt/β-catenin/vegfaa axis is involved in the modulation of MNU-induced anomalous angiogenesis.
Collapse
Affiliation(s)
- Saifang Fu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Rongbang Tan
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Yufei Feng
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Ping Yu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Yuqian Mo
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Wei Xiao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China.
| |
Collapse
|
33
|
Lange M, Ohnesorge N, Hoffmann D, Rocha SF, Benedito R, Siekmann AF. Zebrafish mutants in vegfab can affect endothelial cell proliferation without altering ERK phosphorylation and are phenocopied by loss of PI3K signaling. Dev Biol 2022; 486:26-43. [PMID: 35337795 PMCID: PMC11238767 DOI: 10.1016/j.ydbio.2022.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/23/2022]
Abstract
The formation of appropriately patterned blood vessel networks requires endothelial cell migration and proliferation. Signaling through the Vascular Endothelial Growth Factor A (VEGFA) pathway is instrumental in coordinating these processes. mRNA splicing generates short (diffusible) and long (extracellular matrix bound) Vegfa isoforms. The differences between these isoforms in controlling cellular functions are not understood. In zebrafish, vegfaa generates short and long isoforms, while vegfab only generates long isoforms. We found that mutations in vegfaa had an impact on endothelial cell (EC) migration and proliferation. Surprisingly, mutations in vegfab more strongly affected EC proliferation in distinct blood vessels, such as intersegmental blood vessels in the zebrafish trunk and central arteries in the head. Analysis of downstream signaling pathways revealed no change in MAPK (ERK) activation, while inhibiting PI3 kinase signaling phenocopied vegfab mutant phenotypes in affected blood vessels. Together, these results suggest that extracellular matrix bound Vegfa might act through PI3K signaling to control EC proliferation in a distinct set of blood vessels during angiogenesis.
Collapse
Affiliation(s)
- Martin Lange
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Nils Ohnesorge
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Dennis Hoffmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Susana F Rocha
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Rui Benedito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany; Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Li RF, Wang YS, Lu FI, Huang YS, Chiu CC, Tai MH, Wu CY. Identification of Novel Vascular Genes Downstream of Islet2 and Nr2f1b Transcription Factors. Biomedicines 2022; 10:biomedicines10061261. [PMID: 35740282 PMCID: PMC9220758 DOI: 10.3390/biomedicines10061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 12/10/2022] Open
Abstract
The genetic regulation of vascular development is not elucidated completely. We previously characterized the transcription factors Islet2 (Isl2) and Nr2f1b as being critical for vascular growth. In this study, we further performed combinatorial microarrays to identify genes that are potentially regulated by these factors. We verified the changed expression of several targets in isl2/nr2f1b morphants. Those genes expressed in vessels during embryogenesis suggested their functions in vascular development. We selectively assayed a potential target follistatin a (fsta). Follistatin is known to inhibit BMP, and BMP signaling has been shown to be important for angiogenesis. However, the fsta’s role in vascular development has not been well studied. Here, we showed the vascular defects in ISV growth and CVP patterning while overexpressing fsta in the embryo, which mimics the phenotype of isl2/nr2f1b morphants. The vascular abnormalities are likely caused by defects in migration and proliferation. We further observed the altered expression of vessel markers consistent with the vascular defects in (fli:fsta) embryos. We showed that the knockdown of fsta can rescue the vascular defects in (fli:fsta) fish, suggesting the functional specificity of fsta. Moreover, the decreased expression of fsta rescues abnormal vessel growth in isl2 and nr2f1b morphants, indicating that fsta functions downstream of isl2/nr2f1b. Lastly, we showed that Isl2/Nr2f1b control vascular development, via Fsta–BMP signaling in part. Collectively, our microarray data identify many interesting genes regulated by isl2/nr2f1b, which likely function in the vasculature. Our research provides useful information on the genetic control of vascular development.
Collapse
Affiliation(s)
- Ru-Fang Li
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
| | - Yi-Shan Wang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan;
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Yi-Shan Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hong Tai
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; (R.-F.L.); (Y.-S.W.); (Y.-S.H.); (C.-C.C.); (M.-H.T.)
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 115, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence: ; Tel.: +886-7-5252000 (ext. 3627)
| |
Collapse
|
35
|
Mhlongo F, Cordero-Maldonado ML, Crawford AD, Katerere D, Sandasi M, Hattingh AC, Koekemoer TC, van de Venter M, Viljoen AM. Evaluation of the wound healing properties of South African medicinal plants using zebrafish and in vitro bioassays. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114867. [PMID: 34822956 DOI: 10.1016/j.jep.2021.114867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/02/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In South Africa, medicinal plants have a history of traditional use, with many species used for treating wounds. The scientific basis of such uses remains largely unexplored. AIM OF THE STUDY To screen South African plants used ethnomedicinally for wound healing based on their pro-angiogenic and wound healing activity, using transgenic zebrafish larvae and cell culture assays. MATERIALS AND METHODS South African medicinal plants used for wound healing were chosen according to literature. Dried plant material was extracted using six solvents of varying polarities. Pro-angiogenesis was assessed in vivo by observing morphological changes in sub-intestinal vessels after crude extract treatment of transgenic zebrafish larvae with vasculature-specific expression of a green fluorescent protein. Subsequently, the in vitro anti-inflammatory, fibroblast proliferation and collagen production effects of the plant extracts that were active in the zebrafish angiogenesis assay were investigated using murine macrophage (RAW 264.7) and human fibroblast (MRHF) cell lines. RESULTS Fourteen plants were extracted using six different solvents to yield 84 extracts and the non-toxic (n=72) were initially screened for pro-angiogenic activity in the zebrafish assay. Of these plant species, extracts of Lobostemon fruticosus, Scabiosa columbaria and Cotyledon orbiculata exhibited good activity in a concentration-dependent manner. All active extracts showed negligible in vitro toxicity using the MTT assay. Lobostemon fruticosus and Scabiosa columbaria extracts showed noteworthy anti-inflammatory activity in RAW 264.7 macrophages. The acetone extract of Lobostemon fruticosus stimulated the most collagen production at 122% above control values using the MRHF cell line, while all four of the selected extracts significantly stimulated cellular proliferation in vitro in the MRHF cell line. CONCLUSIONS The screening of the selected plant species provided valuable preliminary information validating the use of some of the plants in traditional medicine used for wound healing in South Africa. This study is the first to discover through an evidence-based pharmacology approach the wound healing properties of such plant species using the zebrafish as an in vivo model.
Collapse
Affiliation(s)
- Fikile Mhlongo
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | | | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, Belval, Luxembourg; Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - David Katerere
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Maxleene Sandasi
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria, South Africa
| | - Anna C Hattingh
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Trevor C Koekemoer
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria, South Africa.
| |
Collapse
|
36
|
Hoareau M, El Kholti N, Debret R, Lambert E. Zebrafish as a Model to Study Vascular Elastic Fibers and Associated Pathologies. Int J Mol Sci 2022; 23:2102. [PMID: 35216218 PMCID: PMC8875079 DOI: 10.3390/ijms23042102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023] Open
Abstract
Many extensible tissues such as skin, lungs, and blood vessels require elasticity to function properly. The recoil of elastic energy stored during a stretching phase is provided by elastic fibers, which are mostly composed of elastin and fibrillin-rich microfibrils. In arteries, the lack of elastic fibers leads to a weakening of the vessel wall with an increased risk to develop cardiovascular defects such as stenosis, aneurysms, and dissections. The development of new therapeutic molecules involves preliminary tests in animal models that recapitulate the disease and whose response to drugs should be as close as possible to that of humans. Due to its superior in vivo imaging possibilities and the broad tool kit for forward and reverse genetics, the zebrafish has become an important model organism to study human pathologies. Moreover, it is particularly adapted to large scale studies, making it an attractive model in particular for the first steps of investigations. In this review, we discuss the relevance of the zebrafish model for the study of elastic fiber-related vascular pathologies. We evidence zebrafish as a compelling alternative to conventional mouse models.
Collapse
Affiliation(s)
- Marie Hoareau
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7, Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (N.E.K.); (R.D.)
| | | | | | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Institut de Biologie et Chimie des Protéines, Université Lyon 1, 7, Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (N.E.K.); (R.D.)
| |
Collapse
|
37
|
Tai Z, Li L, Zhao G, Liu JX. Copper stress impairs angiogenesis and lymphangiogenesis during zebrafish embryogenesis by down-regulating pERK1/2-foxm1-MMP2/9 axis and epigenetically regulating ccbe1 expression. Angiogenesis 2022; 25:241-257. [PMID: 35034208 DOI: 10.1007/s10456-021-09827-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023]
Abstract
Molecular transport and cell circulation between tissues and organs through blood and lymphatic vessels are essential for physiological homeostasis in vertebrates. Despite the report of its association with vessel formation in solid tumors, the biological effects of Copper (Cu) accumulation on angiogenesis and lymphangiogenesis during embryogenesis are still unknown. In this study, we unveiled that intersegmental blood circulation was partially blocked in Cu2+-stressed zebrafish embryos and cell migration and tube formation were impaired in Cu2+-stressed mammalian HUVECs. Specifically, Cu2+-stressed embryos showed down-regulation in the expression of amotl2 and its downstream pERK1/2-foxm1-MMP2/9 regulatory axis, and knockdown/knockout of foxm1 in zebrafish embryos phenocopied angiogenesis defects, while FOXM1 knockdown HUVECs phenocopied cell migration and tube formation defects, indicating that excessive Cu2+-induced angiogenesis defects and blocked cell migration via down-regulating amotl2-pERK1/2-foxm1-MMP2/9 regulatory axis in both embryos and mammalian cells. Additionally, thoracic duct was revealed to be partially absent in Cu2+-stressed zebrafish embryos. Specifically, Cu2+-stressed embryos showed down-regulation in the expression of ccbe1 (a gene with pivotal function in lymphangiogenesis) due to the hypermethylation of the E2F7/8 binding sites on ccbe1 promoter to reduce their binding enrichment on the promoter, contributing to the potential mechanisms for down-regulation of ccbe1 and the formation of lymphangiogenesis defects in Cu2+-stressed embryos and mammalian cells. These integrated data demonstrate that Cu2+ stress impairs angiogenesis and lymphangiogenesis via down-regulation of pERK1/2-foxm1-MMP2/9 axis and epigenetic regulation of E2F7/8 transcriptional activity on ccbe1 expression, respectively.
Collapse
Affiliation(s)
- Zhipeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingya Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
38
|
Fan RY, Wu JQ, Liu YY, Liu XY, Qian ST, Li CY, Wei P, Song Z, He MF. Zebrafish xenograft model for studying mechanism and treatment of non-small cell lung cancer brain metastasis. J Exp Clin Cancer Res 2021; 40:371. [PMID: 34801071 PMCID: PMC8605597 DOI: 10.1186/s13046-021-02173-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Background Brain metastasis (BM) is thought to be related to the mortality and poor prognosis of non-small cell lung cancer (NSCLC). Despite promising development of NSCLC treatment, the treatment of NSCLC BM is still not optimistic due to the existence of the blood-brain barrier (BBB) that prevent drug penetration, as well as the short median survival time of the patients left for treatment. In this context, further development of quick and effective pre-clinical models is needed in NSCLC BM treatment. Here, we report a model system using zebrafish to promote the development of drugs for patients with NSCLC BM. Methods Three different NSCLC cell lines (H1975, A549 and H1299) were used to establish zebrafish BM models. The embryo age and cell number for injection were first optimized. Metastatic cells were observed in the brain blood vessels of zebrafish and were verified by hematoxylin-eosin (HE) staining. Then, the metastasis potentials of H1975 and A549 with manipulated microRNA-330-3p (miR-330-3p) expression were also investigated. Finally, sensitivities of H1975 and A549 to osimertinib and gefitinib were tested. Results This zebrafish BM model could distinguish NSCLC cell lines with different BM potential. Over-expressed miR-330-p significantly improved the BM potential of the A549 cells while knockdown miR-330-p reduced the BM ability of the H1975 cells. Both osimertinib and gefitinib showed inhibition effect in zebrafish BM model with the inhibition rate higher than 50 %. H1975 cell showed much higher sensitivity to osimertinib rather than gefitinib both in vivo and in vitro. Conclusions We established zebrafish brain metastasis model for studying mechanism and treatment of NSCLC BM. This study provided a useful model for NSCLC brain metastasis that could be used to study the mechanism that drive NSCLC cells to the brain as well as identify potential therapeutic options. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02173-5.
Collapse
Affiliation(s)
- Ruo-Yue Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Jia-Qi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Yu-Yang Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China.,Jiangsu Tripod Preclinical Research Laboratory Co. Ltd, 211816, Nanjing, China
| | - Xiang-Yu Liu
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, 210023, Nanjing, China
| | - Si-Tong Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Chong-Yong Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China
| | - Zhe Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 210009, Nanjing, China
| | - Ming-Fang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, 211816, Nanjing, P. R. China.
| |
Collapse
|
39
|
Molecular and Cellular Mechanisms of Vascular Development in Zebrafish. Life (Basel) 2021; 11:life11101088. [PMID: 34685459 PMCID: PMC8539546 DOI: 10.3390/life11101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
The establishment of a functional cardiovascular system is crucial for the development of all vertebrates. Defects in the development of the cardiovascular system lead to cardiovascular diseases, which are among the top 10 causes of death worldwide. However, we are just beginning to understand which signaling pathways guide blood vessel growth in different tissues and organs. The advantages of the model organism zebrafish (Danio rerio) helped to identify novel cellular and molecular mechanisms of vascular growth. In this review we will discuss the current knowledge of vasculogenesis and angiogenesis in the zebrafish embryo. In particular, we describe the molecular mechanisms that contribute to the formation of blood vessels in different vascular beds within the embryo.
Collapse
|
40
|
Li B, Chen K, Liu F, Zhang J, Chen X, Chen T, Chen Q, Yao Y, Hu W, Wang L, Wu Y. Developmental Angiogenesis Requires the Mitochondrial Phenylalanyl-tRNA Synthetase. Front Cardiovasc Med 2021; 8:724846. [PMID: 34540921 PMCID: PMC8440837 DOI: 10.3389/fcvm.2021.724846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Mitochondrial aminoacyl-tRNA synthetases (mtARSs) catalyze the binding of specific amino acids to their cognate tRNAs and play an essential role in the synthesis of proteins encoded by mitochondrial DNA. Defects in mtARSs have been linked to human diseases, but their tissue-specific pathophysiology remains elusive. Here we examined the role of mitochondrial phenylalanyl-tRNA synthetase (FARS2) in developmental angiogenesis and its potential contribution to the pathogenesis of cardiovascular disease. Methods: Morpholinos were injected into fertilized zebrafish ova to establish an in vivo fars2 knock-down model. A visualization of the vasculature was achieved by using Tg (fli1: EGFP)y1 transgenic zebrafish. In addition, small interference RNAs (siRNAs) were transferred into human umbilical vein endothelial cells (HUVECs) to establish an in vitro FARS2 knock-down model. Cell motility, proliferation, and tubulogenesis were determined using scratch-wound CCK8, transwell-based migration, and tube formation assays. In addition, mitochondria- and non-mitochondria-related respiration were evaluated using a Seahorse XF24 analyzer and flow cytometry assays. Analyses of the expression levels of transcripts and proteins were performed using qRT-PCR and western blotting, respectively. Results: The knock-down of fars2 hampered the embryonic development in zebrafish and delayed the formation of the vasculature in Tg (fli1: EGFP)y1 transgenic zebrafish. In addition, the siRNA-mediated knock-down of FARS2 impaired angiogenesis in HUVECs as indicated by decreased cell motility and tube formation capacity. The knock-down of FARS2 also produced variable decreases in mitochondrial- and non-mitochondrial respiration in HUVECs and disrupted the regulatory pathways of angiogenesis in both HUVECs and zebrafish. Conclusion: Our current work offers novel insights into angiogenesis defects and cardiovascular diseases induced by FARS2 deficiency.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Fangfang Liu
- Department of Neurosciences, Air Force Medical University, Xi'an, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northwest University, Xi'an, China
| | - Xihui Chen
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| | - Tangdong Chen
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| | - Qi Chen
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| | - Yan Yao
- Department of Clinical Medicine, Yan'an University, Yan'an, China
| | - Weihong Hu
- Department of Clinical Medicine, Yan'an University, Yan'an, China
| | - Li Wang
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China.,School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| |
Collapse
|
41
|
Kempers L, Wakayama Y, van der Bijl I, Furumaya C, De Cuyper IM, Jongejan A, Kat M, van Stalborch AMD, van Boxtel AL, Hubert M, Geerts D, van Buul JD, de Korte D, Herzog W, Margadant C. The endosomal RIN2/Rab5C machinery prevents VEGFR2 degradation to control gene expression and tip cell identity during angiogenesis. Angiogenesis 2021; 24:695-714. [PMID: 33983539 PMCID: PMC8292304 DOI: 10.1007/s10456-021-09788-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Sprouting angiogenesis is key to many pathophysiological conditions, and is strongly regulated by vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we report that the early endosomal GTPase Rab5C and its activator RIN2 prevent lysosomal routing and degradation of VEGF-bound, internalized VEGFR2 in human endothelial cells. Stabilization of endosomal VEGFR2 levels by RIN2/Rab5C is crucial for VEGF signaling through the ERK and PI3-K pathways, the expression of immediate VEGF target genes, as well as specification of angiogenic 'tip' and 'stalk' cell phenotypes and cell sprouting. Using overexpression of Rab mutants, knockdown and CRISPR/Cas9-mediated gene editing, and live-cell imaging in zebrafish, we further show that endosomal stabilization of VEGFR2 levels is required for developmental angiogenesis in vivo. In contrast, the premature degradation of internalized VEGFR2 disrupts VEGF signaling, gene expression, and tip cell formation and migration. Thus, an endosomal feedforward mechanism maintains receptor signaling by preventing lysosomal degradation, which is directly linked to the induction of target genes and cell fate in collectively migrating cells during morphogenesis.
Collapse
Affiliation(s)
- Lanette Kempers
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Yuki Wakayama
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Ivo van der Bijl
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Charita Furumaya
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Iris M De Cuyper
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science /Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marije Kat
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | | | - Antonius L van Boxtel
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marvin Hubert
- University of Muenster, Schlossplatz 2, 48149, Muenster, Germany
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Dirk de Korte
- Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.,Sanquin Blood Bank, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Wiebke Herzog
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.,University of Muenster, Schlossplatz 2, 48149, Muenster, Germany
| | - Coert Margadant
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Tshering G, Pimtong W, Plengsuriyakarn T, Na-Bangchang K. Anti-angiogenic effects of beta-eudesmol and atractylodin in developing zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108980. [PMID: 33493664 DOI: 10.1016/j.cbpc.2021.108980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/28/2020] [Accepted: 01/14/2021] [Indexed: 01/05/2023]
Abstract
Angiogenesis is the process of formation of new blood vessels which plays an essential role in the normal physiological development of the organs and systems. Several factors contribute to and regulate this process. Unregulated angiogenesis, however, is harmful and is usually found in tumors and cancerous cells. β-Eudesmol and atractylodin are sesquiterpenoid contents extracted from the rhizome of Atractylodes lancea (AL). Reports suggest potential anti-angiogenic activities of both compounds. In this study, the anti-angiogenic activities of both compounds were investigated using the well-established zebrafish in vivo model. Zebrafish embryos were treated with a series of concentrations (6.3, 12.5, 25, and 50 μM) of β-eudesmol and (6.3, 12.5, and 25 μM) of atractylodin up to 72 h post-fertilization. Assessment of the effects on phenotypic blood vessel development (sub-intestinal vessel intersection count) revealed that both the compounds inhibited vessel development, particularly at higher concentrations. At the genetic levels, only β-eudesmol significantly downregulated the expression of the Vegfaa gene and also its receptor Vegfr2. β-Eudesmol also affected the expression of Vegfaa protein in a concentration-dependent manner. Results indicate that β-eudesmol exerts anti-angiogenic property through inhibition of Vegfaa at both the gene and protein levels. However, atractylodin does not possess this property.
Collapse
Affiliation(s)
- Gyem Tshering
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Kesara Na-Bangchang
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand; Drug Discovery and Development Center, Thammasat University, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
43
|
Lowe V, Wisniewski L, Pellet-Many C. The Zebrafish Cardiac Endothelial Cell-Roles in Development and Regeneration. J Cardiovasc Dev Dis 2021; 8:jcdd8050049. [PMID: 34062899 PMCID: PMC8147271 DOI: 10.3390/jcdd8050049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 01/22/2023] Open
Abstract
In zebrafish, the spatiotemporal development of the vascular system is well described due to its stereotypical nature. However, the cellular and molecular mechanisms orchestrating post-embryonic vascular development, the maintenance of vascular homeostasis, or how coronary vessels integrate into the growing heart are less well studied. In the context of cardiac regeneration, the central cellular mechanism by which the heart regenerates a fully functional myocardium relies on the proliferation of pre-existing cardiomyocytes; the epicardium and the endocardium are also known to play key roles in the regenerative process. Remarkably, revascularisation of the injured tissue occurs within a few hours after cardiac damage, thus generating a vascular network acting as a scaffold for the regenerating myocardium. The activation of the endocardium leads to the secretion of cytokines, further supporting the proliferation of the cardiomyocytes. Although epicardium, endocardium, and myocardium interact with each other to orchestrate heart development and regeneration, in this review, we focus on recent advances in the understanding of the development of the endocardium and the coronary vasculature in zebrafish as well as their pivotal roles in the heart regeneration process.
Collapse
Affiliation(s)
- Vanessa Lowe
- Heart Centre, Barts & The London School of Medicine, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Laura Wisniewski
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Caroline Pellet-Many
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London NW1 0TU, UK
- Correspondence:
| |
Collapse
|
44
|
Park H, You HH, Song G. Multiple toxicity of propineb in developing zebrafish embryos: Neurotoxicity, vascular toxicity, and notochord defects in normal vertebrate development. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108993. [PMID: 33529709 DOI: 10.1016/j.cbpc.2021.108993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022]
Abstract
A dithiocarbamate (DTC) fungicide, propineb, affects thyroid function and exerts immunotoxicity, cytotoxicity, and neurotoxicity in humans. Long-term exposure to propineb is associated with carcinogenicity, teratogenicity, malfunction of the reproductive system, and abnormalities in vital signs during organ development. However, there is no evidence of acute toxicity attributable to propineb in zebrafish. Therefore, in the present study, we assessed the toxicity of propineb in zebrafish by studying its adverse effects on embryo development, angiogenesis, and notochord development. Embryos with propineb exposure developed morphological and physiological defects and in larvae, apoptosis and notochord defects were induced in the early development stage. Transgenic fli1:eGFP zebrafish exposed to propineb showed abnormal larval development with defects in angiogenesis and deformed vasculature. Propineb induced irreversible damage to the neural development of embryos and neurogenic defects in developing zebrafish in transgenic olig2:dsRED zebrafish. These results show that exposure to propineb triggers abnormalities in different organ systems of zebrafish and suggests the physiological complexity of the response to propineb.
Collapse
Affiliation(s)
- Hahyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyekyoung Hannah You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
45
|
Gamble JT, Elson DJ, Greenwood JA, Tanguay RL, Kolluri SK. The Zebrafish Xenograft Models for Investigating Cancer and Cancer Therapeutics. BIOLOGY 2021; 10:biology10040252. [PMID: 33804830 PMCID: PMC8063817 DOI: 10.3390/biology10040252] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary The identification and development of new anti-cancer drugs requires extensive testing in animal models to establish safety and efficacy of drug candidates. The transplantation of human tumor tissue into mouse (tumor xenografts) is commonly used to study cancer progression and to test potential drugs for their anti-cancer activity. Mouse models do not afford the ability to test a large number of drug candidates quickly as it takes several weeks to conduct these experiments. In contrast, tumor xenograft studies in zebrafish provide an efficient platform for rapid testing of safety and efficacy in less than two weeks. Abstract In order to develop new cancer therapeutics, rapid, reliable, and relevant biological models are required to screen and validate drug candidates for both efficacy and safety. In recent years, the zebrafish (Danio rerio) has emerged as an excellent model organism suited for these goals. Larval fish or immunocompromised adult fish are used to engraft human cancer cells and serve as a platform for screening potential drug candidates. With zebrafish sharing ~80% of disease-related orthologous genes with humans, they provide a low cost, high-throughput alternative to mouse xenografts that is relevant to human biology. In this review, we provide background on the methods and utility of zebrafish xenograft models in cancer research.
Collapse
Affiliation(s)
- John T. Gamble
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA;
| | - Daniel J. Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Juliet A. Greenwood
- School of Mathematics and Natural Sciences, Arizona State University, Scotsdale, AZ 85257, USA;
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
| | - Siva K. Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA;
- Correspondence:
| |
Collapse
|
46
|
Prostaglandin E2 Receptor 4 (EP4) as a Therapeutic Target to Impede Breast Cancer-Associated Angiogenesis and Lymphangiogenesis. Cancers (Basel) 2021; 13:cancers13050942. [PMID: 33668160 PMCID: PMC7956318 DOI: 10.3390/cancers13050942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
The formation of new blood (angiogenesis) and lymphatic (lymphangiogenesis) vessels are major events associated with most epithelial malignancies, including breast cancer. Angiogenesis is essential for cancer cell survival. Lymphangiogenesis is critical in maintaining tumoral interstitial fluid balance and importing tumor-facilitatory immune cells. Both vascular routes also serve as conduits for cancer metastasis. Intratumoral hypoxia promotes both events by stimulating multiple angiogenic/lymphangiogenic growth factors. Studies on tumor-associated lymphangiogenesis and its exploitation for therapy have received less attention from the research community than those on angiogenesis. Inflammation is a key mediator of both processes, hijacked by many cancers by the aberrant expression of the inflammation-associated enzyme cyclo-oxygenase (COX)-2. In this review, we focus on breast cancer and showed that COX-2 is a major promoter of both events, primarily resulting from the activation of prostaglandin (PG) E receptor EP4 on tumor cells, tumor-infiltrating immune cells, and endothelial cells; and the induction of oncogenic microRNAs. The COX-2/EP4 pathway also promotes additional events in breast cancer progression, such as cancer cell migration, invasion, and the stimulation of stem-like cells. Based on a combination of studies using multiple breast cancer models, we show that EP4 antagonists hold a major promise in breast cancer therapy in combination with other modalities including immune check-point inhibitors.
Collapse
|
47
|
Grimsley-Myers CM, Isaacson RH, Cadwell CM, Campos J, Hernandes MS, Myers KR, Seo T, Giang W, Griendling KK, Kowalczyk AP. VE-cadherin endocytosis controls vascular integrity and patterning during development. J Cell Biol 2021; 219:151601. [PMID: 32232465 PMCID: PMC7199849 DOI: 10.1083/jcb.201909081] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/10/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
Tissue morphogenesis requires dynamic intercellular contacts that are subsequently stabilized as tissues mature. The mechanisms governing these competing adhesive properties are not fully understood. Using gain- and loss-of-function approaches, we tested the role of p120-catenin (p120) and VE-cadherin (VE-cad) endocytosis in vascular development using mouse mutants that exhibit increased (VE-cadGGG/GGG) or decreased (VE-cadDEE/DEE) internalization. VE-cadGGG/GGG mutant mice exhibited reduced VE-cad-p120 binding, reduced VE-cad levels, microvascular hemorrhaging, and decreased survival. By contrast, VE-cadDEE/DEE mutants exhibited normal vascular permeability but displayed microvascular patterning defects. Interestingly, VE-cadDEE/DEE mutant mice did not require endothelial p120, demonstrating that p120 is dispensable in the context of a stabilized cadherin. In vitro, VE-cadDEE mutant cells displayed defects in polarization and cell migration that were rescued by uncoupling VE-cadDEE from actin. These results indicate that cadherin endocytosis coordinates cell polarity and migration cues through actin remodeling. Collectively, our results indicate that regulated cadherin endocytosis is essential for both dynamic cell movements and establishment of stable tissue architecture.
Collapse
Affiliation(s)
| | - Robin H Isaacson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Chantel M Cadwell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Jazmin Campos
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Marina S Hernandes
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Kenneth R Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Tadahiko Seo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - William Giang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Department of Dermatology, and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
48
|
Gong G, Kam H, Tse YC, Giesy JP, Seto SW, Lee SMY. Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:115791. [PMID: 33401215 DOI: 10.1016/j.envpol.2020.115791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Forchlorfenuron (CPPU) has been used worldwide, to boost size and improve quality of various agricultural products. CPPU and its metabolites are persistent and have been detected frequently in fruits, water, sediments, and organisms in aquatic systems. Although the public became aware of CPPU through the exploding watermelon scandal of 2011 in Zhenjiang, China, little was known of its potential effects on the environment and wildlife. In this study, adverse effects of CPPU on developmental angiogenesis and vasculature, which is vulnerable to insults of persistent toxicants, were studied in vivo in zebrafish embryos (Danio rerio). Exposure to 10 mg CPPU/L impaired survival and hatching, while development was hindered by exposure to 2.5 mg CPPU/L. Developing vascular structure, including common cardinal veins (CCVs), intersegmental vessels (ISVs) and sub-intestinal vessels (SIVs), were significantly restrained by exposure to CPPU, in a dose-dependent manner. Also, CPPU caused disorganization of the cytoskeleton. In human umbilical vein endothelial cells (HUVECs), CPPU inhibited proliferation, migration and formation of tubular-like structures in vitro. Results of Western blot analyses revealed that exposure to CPPU increased phosphorylation of FLT-1, but inhibited phosphorylation of FAK and its downstream MAPK pathway in HUVECs. In summary, CPPU elicited developmental toxicity to the developing endothelial system of zebrafish and HUVECs. This was do, at least in part due to inhibition of the FAK/MAPK signaling pathway rather than direct interaction with the VEGF receptor (VEGFR).
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, United States
| | - Sai-Wang Seto
- Department of Applied Biology and Chemistry Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
49
|
Antiangiogenic molecules from marine actinomycetes and the importance of using zebrafish model in cancer research. Heliyon 2020; 6:e05662. [PMID: 33319107 PMCID: PMC7725737 DOI: 10.1016/j.heliyon.2020.e05662] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Blood vessel sprouting from pre-existing vessels or angiogenesis plays a significant role in tumour progression. Development of novel biomolecules from marine natural sources has a promising role in drug discovery specifically in the area of antiangiogenic chemotherapeutics. Symbiotic actinomycetes from marine origin proved to be potent and valuable sources of antiangiogenic compounds. Zebrafish represent a well-established model for small molecular screening and employed to study tumour angiogenesis over the last decade. Use of zebrafish has increased in the laboratory due to its various advantages like rapid embryo development, optically transparent embryos, large clutch size of embryos and most importantly high genetic conservation comparable to humans. Zebrafish also shares similar physiopathology of tumour angiogenesis with humans and with these advantages, zebrafish has become a popular model in the past decade to study on angiogenesis related disorders like diabetic retinopathy and cancer. This review focuses on the importance of antiangiogenic compounds from marine actinomycetes and utility of zebrafish in cancer angiogenesis research.
Collapse
|
50
|
Xia Z, Bi X, Lian J, Dai W, He X, Zhao L, Min J, Wang F. Slc39a5-mediated zinc homeostasis plays an essential role in venous angiogenesis in zebrafish. Open Biol 2020; 10:200281. [PMID: 33081634 PMCID: PMC7653363 DOI: 10.1098/rsob.200281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is a precise process mediated by a variety of signals and the environmental niche. Although the essential trace element zinc and its homeostasis are essential for maintaining proper cellular functions, whether zinc plays a role in angiogenesis is currently unknown. Using zebrafish embryos as a model system, we found that zinc treatment significantly increased the expression of the slc39a5 gene, which encodes the zinc transporter Slc39a5. Moreover, knocking down slc39a5 expression using either a morpholino or CRISPR/Cas9-mediated gene editing led to cardiac ischaemia and an accumulation of red blood cells in the caudal vein plexus (CVP), as well as delayed venous sprouting and fewer vascular loops in the CVP region during early development. Further analysis revealed significantly reduced proliferation and delayed cell migration in the caudal vein of slc39a5 morphants. At the mechanistic level, we found increased levels of systemic zinc in slc39a5-deficient embryos, and chelating zinc restored CVP development. In addition, we found that zinc overload in wild-type embryos leads to impaired CVP formation. Taken together, these results indicate that Slc39a5 plays a critical role in endothelial sprouting and migration in venous angiogenesis by regulating zinc homeostasis.
Collapse
Affiliation(s)
- Zhidan Xia
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xinying Bi
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jia Lian
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wei Dai
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xuyan He
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lu Zhao
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|