1
|
Nakamoto A, Kumano G. Dynein-Mediated Regional Cell Division Reorientation Shapes a Tailbud Embryo. iScience 2020; 23:100964. [PMID: 32199290 PMCID: PMC7082557 DOI: 10.1016/j.isci.2020.100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/17/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Regulation of cell division orientation controls the spatial distribution of cells during development and is essential for one-directional tissue transformation, such as elongation. However, little is known about whether it plays a role in other types of tissue morphogenesis. Using an ascidian Halocynthia roretzi, we found that differently oriented cell divisions in the epidermis of the future trunk (anterior) and tail (posterior) regions create an hourglass-like epithelial bending between the two regions to shape the tailbud embryo. Our results show that posterior epidermal cells are polarized with dynein protein anteriorly localized, undergo dynein-dependent spindle rotation, and divide along the anteroposterior axis. This cell division facilitates constriction around the embryo's circumference only in the posterior region and epithelial bending formation. Our findings, therefore, provide an important insight into the role of oriented cell division in tissue morphogenesis.
Collapse
Affiliation(s)
- Ayaki Nakamoto
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan.
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan
| |
Collapse
|
2
|
|
3
|
Bosveld F, Wang Z, Bellaïche Y. Tricellular junctions: a hot corner of epithelial biology. Curr Opin Cell Biol 2018; 54:80-88. [DOI: 10.1016/j.ceb.2018.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
|
4
|
Alcohol inhibits the proliferation of Neuro2a cells via promoting the asymmetric cell division through down-regulation of the expression of centrosome protein-J. Toxicol Lett 2018; 294:177-183. [PMID: 29778912 DOI: 10.1016/j.toxlet.2018.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
Abstract
Alcohol can decrease cell proliferation in neural cells. The proliferation of neural cells can be inhibited by the asymmetric division of neural progenitor cells. However, whether alcohol inhibits cell proliferation through inducing cell asymmetric division is not yet clear. Here, we reported that the percentage of asymmetric division was increased in alcohol-treated Neuro2a cells owing to the impaired-spindle orientation. Meanwhile, the expression of Centrosome protein-J (CPAP) which plays an important role in spindle orientation was reduced in Neuro2a cells. The overexpression of GFP-CPAP in Neuro2a cells rescued the disorder of spindle orientation and the asymmetric cell division induced by alcohol. Taken together, the results demonstrate that alcohol exposure diminished the pool of proliferative Neuro2a cells through disordering the spindle orientation and promoting the asymmetric division. And these abnormal orientation and division were due to the reduced CPAP protein level.
Collapse
|
5
|
Lee BH, Schwager F, Meraldi P, Gotta M. p37/UBXN2B regulates spindle orientation by limiting cortical NuMA recruitment via PP1/Repo-Man. J Cell Biol 2017; 217:483-493. [PMID: 29222185 PMCID: PMC5800812 DOI: 10.1083/jcb.201707050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 12/03/2022] Open
Abstract
The p97 adapter p37 was known to regulate spindle orientation in human cells, but the mechanism was unknown. In this study, we show that it limits the cortical recruitment of NuMA in a PP1–Repo-Man–dependent manner. This study identifies a novel pathway controlling cortical NuMA localization. Spindle orientation determines the axis of division and is crucial for cell fate, tissue morphogenesis, and the development of an organism. In animal cells, spindle orientation is regulated by the conserved Gαi–LGN–NuMA complex, which targets the force generator dynein–dynactin to the cortex. In this study, we show that p37/UBXN2B, a cofactor of the p97 AAA ATPase, regulates spindle orientation in mammalian cells by limiting the levels of cortical NuMA. p37 controls cortical NuMA levels via the phosphatase PP1 and its regulatory subunit Repo-Man, but it acts independently of Gαi, the kinase Aurora A, and the phosphatase PP2A. Our data show that in anaphase, when the spindle elongates, PP1/Repo-Man promotes the accumulation of NuMA at the cortex. In metaphase, p37 negatively regulates this function of PP1, resulting in lower cortical NuMA levels and correct spindle orientation.
Collapse
Affiliation(s)
- Byung Ho Lee
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Francoise Schwager
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland .,Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Johnson CA, Wright CE, Ghashghaei HT. Regulation of cytokinesis during corticogenesis: focus on the midbody. FEBS Lett 2017; 591:4009-4026. [PMID: 28493553 DOI: 10.1002/1873-3468.12676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/23/2017] [Accepted: 05/07/2017] [Indexed: 12/21/2022]
Abstract
Development of the cerebral cortices depends on tight regulation of cell divisions. In this system, stem and progenitor cells undergo symmetric and asymmetric divisions to ultimately produce neurons that establish the layers of the cortex. Cell division culminates with the formation of the midbody, a transient organelle that establishes the site of abscission between nascent daughter cells. During cytokinetic abscission, the final stage of cell division, one daughter cell will inherit the midbody remnant, which can then maintain or expel the remnant, but mechanisms and circumstances influencing this decision are unclear. This review describes the midbody and its constituent proteins, as well as the known consequences of their manipulation during cortical development. The potential functional relevance of midbody mechanisms is discussed.
Collapse
Affiliation(s)
- Caroline A Johnson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Biomedical Sciences Graduate Program, Neurosciences Concentration Area, North Carolina State University, Raleigh, NC, USA
| | - Catherine E Wright
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Biomedical Sciences Graduate Program, Neurosciences Concentration Area, North Carolina State University, Raleigh, NC, USA.,Program in Genetics, North Carolina State University, Raleigh, NC, USA.,Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Kale A, Rimesso G, Baker NE. Local Cell Death Changes the Orientation of Cell Division in the Developing Drosophila Wing Imaginal Disc Without Using Fat or Dachsous as Orienting Signals. PLoS One 2016; 11:e0167637. [PMID: 28030539 PMCID: PMC5193341 DOI: 10.1371/journal.pone.0167637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022] Open
Abstract
Drosophila imaginal disc cells exhibit preferred cell division orientations according to location within the disc. These orientations are altered if cell death occurs within the epithelium, such as is caused by cell competition or by genotypes affecting cell survival. Both normal cell division orientations, and their orientations after cell death, depend on the Fat-Dachsous pathway of planar cell polarity (PCP). The hypothesis that cell death initiates a planar polarity signal was investigated. When clones homozygous for the pineapple eye (pie) mutation were made to initiate cell death, neither Dachsous nor Fat was required in pie cells for the re-orientation of nearby cells, indicating a distinct signal for this PCP pathway. Dpp and Wg were also not needed for pie clones to re-orient cell division. Cell shapes were evaluated in wild type and mosaic wing discs to assess mechanical consequences of cell loss. Although proximal wing disc cells and cells close to the dorso-ventral boundary were elongated in their preferred cell division axes in wild type discs, cell shapes in much of the wing pouch were symmetrical on average and did not predict their preferred division axis. Cells in pie mutant clones were slightly larger than their normal counterparts, consistent with mechanical stretching following cell loss, but no bias in cell shape was detected in the surrounding cells. These findings indicate that an unidentified signal influences PCP-dependent cell division orientation in imaginal discs.
Collapse
Affiliation(s)
- Abhijit Kale
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
| | - Nicholas E. Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NYC, NY, United States of America
- * E-mail:
| |
Collapse
|
8
|
Gai M, Bianchi FT, Vagnoni C, Vernì F, Bonaccorsi S, Pasquero S, Berto GE, Sgrò F, Chiotto AM, Annaratone L, Sapino A, Bergo A, Landsberger N, Bond J, Huttner WB, Di Cunto F. ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules. EMBO Rep 2016; 17:1396-1409. [PMID: 27562601 DOI: 10.15252/embr.201541823] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 07/26/2016] [Indexed: 11/09/2022] Open
Abstract
Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation. In this report, we show that ASPM may control spindle positioning by interacting with citron kinase (CITK), a protein whose loss is also responsible for severe microcephaly in mammals. We show that the absence of CITK leads to abnormal spindle orientation in mammals and insects. In mouse cortical development, this phenotype correlates with increased production of basal progenitors. ASPM is required to recruit CITK at the spindle, and CITK overexpression rescues ASPM phenotype. ASPM and CITK affect the organization of astral microtubules (MT), and low doses of MT-stabilizing drug revert the spindle orientation phenotype produced by their knockdown. Finally, CITK regulates both astral-MT nucleation and stability. Our results provide a functional link between two established microcephaly proteins.
Collapse
Affiliation(s)
- Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federico T Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Cristiana Vagnoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnologies "C. Darwin", Sapienza, Università di Roma, Rome, Italy
| | - Silvia Bonaccorsi
- Department of Biology and Biotechnologies "C. Darwin", Sapienza, Università di Roma, Rome, Italy
| | - Selina Pasquero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Gaia E Berto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Ma Chiotto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Bergo
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Nicoletta Landsberger
- San Raffaele Rett Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Jacqueline Bond
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Wieland B Huttner
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Byrd KM, Lough KJ, Patel JH, Descovich CP, Curtis TA, Williams SE. LGN plays distinct roles in oral epithelial stratification, filiform papilla morphogenesis and hair follicle development. Development 2016; 143:2803-17. [PMID: 27317810 DOI: 10.1242/dev.136010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/06/2016] [Indexed: 01/22/2023]
Abstract
Oral epithelia protect against constant challenges by bacteria, viruses, toxins and injury while also contributing to the formation of ectodermal appendages such as teeth, salivary glands and lingual papillae. Despite increasing evidence that differentiation pathway genes are frequently mutated in oral cancers, comparatively little is known about the mechanisms that regulate normal oral epithelial development. Here, we characterize oral epithelial stratification and describe multiple distinct functions for the mitotic spindle orientation gene LGN (Gpsm2) in promoting differentiation and tissue patterning in the mouse oral cavity. Similar to its function in epidermis, apically localized LGN directs perpendicular divisions that promote stratification of the palatal, buccogingival and ventral tongue epithelia. Surprisingly, however, in dorsal tongue LGN is predominantly localized basally, circumferentially or bilaterally and promotes planar divisions. Loss of LGN disrupts the organization and morphogenesis of filiform papillae but appears to be dispensable for embryonic hair follicle development. Thus, LGN has crucial tissue-specific functions in patterning surface ectoderm and its appendages by controlling division orientation.
Collapse
Affiliation(s)
- Kevin M Byrd
- Department of Pathology & Laboratory Medicine and Department of Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | - Kendall J Lough
- Department of Pathology & Laboratory Medicine and Department of Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | - Jeet H Patel
- Department of Pathology & Laboratory Medicine and Department of Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | - Carlos Patiño Descovich
- Department of Pathology & Laboratory Medicine and Department of Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | - T Anthony Curtis
- Department of Pathology & Laboratory Medicine and Department of Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | - Scott E Williams
- Department of Pathology & Laboratory Medicine and Department of Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
10
|
Li J, Chatzeli L, Panousopoulou E, Tucker AS, Green JBA. Epithelial stratification and placode invagination are separable functions in early morphogenesis of the molar tooth. Development 2016; 143:670-81. [PMID: 26755699 PMCID: PMC4760321 DOI: 10.1242/dev.130187] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/30/2015] [Indexed: 01/06/2023]
Abstract
Ectodermal organs, which include teeth, hair follicles, mammary ducts, and glands such as sweat, mucous and sebaceous glands, are initiated in development as placodes, which are epithelial thickenings that invaginate and bud into the underlying mesenchyme. These placodes are stratified into a basal and several suprabasal layers of cells. The mechanisms driving stratification and invagination are poorly understood. Using the mouse molar tooth as a model for ectodermal organ morphogenesis, we show here that vertical, stratifying cell divisions are enriched in the forming placode and that stratification is cell division dependent. Using inhibitor and gain-of-function experiments, we show that FGF signalling is necessary and sufficient for stratification but not invagination as such. We show that, instead, Shh signalling is necessary for, and promotes, invagination once suprabasal tissue is generated. Shh-dependent suprabasal cell shape suggests convergent migration and intercalation, potentially accounting for post-stratification placode invagination to bud stage. We present a model in which FGF generates suprabasal tissue by asymmetric cell division, while Shh triggers cell rearrangement in this tissue to drive invagination all the way to bud formation. Summary: During tooth development in mice, FGF-dependent vertical cell divisions thicken the tooth placode while Shh drives cell rearrangements that cause invagination.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Lemonia Chatzeli
- Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Eleni Panousopoulou
- Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Abigail S Tucker
- Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Jeremy B A Green
- Department of Craniofacial Development & Stem Cell Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
11
|
Gaete M, Fons JM, Popa EM, Chatzeli L, Tucker AS. Epithelial topography for repetitive tooth formation. Biol Open 2015; 4:1625-34. [PMID: 26538639 PMCID: PMC4736031 DOI: 10.1242/bio.013672] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During the formation of repetitive ectodermally derived organs such as mammary glands, lateral line and teeth, the tissue primordium iteratively initiates new structures. In the case of successional molar development, new teeth appear sequentially in the posterior region of the jaw from Sox2+ cells in association with the posterior aspect of a pre-existing tooth. The sequence of molar development is well known, however, the epithelial topography involved in the formation of a new tooth is unclear. Here, we have examined the morphology of the molar dental epithelium and its development at different stages in the mouse in vivo and in molar explants. Using regional lineage tracing we show that within the posterior tail of the first molar the primordium for the second and third molar are organized in a row, with the tail remaining in connection with the surface, where a furrow is observed. The morphology and Sox2 expression of the tail retains characteristics reminiscent of the earlier stages of tooth development, such that position along the A-P axes of the tail correlates with different temporal stages. Sox9, a stem/progenitor cell marker in other organs, is expressed mainly in the suprabasal epithelium complementary with Sox2 expression. This Sox2 and Sox9 expressing molar tail contains actively proliferating cells with mitosis following an apico-basal direction. Snail2, a transcription factor implicated in cell migration, is expressed at high levels in the tip of the molar tail while E-cadherin and laminin are decreased. In conclusion, our studies propose a model in which the epithelium of the molar tail can grow by posterior movement of epithelial cells followed by infolding and stratification involving a population of Sox2+/Sox9+ cells. Summary: This study proposes a model for repetitive tooth formation in which the epithelium can grow by the movement of epithelial cells followed by infolding and stratification of Sox2/Sox9 positive cells.
Collapse
Affiliation(s)
- Marcia Gaete
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Juan Manuel Fons
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Elena Mădălina Popa
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Lemonia Chatzeli
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|