1
|
Gazeu A, Collardeau-Frachon S. Practical Approach to Congenital Anomalies of the Kidneys: Focus on Anomalies With Insufficient or Abnormal Nephron Development: Renal Dysplasia, Renal Hypoplasia, and Renal Tubular Dysgenesis. Pediatr Dev Pathol 2024; 27:459-493. [PMID: 39270126 DOI: 10.1177/10935266241239241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) accounts for up to 30% of antenatal congenital anomalies and is the main cause of kidney failure in children worldwide. This review focuses on practical approaches to CAKUT, particularly those with insufficient or abnormal nephron development, such as renal dysplasia, renal hypoplasia, and renal tubular dysgenesis. The review provides insights into the histological features, pathogenesis, mechanisms, etiologies, antenatal and postnatal presentation, management, and prognosis of these anomalies. Differential diagnoses are discussed as several syndromes may include CAKUT as a phenotypic component and renal dysplasia may occur in some ciliopathies, tumor predisposition syndromes, and inborn errors of metabolism. Diagnosis and genetic counseling for CAKUT are challenging, due to the extensive variability in presentation, genetic and phenotypic heterogeneity, and difficulties to assess postnatal lung and renal function on prenatal imaging. The review highlights the importance of perinatal autopsy and pathological findings in surgical specimens to establish the diagnosis and prognosis of CAKUT. The indications and the type of genetic testing are discussed. The aim is to provide essential insights into the practical approaches, diagnostic processes, and genetic considerations offering valuable guidance for pediatric and perinatal pathologists.
Collapse
Affiliation(s)
- Alexia Gazeu
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Sophie Collardeau-Frachon
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
- Société française de Fœtopathologie, Soffoet, Paris, France
| |
Collapse
|
2
|
Bayrak AC, Fadiloglu E, Kayikci U, İdilman İ, Ozcan HN, Deren O. Pancake kidney and jejunal atresia: An uncommon dual anomaly detected prenatally-A case report. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:478-481. [PMID: 38391149 DOI: 10.1002/jcu.23648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Pancake kidney is a renal fusion anomaly with only a few reported prenatal diagnoses. Other structural anomalies beyond the urogenital system may also be associated. This study describes a dual anomaly case detected prenatally, comprising of pancake kidney and jejunal atresia. A postnatal abdominal ultrasound confirmed both kidneys were fused in the midline at the aortic bifurcation level, along with a type 3b jejunal atresia. Based on the available limited evidence about pancake kidney, renal functions appear to remain largely preserved and unaffected as in our case according to 6 months of follow-up. However, further investigation is needed to explore any potential association with chromosomal and structural abnormalities in selected cases.
Collapse
Affiliation(s)
- Ayse Cigdem Bayrak
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Erdem Fadiloglu
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Umutcan Kayikci
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - İlkay İdilman
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - H Nursun Ozcan
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ozgur Deren
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Grenier C, Lopes FM, Cueto-González AM, Rovira-Moreno E, Gander R, Jarvis BW, McCloskey KD, Gurney AM, Beaman GM, Newman WG, Woolf AS, Roberts NA. Neurogenic Defects Occur in LRIG2-Associated Urinary Bladder Disease. Kidney Int Rep 2023; 8:1417-1429. [PMID: 37441484 PMCID: PMC10334403 DOI: 10.1016/j.ekir.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Urofacial, or Ochoa, syndrome (UFS) is an autosomal recessive disease featuring a dyssynergic bladder with detrusor smooth muscle contracting against an undilated outflow tract. It also features an abnormal grimace. Half of individuals with UFS carry biallelic variants in HPSE2, whereas other rare families carry variants in LRIG2.LRIG2 is immunodetected in pelvic ganglia sending autonomic axons into the bladder. Moreover, Lrig2 mutant mice have abnormal urination and abnormally patterned bladder nerves. We hypothesized that peripheral neurogenic defects underlie LRIG2-associated bladder dysfunction. Methods We describe a new family with LRIG2-associated UFS and studied Lrig2 homozygous mutant mice with ex vivo physiological analyses. Results The index case presented antenatally with urinary tract (UT) dilatation, and postnatally had urosepsis and functional bladder outlet obstruction. He had the grimace that, together with UT disease, characterizes UFS. Although HPSE2 sequencing was normal, he carried a homozygous, predicted pathogenic, LRIG2 stop variant (c.1939C>T; p.Arg647∗). Lrig2 mutant mice had enlarged bladders. Ex vivo physiology experiments showed neurogenic smooth muscle relaxation defects in the outflow tract, containing the urethra adjoining the bladder, and in detrusor contractility. Moreover, there were nuanced differences in physiological outflow tract defects between the sexes. Conclusion Putting this family in the context of all reported UT disease-associated LRIG2 variants, the full UFS phenotype occurs with biallelic stop or frameshift variants, but missense variants lead to bladder-limited disease. Our murine observations support the hypothesis that UFS is a genetic autonomic neuropathy of the bladder affecting outflow tract and bladder body function.
Collapse
Affiliation(s)
- Celine Grenier
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Filipa M. Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Anna M. Cueto-González
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Catalonia, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain
| | - Eulàlia Rovira-Moreno
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Catalonia, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain
| | - Romy Gander
- Department of Pediatric Surgery, Pediatric Urology and Renal Transplant Unit, University Hospital Vall D'Hebron Barcelona, Hospital Vall D'Hebron, Barcelona, Spain
| | - Benjamin W. Jarvis
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Karen D. McCloskey
- Patrick G. Johnston Center for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Alison M. Gurney
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Glenda M. Beaman
- Manchester Center for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, UK
| | - William G. Newman
- Manchester Center for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Human Sciences, University of Manchester, Manchester, UK
| | - Adrian S. Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester, UK
| | - Neil A. Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Grand K, Stoltz M, Rizzo L, Röck R, Kaminski MM, Salinas G, Getwan M, Naert T, Pichler R, Lienkamp SS. HNF1B Alters an Evolutionarily Conserved Nephrogenic Program of Target Genes. J Am Soc Nephrol 2023; 34:412-432. [PMID: 36522156 PMCID: PMC10103355 DOI: 10.1681/asn.2022010076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
SIGNIFICANCE STATEMENT Mutations in hepatocyte nuclear factor-1 β ( HNF1B ) are the most common monogenic causes of congenital renal malformations. HNF1B is necessary to directly reprogram fibroblasts to induced renal tubule epithelial cells (iRECs) and, as we demonstrate, can induce ectopic pronephric tissue in Xenopus ectodermal organoids. Using these two systems, we analyzed the effect of HNF1B mutations found in patients with cystic dysplastic kidney disease. We found cross-species conserved targets of HNF1B, identified transcripts that are differentially regulated by the patient-specific mutant protein, and functionally validated novel HNF1B targets in vivo . These results highlight evolutionarily conserved transcriptional mechanisms and provide insights into the genetic circuitry of nephrogenesis. BACKGROUND Hepatocyte nuclear factor-1 β (HNF1B) is an essential transcription factor during embryogenesis. Mutations in HNF1B are the most common monogenic causes of congenital cystic dysplastic renal malformations. The direct functional consequences of mutations in HNF1B on its transcriptional activity are unknown. METHODS Direct reprogramming of mouse fibroblasts to induced renal tubular epithelial cells was conducted both with wild-type HNF1B and with patient mutations. HNF1B was expressed in Xenopus ectodermal explants. Transcriptomic analysis by bulk RNA-Seq identified conserved targets with differentially regulated expression by the wild-type or R295C mutant. CRISPR/Cas9 genome editing in Xenopus embryos evaluated transcriptional targets in vivo . RESULTS HNF1B is essential for reprogramming mouse fibroblasts to induced renal tubular epithelial cells and induces development of ectopic renal organoids from pluripotent Xenopus cells. The mutation R295C retains reprogramming and inductive capacity but alters the expression of specific sets of downstream target genes instead of diminishing overall transcriptional activity of HNF1B. Surprisingly, targets associated with polycystic kidney disease were less affected than genes affected in congenital renal anomalies. Cross-species-conserved transcriptional targets were dysregulated in hnf1b CRISPR-depleted Xenopus embryos, confirming their dependence on hnf1b . CONCLUSIONS HNF1B activates an evolutionarily conserved program of target genes that disease-causing mutations selectively disrupt. These findings provide insights into the renal transcriptional network that controls nephrogenesis.
Collapse
Affiliation(s)
- Kelli Grand
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Martine Stoltz
- The University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludovica Rizzo
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Ruth Röck
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Michael M. Kaminski
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | - Maike Getwan
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Thomas Naert
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Roman Pichler
- The University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Soeren S. Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- The University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Price ME, Fishler KP, Muff-Luett M, Mauch TJ, Brunelli L, Euteneuer JC. Variants in AQP11 may result in autosomal recessive bilateral cystic renal dysgenesis. Am J Med Genet A 2023; 191:612-616. [PMID: 36420936 DOI: 10.1002/ajmg.a.63056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022]
Abstract
Congenital renal cystic dysplasia is a rare disease that occurs in approximately 1 in 4000 children and is often discovered in the antenatal period by ultrasound. It is commonly associated with oligohydramnios in utero and/or renal insufficiency or failure in the postnatal period. Aquaporins are membrane proteins that serve as transport channels in the transfer of water or small solutes across cell membranes. They play a role in the development of renal cysts. Aquaporin 11 (AQP11) deficient mice develop polycystic kidney disease in utero due to disruption of polycystin-1. Here we describe a case of bilateral cystic kidney disease in a patient with novel compound heterozygous variants in AQP11: c.780G>T (p. Trp260Cys) and c.472C>T (p.Pro158Ser) (NM_173039.2) identified by whole genome sequencing. These findings suggest, for the first time, the potential role of AQP11 in congenital renal cystic dysplasia.
Collapse
Affiliation(s)
- Michael E Price
- University of Nebraska Medical Center, College of Medicine, Omaha, Nebraska, USA
| | - Kristen P Fishler
- Munroe-Meyer Institute of Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Melissa Muff-Luett
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Teri J Mauch
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Luca Brunelli
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Joshua C Euteneuer
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
6
|
Heterozygous variants in the DVL2 interaction region of DACT1 cause CAKUT and features of Townes-Brocks syndrome 2. Hum Genet 2023; 142:73-88. [PMID: 36066768 PMCID: PMC9839807 DOI: 10.1007/s00439-022-02481-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
Most patients with congenital anomalies of the kidney and urinary tract (CAKUT) remain genetically unexplained. In search of novel genes associated with CAKUT in humans, we applied whole-exome sequencing in a patient with kidney, anorectal, spinal, and brain anomalies, and identified a rare heterozygous missense variant in the DACT1 (dishevelled binding antagonist of beta catenin 1) gene encoding a cytoplasmic WNT signaling mediator. Our patient's features overlapped Townes-Brocks syndrome 2 (TBS2) previously described in a family carrying a DACT1 nonsense variant as well as those of Dact1-deficient mice. Therefore, we assessed the role of DACT1 in CAKUT pathogenesis. Taken together, very rare (minor allele frequency ≤ 0.0005) non-silent DACT1 variants were detected in eight of 209 (3.8%) CAKUT families, significantly more frequently than in controls (1.7%). All seven different DACT1 missense variants, predominantly likely pathogenic and exclusively maternally inherited, were located in the interaction region with DVL2 (dishevelled segment polarity protein 2), and biochemical characterization revealed reduced binding of mutant DACT1 to DVL2. Patients carrying DACT1 variants presented with kidney agenesis, duplex or (multi)cystic (hypo)dysplastic kidneys with hydronephrosis and TBS2 features. During murine development, Dact1 was expressed in organs affected by anomalies in patients with DACT1 variants, including the kidney, anal canal, vertebrae, and brain. In a branching morphogenesis assay, tubule formation was impaired in CRISPR/Cas9-induced Dact1-/- murine inner medullary collecting duct cells. In summary, we provide evidence that heterozygous hypomorphic DACT1 variants cause CAKUT and other features of TBS2, including anomalies of the skeleton, brain, distal digestive and genital tract.
Collapse
|
7
|
Boettcher S, Simons M. Model organisms for functional validation in genetic renal disease. MED GENET-BERLIN 2022; 34:287-296. [PMID: 38836086 PMCID: PMC11006349 DOI: 10.1515/medgen-2022-2162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Functional validation is key for establishing new disease genes in human genetics. Over the years, model organisms have been utilized in a very effective manner to prove causality of genes or genetic variants for a wide variety of diseases. Also in hereditary renal disease, model organisms are very helpful for functional validation of candidate genes and variants identified by next-generation sequencing strategies and for obtaining insights into the pathophysiology. Due to high genetic conservation as well as high anatomical and physiological similarities with the human kidney, almost all genetic kidney diseases can be studied in the mouse. However, mouse work is time consuming and expensive, so there is a need for alternative models. In this review, we will provide an overview of model organisms used in renal research, focusing on mouse, zebrafish, frog, and fruit flies.
Collapse
Affiliation(s)
- Susanne Boettcher
- Sektion Nephrogenetik, Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matias Simons
- Sektion Nephrogenetik, Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Khan K, Ahram DF, Liu YP, Westland R, Sampogna RV, Katsanis N, Davis EE, Sanna-Cherchi S. Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations. Kidney Int 2022; 101:473-484. [PMID: 34780871 PMCID: PMC8934530 DOI: 10.1016/j.kint.2021.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development.
Collapse
Affiliation(s)
- Kamal Khan
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address)
| | - Dina F. Ahram
- Division of Nephrology, Columbia University, New York, USA
| | - Yangfan P. Liu
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Rik Westland
- Division of Nephrology, Columbia University, New York, USA.,Department of Pediatric Nephrology, Amsterdam UMC- Emma Children’s Hospital, Amsterdam, NL
| | | | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA (current address); Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address).,Department of Pediatrics and Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,To whom correspondence should be addressed: ADDRESS CORRESPONDENCE TO: Simone Sanna-Cherchi, MD, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Phone: 212-851-4925; Fax: 212-851-5461; . Erica E. Davis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7662; Fax: 312-503-7343; , Nicholas Katsanis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7339; Fax: 312-503-7343;
| | - Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
9
|
Narikot A, Pardeshi VC, Shubha AM, Iyengar A, Vasudevan A. Deciphering the mutation spectrum in south Indian children with congenital anomalies of the kidney and urinary tract. BMC Nephrol 2022; 23:1. [PMID: 34979951 PMCID: PMC8722277 DOI: 10.1186/s12882-021-02628-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) cover a spectrum of structural malformations that result from aberrant morphogenesis of kidney and urinary tract. It is the most prevalent cause of kidney failure in children. Hence, it is important from a clinical perspective to unravel the molecular etiology of kidney and urinary tract malformations. Causal variants in genes that direct various stages of development of kidney and urinary tract in fetal life have been identified in 5-20% of CAKUT patients from Western countries. Recent advances in next generation sequencing technology and decreasing cost offer the opportunity to characterize the genetic profile of CAKUT in Indian population and facilitate integration of genetic diagnostics in care of children with CAKUT. METHODS Customized targeted panel sequencing was performed to identify pathogenic variants in 31 genes known to cause human CAKUT in 69 south Indian children with CAKUT. The NGS data was filtered using standardized pipeline and the variants were classified using ACMG criteria. Genotype and phenotype correlations were performed. RESULTS The cohort consisted of children mostly with posterior urethral valve (PUV) (39.1%), vesico-ureteric reflux (VUR) (33.3%) and multi-cystic dysplastic kidney (MCDK) (7.2%). No pathogenic or likely pathogenic variants were identified in the study. Most of our variants (n = 39, 60%) were variants of unknown significance with 25.6% (10/39) of them were identified as potentially damaging but were novel variants. CONCLUSIONS The present study did not identify any disease-causing monogenic variants in the cohort. The absence of genetic cause may be due to limitations of panel-based testing and also due to higher proportion of children with abnormalities in lower urinary tract than hypodysplasia of kidneys. Clinical, larger targeted panel or whole exome sequencing may be a better method to characterize the genetic profile of Indians patients with CAKUT.
Collapse
Affiliation(s)
- Ambili Narikot
- Divsion of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Varsha Chhotusing Pardeshi
- Divsion of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - A M Shubha
- Department of Pediatric Surgery, St. John's Medical College, Bengaluru, India
| | - Arpana Iyengar
- Department of Pediatric Nephrology, St. John's Medical College, Bengaluru, 560034, India
| | - Anil Vasudevan
- Divsion of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India.
- Department of Pediatric Nephrology, St. John's Medical College, Bengaluru, 560034, India.
| |
Collapse
|
10
|
The term CAKUT has outlived its usefulness: the case for the prosecution. Pediatr Nephrol 2022; 37:2785-2791. [PMID: 35575937 PMCID: PMC9489548 DOI: 10.1007/s00467-022-05576-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022]
Abstract
CAKUT stands for Congenital Anomalies of the Kidney and Urinary Tract, and the acronym first appeared in a review article published in 1998. Since then, CAKUT has become a familiar term encountered in the medical literature, especially in nephrology journals. I reason that the term CAKUT was conceived as not a simple description of various diseases, but more as shorthand for a bold conceptual package that linked the occurrence of diverse types of anatomical malformations with insights from genetic and developmental biology research. Moreover, the angiotensin II receptor type 2 was seen as a paradigmatic molecule in the pathobiology of CAKUT. I contend that the acronym, while appearing as an intellectually good idea at the time it was conceived, has outlived its usefulness. To reach these conclusions, I focus on the complex of research observations that led to the theory behind CAKUT, and then question whether these scientific foundations still stand firm. In addition, it is noted that not all clinicians have adopted the acronym, and I speculate why this is the case. I proceed to demonstrate that there is an incompatibility between the semantic meaning of CAKUT and the diseases for which the term was originally conceived. Instead, I suggest the acronym UTM, standing for Urinary Tract Malformation, is a simpler and less ambiguous one to use. Finally, I contend that the continued use of the acronym is a regressive step for the disciplines of nephrology and urology, taking us back two centuries when all kidney diseases were simply called Bright's disease.
Collapse
|
11
|
Wang X, Xiao H, Yao Y, Xu K, Liu X, Su B, Zhang H, Guan N, Zhong X, Zhang Y, Ding J, Wang F. Spectrum of Mutations in Pediatric Non-glomerular Chronic Kidney Disease Stages 2-5. Front Genet 2021; 12:697085. [PMID: 34295353 PMCID: PMC8290170 DOI: 10.3389/fgene.2021.697085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Renal hypodysplasia and cystic kidney diseases, the common non-glomerular causes of pediatric chronic kidney disease (CKD), are usually diagnosed by their clinical and imaging characteristics. The high degree of phenotypic heterogeneity, in both conditions, makes the correct final diagnosis dependent on genetic testing. It is not clear, however, whether the frequencies of damaged alleles vary among different ethnicities in children with non-glomerular CKD, and this will influence the strategy used for genetic testing. In this study, 69 unrelated children (40 boys, 29 girls) of predominantly Han Chinese ethnicity with stage 2-5 non-glomerular CKD caused by suspected renal hypodysplasia or cystic kidney diseases were enrolled and assessed by molecular analysis using proband-only targeted exome sequencing and array-comparative genomic hybridization. Targeted exome sequencing discovered genetic etiologies in 33 patients (47.8%) covering 10 distinct genetic disorders. The clinical diagnoses in 13/48 patients (27.1%) with suspected renal hypodysplasia were confirmed, and two patients were reclassified carrying mutations in nephronophthisis (NPHP) genes. The clinical diagnoses in 16/20 patients (80%) with suspected cystic kidney diseases were confirmed, and one patient was reclassified as carrying a deletion in the hepatocyte nuclear factor-1-beta gene (HNF1B). The diagnosis of one patient with unknown non-glomerular disease was elucidated. No copy number variations were identified in the 20 patients with negative targeted exome sequencing results. NPHP genes were the most common disease-causing genes in the patients with disease onsets above 6 years of age (14/45, 31.1%). The children with stage 2 and 3 CKD at onset were found to carry causative mutations in paired box gene 2 (PAX2) and HNF1B gene (11/24, 45.8%), whereas those with stage 4 and 5 CKD mostly carried causative mutations in NPHP genes (19/45, 42.2%). The causative genes were not suspected by the kidney imaging patterns at disease onset. Thus, our data show that in Chinese children with non-glomerular renal dysfunction caused by renal hypodysplasia and cystic kidney diseases, the common causative genes vary with age and CKD stage at disease onset. These findings have the potential to improve management and genetic counseling of these diseases in clinical practice.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Huijie Xiao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yong Yao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ke Xu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyu Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Baige Su
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongwen Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Na Guan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xuhui Zhong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
12
|
Zhou X, Wang Y, Shao B, Wang C, Hu P, Qiao F, Xu Z. Molecular diagnostic in fetuses with isolated congenital anomalies of the kidney and urinary tract by whole-exome sequencing. J Clin Lab Anal 2020; 34:e23480. [PMID: 32779812 PMCID: PMC7676188 DOI: 10.1002/jcla.23480] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In prenatal care, accumulating evidences has demonstrated that whole-exome sequencing (WES) expedites the genetic diagnosis of fetal structural anomalies. However, the clinical value of WES in the diagnosis of prenatal isolated congenital anomalies of the kidney and urinary tract (CAKUT) is unknown. METHODS Forty-one fetuses with unexplained isolated CAKUT, normal karyotype and negative chromosomal microarray analysis (CMA) results, underwent WES and were accordingly grouped as (a) Group 1: complex cases with bilateral renal abnormalities (N = 19); and (b) Group 2: cases with isolated unilateral fetal renal abnormalities (N = 22). RESULTS The detection rate of WES for pathogenic variants and incidental variants was 7.32% (3/41) and 2.4% (1/41), respectively. The three pathogenic variants were identified in the genes ACTA2 (multisystem smooth muscle dysfunction syndrome), PKHD1 (autosomal recessive form of polycystic kidney disease), and PKD1 (autosomal dominant polycystic kidney disease type 1). The incidental variants were detected in genes PPM1D (syndromic neurodevelopmental disorders). Furthermore, all above fetuses carrying pathogenic variants came from bilateral kidney anomalies. Thus, the detection rate was 0 for fetuses with unilateral fetal renal abnormalities and 15.7% (3/19) for bilateral renal abnormalities. CONCLUSION This cohort shows that prenatal WES is a supplementary approach for the etiologic diagnosis of unexplained isolated CAKUT with negative CMA, especially for fetuses with bilateral renal abnormality.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- State Key Laboratory of Reproductive MedicineDepartment of Prenatal DiagnosisWomen's Hospital of Nanjing Medical UniversityNanjingChina
- Department of ObstetricsThe Affiliated Huai an No. 1 People's Hospital of NanjingMedical UniversityHuai anChina
| | - Yan Wang
- State Key Laboratory of Reproductive MedicineDepartment of Prenatal DiagnosisWomen's Hospital of Nanjing Medical UniversityNanjingChina
| | - Binbin Shao
- State Key Laboratory of Reproductive MedicineDepartment of Prenatal DiagnosisWomen's Hospital of Nanjing Medical UniversityNanjingChina
| | - Chen Wang
- State Key Laboratory of Reproductive MedicineDepartment of Prenatal DiagnosisWomen's Hospital of Nanjing Medical UniversityNanjingChina
| | - Ping Hu
- State Key Laboratory of Reproductive MedicineDepartment of Prenatal DiagnosisWomen's Hospital of Nanjing Medical UniversityNanjingChina
| | - Fengchang Qiao
- State Key Laboratory of Reproductive MedicineDepartment of Prenatal DiagnosisWomen's Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhengfeng Xu
- State Key Laboratory of Reproductive MedicineDepartment of Prenatal DiagnosisWomen's Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
13
|
Perlman S, Borovitz Y, Bar-Adon S, Dekel B, Achiron R, Gilboa Y. Fetal Pancake Kidney: Prenatal Diagnosis and Postnatal Follow-up. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1665-1668. [PMID: 32105372 DOI: 10.1002/jum.15251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Bilateral failure of the kidneys to ascend during embryonic life may lead to fusion of the two renal masses, resulting in a round mass known as pancake kidney. Reviewing the literature, we did not encounter any reports of prenatal diagnosis of pancake kidneys. We present 6 cases of a pancake kidney diagnosed prenatally. Extrarenal associated anomalies included an aberrant right subclavian artery, nonvisualization of the uterus, consistent with Mayer-Rokitansky-Küster-Hauser syndrome, and a sequence of early-onset growth restriction, hypospadias, and syndactyly, suspected as Smith-Lemli-Opitz syndrome. On postnatal follow-up, all infants had a normal renal outcome.
Collapse
Affiliation(s)
- Sharon Perlman
- Ultrasound Unit, Helen Schneider Women's Hospital, Rabin Medical Center, Petach Tikva, Israel
- Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, Israel
| | - Yael Borovitz
- Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, Israel
- Nephrology Institute, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Sonya Bar-Adon
- Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, Israel
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Benjamin Dekel
- Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, Israel
- Division of Pediatric Nephrology and Pediatric Stem Cell Research Institute, Edmond and Lily Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Reuven Achiron
- Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, Israel
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Yinon Gilboa
- Ultrasound Unit, Helen Schneider Women's Hospital, Rabin Medical Center, Petach Tikva, Israel
- Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, Israel
| |
Collapse
|
14
|
Martens H, Hennies I, Getwan M, Christians A, Weiss AC, Brand F, Gjerstad AC, Christians A, Gucev Z, Geffers R, Seeman T, Kispert A, Tasic V, Bjerre A, Lienkamp SS, Haffner D, Weber RG. Rare heterozygous GDF6 variants in patients with renal anomalies. Eur J Hum Genet 2020; 28:1681-1693. [PMID: 32737436 PMCID: PMC7784874 DOI: 10.1038/s41431-020-0678-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/22/2023] Open
Abstract
Although over 50 genes are known to cause renal malformation if mutated, the underlying genetic basis, most easily identified in syndromic cases, remains unsolved in most patients. In search of novel causative genes, whole-exome sequencing in a patient with renal, i.e., crossed fused renal ectopia, and extrarenal, i.e., skeletal, eye, and ear, malformations yielded a rare heterozygous variant in the GDF6 gene encoding growth differentiation factor 6, a member of the BMP family of ligands. Previously, GDF6 variants were reported to cause pleiotropic defects including skeletal, e.g., vertebral, carpal, tarsal fusions, and ocular, e.g., microphthalmia and coloboma, phenotypes. To assess the role of GDF6 in the pathogenesis of renal malformation, we performed targeted sequencing in 193 further patients identifying rare GDF6 variants in two cases with kidney hypodysplasia and extrarenal manifestations. During development, gdf6 was expressed in the pronephric tubule of Xenopus laevis, and Gdf6 expression was observed in the ureteric tree of the murine kidney by RNA in situ hybridization. CRISPR/Cas9-derived knockout of Gdf6 attenuated migration of murine IMCD3 cells, an effect rescued by expression of wild-type but not mutant GDF6, indicating affected variant function regarding a fundamental developmental process. Knockdown of gdf6 in Xenopus laevis resulted in impaired pronephros development. Altogether, we identified rare heterozygous GDF6 variants in 1.6% of all renal anomaly patients and 5.4% of renal anomaly patients additionally manifesting skeletal, ocular, or auricular abnormalities, adding renal hypodysplasia and fusion to the phenotype spectrum of GDF6 variant carriers and suggesting an involvement of GDF6 in nephrogenesis.
Collapse
Affiliation(s)
- Helge Martens
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, 30625, Hannover, Germany
| | - Maike Getwan
- Department of Medicine, Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,Institute of Anatomy and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Anne Christians
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Anna-Carina Weiss
- Institute of Molecular Biology, Hannover Medical School, 30625, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Ann Christin Gjerstad
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Arne Christians
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, 30625, Hannover, Germany
| | - Zoran Gucev
- Medical Faculty Skopje, University Children's Hospital, 1000, Skopje, North Macedonia
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tomáš Seeman
- Department of Paediatrics and Transplantation Center, University Hospital Motol, Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, 30625, Hannover, Germany
| | - Velibor Tasic
- Medical Faculty Skopje, University Children's Hospital, 1000, Skopje, North Macedonia
| | - Anna Bjerre
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,Institute of Anatomy and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, 30625, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
15
|
Kuure S, Sariola H. Mouse Models of Congenital Kidney Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:109-136. [PMID: 32304071 DOI: 10.1007/978-981-15-2389-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects, which cause the majority of chronic kidney diseases in children. CAKUT covers a wide range of malformations that derive from deficiencies in embryonic kidney and lower urinary tract development, including renal aplasia, hypodysplasia, hypoplasia, ectopia, and different forms of ureter abnormalities. The majority of the genetic causes of CAKUT remain unknown. Research on mutant mice has identified multiple genes that critically regulate renal differentiation. The data generated from this research have served as an excellent resource to identify the genetic bases of human kidney defects and have led to significantly improved diagnostics. Furthermore, genetic data from human CAKUT studies have also revealed novel genes regulating kidney differentiation.
Collapse
Affiliation(s)
- Satu Kuure
- GM-Unit, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Hannu Sariola
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Paediatric Pathology, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
16
|
Minuth W. In Search of Imprints Left by the Impairment of Nephrogenesis. Cells Tissues Organs 2019; 207:69-82. [DOI: 10.1159/000504085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022] Open
Abstract
Clinical aspects dealing with the impairment of nephrogenesis in preterm and low birth weight babies were intensely researched. In this context it was shown that quite different noxae can harm nephron formation, and that the morphological damage in the fetal kidney is rather complex. Some pathological findings show that the impairment leads to changes in developing glomeruli that are restricted to the maturation zone of the outer cortex in the fetal human kidney. Other data show also imprints on the stages of nephron anlage including the niche, the pretubular aggregate, the renal vesicle, and comma- and S-shaped bodies located in the overlying nephrogenic zone of the rodent and human kidneys. During our investigations it was noticed that the stages of nephron anlage in the fetal human kidney during the phase of late gestation have not been described in detail. To contribute, these stages were recorded along with corresponding images. The initial nephron formation in the rodent kidney served as a reference. Finally, the known imprints left by the impairment in both specimens were listed and discussed. In sum, the relatively paucity of data on nephron formation in the fetal human kidney during the late phase of gestation is a call to start with intense research so that concepts for a therapeutic prolongation of nephrogenesis can be designed.
Collapse
|