1
|
Elbakry M, Khatami N, Akoume MY, Julien C, Bouhanik S, Franco A, Caraus I, Elremaly W, Moreau A. Loss of Tyrosine Phosphatase Mu Promotes Scoliosis Progression Through Osteopontin-α5β1 Integrin Signaling and PIPK1γ90 Activity. Int J Mol Sci 2025; 26:1042. [PMID: 39940812 PMCID: PMC11816665 DOI: 10.3390/ijms26031042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/28/2024] [Accepted: 12/28/2024] [Indexed: 02/16/2025] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is characterized by a curvature of the spine affecting approximately 4% of the pediatric population, and the mechanisms driving its progression remain poorly understood. Whole-exome sequencing of a French-Canadian AIS cohort with severe scoliosis identified rare variants in the PTPRM gene, which encodes Protein Tyrosine Phosphatase μ (PTPµ). However, these rare variants alone did not account for the pronounced reduction in PTPµ at both mRNA and protein levels in severe AIS cases. This led us to investigate epigenetic regulators and the identification of five microRNAs (miR-103a-3p, miR-107, miR-148a-3p, miR-148b-3p, and miR-152-3p) that target PTPRM mRNA. These microRNAs were significantly elevated in plasma from severe AIS patients, and miR-148b-3p was also upregulated in AIS osteoblasts. Phenotypic analysis of bipedal Ptrprm knockout (PTPµ -/-) mice showed increased prevalence and severity of scoliosis, while quadrupedal PTPµ -/- mice did not develop scoliosis, underscoring PTPµ's role as a disease-modifying factor. Mechanistically, PTPµ deficiency was found to disrupt Gi-coupled receptor signaling in osteoblasts by enhancing the interaction between osteopontin (OPN) and α5β1 integrin, along with increased tyrosine phosphorylation of phosphatidylinositol-4-phosphate 5-kinase type I (PIPKIγ90). These findings provide novel insights into the molecular mechanisms underlying spinal deformity progression in AIS, linking PTPµ depletion to aberrant OPN-α5β1 integrin signaling and highlighting potential therapeutic targets to stop, mitigate, or prevent scoliosis.
Collapse
Affiliation(s)
- Mohamed Elbakry
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
- Department of Chemistry, Biochemistry Section, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nasrin Khatami
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Marie-Yvonne Akoume
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
- Department of Cellular, Molecular Biology and Genetics, Faculty of Medicine, Université des Sciences de la Santé (USS) de Libreville, Libreville BP 18231, Gabon
| | - Cédric Julien
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Saadallah Bouhanik
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Anita Franco
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Iurie Caraus
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Wesam Elremaly
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Azrieli Research Center, CHU Sainte-Justine, Montréal, QC H3T 1C5, Canada
- Department of Cellular, Molecular Biology and Genetics, Faculty of Medicine, Université des Sciences de la Santé (USS) de Libreville, Libreville BP 18231, Gabon
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
2
|
Guo Z, Li D, Zang X. Congenital hemivertebrae combined with situs inversus totalis: A rare case report. Medicine (Baltimore) 2024; 103:e37625. [PMID: 38552073 PMCID: PMC10977591 DOI: 10.1097/md.0000000000037625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
RATIONALE Situs inversus totalis is a rare malposition of organs that typically involves lesions in the respiratory, circulatory, or urinary systems. Cases of congenital hemivertebrae combined with situs inversus totalis are extremely rare and have limited reports. PATIENT CONCERNS We report a 2.5 years old girl with 2 congenital hemipyramids and complete visceral inversion who ultimately underwent hemilaminectomy. DIAGNOSIS Congenital hemivertebrae combined with situs inversus totalis. INTERVENTION The patient underwent hemilaminectomy. OUTCOMES The spinal deformity was corrected. LESSONS For patient with spinal deformities combined with situs inversus totalis, surgery can be an effective treatment method. But we also need to be vigilant about the dysfunction of various systems.
Collapse
Affiliation(s)
- Zheng Guo
- Orthopedics Department of the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Donglai Li
- Orthopedics Department of the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Xuehui Zang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
3
|
Retuerto-Guerrero M, López-Medrano R, de Freitas-González E, Rivero-Lezcano OM. Nontuberculous Mycobacteria, Mucociliary Clearance, and Bronchiectasis. Microorganisms 2024; 12:665. [PMID: 38674609 PMCID: PMC11052484 DOI: 10.3390/microorganisms12040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are environmental and ubiquitous, but only a few species are associated with disease, often presented as nodular/bronchiectatic or cavitary pulmonary forms. Bronchiectasis, airways dilatations characterized by chronic productive cough, is the main presentation of NTM pulmonary disease. The current Cole's vicious circle model for bronchiectasis proposes that it progresses from a damaging insult, such as pneumonia, that affects the respiratory epithelium and compromises mucociliary clearance mechanisms, allowing microorganisms to colonize the airways. An important bronchiectasis risk factor is primary ciliary dyskinesia, but other ciliopathies, such as those associated with connective tissue diseases, also seem to facilitate bronchiectasis, as may occur in Lady Windermere syndrome, caused by M. avium infection. Inhaled NTM may become part of the lung microbiome. If the dose is too large, they may grow excessively as a biofilm and lead to disease. The incidence of NTM pulmonary disease has increased in the last two decades, which may have influenced the parallel increase in bronchiectasis incidence. We propose that ciliary dyskinesia is the main promoter of bronchiectasis, and that the bacteria most frequently involved are NTM. Restoration of ciliary function and impairment of mycobacterial biofilm formation may provide effective therapeutic alternatives to antibiotics.
Collapse
Affiliation(s)
- Miriam Retuerto-Guerrero
- Servicio de Reumatología, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Ramiro López-Medrano
- Servicio de Microbiología Clínica, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Elizabeth de Freitas-González
- Servicio de Neumología, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Octavio Miguel Rivero-Lezcano
- Unidad de Investigación, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain
| |
Collapse
|
4
|
Jiang X, Liu F, Zhang M, Hu W, Zhao Y, Xia B, Xu K. Advances in genetic factors of adolescent idiopathic scoliosis: a bibliometric analysis. Front Pediatr 2024; 11:1301137. [PMID: 38322243 PMCID: PMC10845672 DOI: 10.3389/fped.2023.1301137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/11/2023] [Indexed: 02/08/2024] Open
Abstract
Objective This study offers a bibliometric analysis of the current situation, hotspots, and cutting-edge domains of genetic factors of adolescent idiopathic scoliosis (AIS). Methods All publications related to genetic factors of AIS from January 1, 1992, to February 28, 2023, were searched from the Web of Science. CiteSpace software was employed for bibliometric analysis, collecting information about countries, institutions, authors, journals, and keywords of each article. Results A cumulative number of 308 articles have been ascertained. Since 2006, publications relating to genetic factors of AIS have significantly increased. China leads in both productivity and influence in this area, with the Chinese Academy of Medical Sciences being the most productive institution. The most prolific scholars in this field are Y. Qiu and Z. Z. Zhu. The publications that contributed the most were from Spine and European Spine Journal. The most prominent keywords in the genetic factors of AIS were "fibrillin gene", "menarche", "calmodulin", "estrogen receptor gene", "linkage analysis", "disc degeneration", "bone mineral density", "melatonin signaling dysfunction", "collagen gene", "mesenchymal stem cell", "LBX1", "promoter polymorphism", "Bone formation", "cerebrospinal fluid flow" and "extracellular matrix". Conclusion This analysis provides the frontiers and trends of genetic factors in AIS, including relevant research, partners, institutions and countries.
Collapse
Affiliation(s)
| | - Fuyun Liu
- Department of Orthopedics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | | | | | | | | | | |
Collapse
|
5
|
Bearce EA, Ricamona BTB, Fisher KH, O'Hara-Smith JR, Grimes DT. Visualization and quantitation of spine deformity in zebrafish models of scoliosis by micro-computed tomography. STAR Protoc 2023; 4:102739. [PMID: 38043059 PMCID: PMC10775897 DOI: 10.1016/j.xpro.2023.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/26/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Zebrafish (Danio rerio) are increasingly used to investigate spine development, growth, and for studying the etiology of spinal deformity, such as scoliosis. Here, we present a micro-computed tomography-based pipeline for visualizing the zebrafish skeleton. We describe steps for sample preparation, imaging, data management, and processing. We then detail analysis of vertebral and spine morphology using open-source software. This protocol will be useful for scientists using zebrafish to understand spine development and disease. For complete details on the use and execution of this protocol, please refer to Bearce et al. (2022).1.
Collapse
Affiliation(s)
- Elizabeth A Bearce
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Bryson Tyler B Ricamona
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Katherine H Fisher
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Johnathan R O'Hara-Smith
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
6
|
Xu H, Dugué GP, Cantaut-Belarif Y, Lejeune FX, Gupta S, Wyart C, Lehtinen MK. SCO-spondin knockout mice exhibit small brain ventricles and mild spine deformation. Fluids Barriers CNS 2023; 20:89. [PMID: 38049798 PMCID: PMC10696872 DOI: 10.1186/s12987-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023] Open
Abstract
Reissner's fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo, an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry.
Collapse
Affiliation(s)
- Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Guillaume P Dugué
- Neurophysiology of Brain Circuits, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Yasmine Cantaut-Belarif
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris (APHP), Campus Hospitalier Pitié-Salpêtrière, 47, bld Hospital, 75013, Paris, France
| | - François-Xavier Lejeune
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris (APHP), Campus Hospitalier Pitié-Salpêtrière, 47, bld Hospital, 75013, Paris, France
| | - Suhasini Gupta
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Claire Wyart
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris (APHP), Campus Hospitalier Pitié-Salpêtrière, 47, bld Hospital, 75013, Paris, France.
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Liu J, Xie H, Wu M, Hu Y, Kang Y. The role of cilia during organogenesis in zebrafish. Open Biol 2023; 13:230228. [PMID: 38086423 PMCID: PMC10715920 DOI: 10.1098/rsob.230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Cilia are hair-like organelles that protrude from the surface of eukaryotic cells and are present on the surface of nearly all human cells. Cilia play a crucial role in signal transduction, organ development and tissue homeostasis. Abnormalities in the structure and function of cilia can lead to a group of human diseases known as ciliopathies. Currently, zebrafish serves as an ideal model for studying ciliary function and ciliopathies due to its relatively conserved structure and function of cilia compared to humans. In this review, we will summarize the different types of cilia that present in embryonic and adult zebrafish, and provide an overview of the advantages of using zebrafish as a vertebrate model for cilia research. We will specifically focus on the roles of cilia during zebrafish organogenesis based on recent studies. Additionally, we will highlight future prospects for ciliary research in zebrafish.
Collapse
Affiliation(s)
- Junjun Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haibo Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mengfan Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yidan Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yunsi Kang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
8
|
Bellegarda C, Zavard G, Moisan L, Brochard-Wyart F, Joanny JF, Gray RS, Cantaut-Belarif Y, Wyart C. The Reissner fiber under tension in vivo shows dynamic interaction with ciliated cells contacting the cerebrospinal fluid. eLife 2023; 12:e86175. [PMID: 37772792 PMCID: PMC10617989 DOI: 10.7554/elife.86175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023] Open
Abstract
The Reissner fiber (RF) is an acellular thread positioned in the midline of the central canal that aggregates thanks to the beating of numerous cilia from ependymal radial glial cells (ERGs) generating flow in the central canal of the spinal cord. RF together with cerebrospinal fluid (CSF)-contacting neurons (CSF-cNs) form an axial sensory system detecting curvature. How RF, CSF-cNs and the multitude of motile cilia from ERGs interact in vivo appears critical for maintenance of RF and sensory functions of CSF-cNs to keep a straight body axis, but is not well-understood. Using in vivo imaging in larval zebrafish, we show that RF is under tension and resonates dorsoventrally. Focal RF ablations trigger retraction and relaxation of the fiber's cut ends, with larger retraction speeds for rostral ablations. We built a mechanical model that estimates RF stress diffusion coefficient D at 5 mm2/s and reveals that tension builds up rostrally along the fiber. After RF ablation, spontaneous CSF-cN activity decreased and ciliary motility changed, suggesting physical interactions between RF and cilia projecting into the central canal. We observed that motile cilia were caudally-tilted and frequently interacted with RF. We propose that the numerous ependymal motile monocilia contribute to RF's heterogenous tension via weak interactions. Our work demonstrates that under tension, the Reissner fiber dynamically interacts with motile cilia generating CSF flow and spinal sensory neurons.
Collapse
Affiliation(s)
- Celine Bellegarda
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-SalpêtrièreParisFrance
| | - Guillaume Zavard
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-SalpêtrièreParisFrance
| | | | | | - Jean-François Joanny
- Paris Sciences et Lettres (PSL) University, Institut Curie, Sorbonne UniversitéParisFrance
- Paris Sciences et Lettres (PSL) University, Collège de FranceParisFrance
| | - Ryan S Gray
- Dell Pediatrics Research Institute, The University of Texas at AustinAustinUnited States
| | - Yasmine Cantaut-Belarif
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-SalpêtrièreParisFrance
| | - Claire Wyart
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-SalpêtrièreParisFrance
| |
Collapse
|
9
|
Xu H, Dugué GP, Cantaut-Belarif Y, Lejeune FX, Gupta S, Wyart C, Lehtinen MK. SCO-spondin knockout mice exhibit small brain ventricles and mild spine deformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551512. [PMID: 37577601 PMCID: PMC10418289 DOI: 10.1101/2023.08.01.551512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Reissner's fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo , an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry.
Collapse
|
10
|
Bearce EA, Irons ZH, O'Hara-Smith JR, Kuhns CJ, Fisher SI, Crow WE, Grimes DT. Urotensin II-related peptides, Urp1 and Urp2, control zebrafish spine morphology. eLife 2022; 11:e83883. [PMID: 36453722 PMCID: PMC9836392 DOI: 10.7554/elife.83883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
The spine provides structure and support to the body, yet how it develops its characteristic morphology as the organism grows is little understood. This is underscored by the commonality of conditions in which the spine curves abnormally such as scoliosis, kyphosis, and lordosis. Understanding the origin of these spinal curves has been challenging in part due to the lack of appropriate animal models. Recently, zebrafish have emerged as promising tools with which to understand the origin of spinal curves. Using zebrafish, we demonstrate that the urotensin II-related peptides (URPs), Urp1 and Urp2, are essential for maintaining spine morphology. Urp1 and Urp2 are 10-amino acid cyclic peptides expressed by neurons lining the central canal of the spinal cord. Upon combined genetic loss of Urp1 and Urp2, adolescent-onset planar curves manifested in the caudal region of the spine. Highly similar curves were caused by mutation of Uts2r3, an URP receptor. Quantitative comparisons revealed that urotensin-associated curves were distinct from other zebrafish spinal curve mutants in curve position and direction. Last, we found that the Reissner fiber, a proteinaceous thread that sits in the central canal and has been implicated in the control of spine morphology, breaks down prior to curve formation in mutants with perturbed cilia motility but was unaffected by loss of Uts2r3. This suggests a Reissner fiber-independent mechanism of curvature in urotensin-deficient mutants. Overall, our results show that Urp1 and Urp2 control zebrafish spine morphology and establish new animal models of spine deformity.
Collapse
Affiliation(s)
- Elizabeth A Bearce
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Zoe H Irons
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | | | - Colin J Kuhns
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Sophie I Fisher
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - William E Crow
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
11
|
Guo T, Lu C, Yang D, Lei C, Liu Y, Xu Y, Yang B, Wang R, Luo H. Case Report: DNAAF4 Variants Cause Primary Ciliary Dyskinesia and Infertility in Two Han Chinese Families. Front Genet 2022; 13:934920. [PMID: 35903363 PMCID: PMC9315306 DOI: 10.3389/fgene.2022.934920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Primary ciliary dyskinesia (PCD) is a rare genetic disorder, predominantly autosomal recessive. The dynein axonemal assembly factor 4 (DNAAF4) is mainly involved in the preassembly of multisubunit dynein protein, which is fundamental to the proper functioning of cilia and flagella. There are few reports of PCD-related pathogenic variants of DNAAF4, and almost no DNAAF4-related articles focused on sperm phenotype. Moreover, the association between DNAAF4 and scoliosis has never been reported, to the best of our knowledge.Materials and Methods: We recruited two patients with a clinical diagnosis of PCD. One came from a consanguineous and another from a non-consanguineous family. Clinical data, laboratory test results, and imaging data were analyzed. Through whole exome sequencing, immunofluorescence, electron microscopy, high-speed video microscopy analysis, and hematoxylin–eosin (HE) staining, we identified the disease-associated variants and validated the pathogenicity.Results: Proband 1 (P1, F1: II-1), a 19-year-old man, comes from a non-consanguineous family-I, and proband 2 (P2, F2: II-1), a 37-year-old woman, comes from a consanguineous family-II. Both had sinusitis, bronchiectasis, situs inversus, and scoliosis. P1 also had asthenoteratozoospermia, and P2 had an immature uterus. Two homozygous pathogenic variants in DNAAF4 (NM_130810.4), c.988C > T, p.(Arg330Trp), and DNAAF4 (NM_130810.4), c.733 C > T, p.(Arg245*), were identified through whole exome sequencing. High-speed microscopy analysis showed that most of the cilia were static in P1, with complete static of the respiratory cilia in P2. Immunofluorescence showed that the outer dynein arms (ODA) and inner dynein arms (IDA) were absent in the respiratory cilia of both probands, as well as in the sperm flagellum of P1. Transmission electron microscopy revealed the absence of ODA and IDA of respiratory cilia of P2, and HE staining showed irregular, short, absent, coiled, and bent flagella.Conclusion: Our study identified a novel variant c.733C > T, which expanded the spectrum of DNAAF4 variants. Furthermore, we linked DNAAF4 to asthenoteratozoospermia and likely scoliosis in patients with PCD. This study will contribute to a better understanding of PCD.
Collapse
Affiliation(s)
- Ting Guo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Chenyang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Danhui Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Cheng Lei
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Ying Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Yingjie Xu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Binyi Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Rongchun Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
- *Correspondence: Hong Luo, ; Rongchun Wang,
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
- *Correspondence: Hong Luo, ; Rongchun Wang,
| |
Collapse
|
12
|
Bearce EA, Irons ZH, Craig SB, Kuhns CJ, Sabazali C, Farnsworth DR, Miller AC, Grimes DT. Daw1 regulates the timely onset of cilia motility during development. Development 2022; 149:275714. [PMID: 35708608 PMCID: PMC9270974 DOI: 10.1242/dev.200017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
Abstract
Motile cilia generate cell propulsion and extracellular fluid flows that are crucial for airway clearance, fertility and left-right patterning. Motility is powered by dynein arm complexes that are assembled in the cytoplasm then imported into the cilium. Studies in Chlamydomonas reinhardtii showed that ODA16 is a cofactor which promotes dynein arm import. Here, we demonstrate that the zebrafish homolog of ODA16, Daw1, facilitates the onset of robust cilia motility during development. Without Daw1, cilia showed markedly reduced motility during early development; however, motility subsequently increased to attain close to wild-type levels. Delayed motility onset led to differential effects on early and late cilia-dependent processes. Remarkably, abnormal body axis curves, which formed during the first day of development due to reduced cilia motility, self-corrected when motility later reached wild-type levels. Zebrafish larva therefore possess the ability to survey and correct body shape abnormalities. This work defines Daw1 as a factor which promotes the onset of timely cilia motility and can explain why human patients harboring DAW1 mutations exhibit significant laterality perturbations but mild airway and fertility complications. Summary: Daw1 promotes the onset of timely cilia motility for robust axial straightening during zebrafish development.
Collapse
Affiliation(s)
- Elizabeth A Bearce
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Zoe H Irons
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Samuel B Craig
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Colin J Kuhns
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Cynthia Sabazali
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Dylan R Farnsworth
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
13
|
Mytlis A, Kumar V, Qiu T, Deis R, Hart N, Levy K, Masek M, Shawahny A, Ahmad A, Eitan H, Nather F, Adar-Levor S, Birnbaum RY, Elia N, Bachmann-Gagescu R, Roy S, Elkouby YM. Control of meiotic chromosomal bouquet and germ cell morphogenesis by the zygotene cilium. Science 2022; 376:eabh3104. [PMID: 35549308 DOI: 10.1126/science.abh3104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A hallmark of meiosis is chromosomal pairing, which requires telomere tethering and rotation on the nuclear envelope via microtubules, driving chromosome homology searches. Telomere pulling toward the centrosome forms the "zygotene chromosomal bouquet". Here, we identified the "zygotene cilium" in oocytes. This cilium provides a cable system for the bouquet machinery, extending throughout the germline cyst. Using zebrafish mutants and live manipulations, we demonstrate that the cilium anchors the centrosome to counterbalance telomere pulling. The cilium is essential for bouquet and synaptonemal complex formation, oogenesis, ovarian development, and fertility. Thus, a cilium represents a conserved player in zebrafish and mouse meiosis, which sheds light on reproductive aspects in ciliopathies, and suggests that cilia can control chromosomal dynamics.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Vineet Kumar
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Tao Qiu
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore
| | - Rachael Deis
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Neta Hart
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Markus Masek
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.,Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Amal Shawahny
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Adam Ahmad
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Hagai Eitan
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Farouq Nather
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Shai Adar-Levor
- Departments of Life Sciences, Ben-Gurion University of the Negev, Beer Shave 84105, Israel
| | - Ramon Y Birnbaum
- Departments of Life Sciences, Ben-Gurion University of the Negev, Beer Shave 84105, Israel
| | - Natalie Elia
- Departments of Life Sciences, Ben-Gurion University of the Negev, Beer Shave 84105, Israel
| | - Ruxandra Bachmann-Gagescu
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.,Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore.,Department of Biological Sciences, National University of Singapore, 117543 Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119288 Singapore
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| |
Collapse
|
14
|
Wang Y, Troutwine BR, Zhang H, Gray RS. The axonemal dynein heavy chain 10 gene is essential for monocilia motility and spine alignment in zebrafish. Dev Biol 2022; 482:82-90. [PMID: 34915022 PMCID: PMC8792996 DOI: 10.1016/j.ydbio.2021.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common pediatric musculoskeletal disorder worldwide, characterized by atypical spine curvatures in otherwise healthy children. Human genetic studies have identified candidate genes associated with AIS, however, only a few of these have been shown to recapitulate adult-viable scoliosis in animal models. Using an F0 CRISPR screening approach in zebrafish, we demonstrate that disruption of the dynein axonemal heavy chain 10 (dnah10) gene results in recessive adult-viable scoliosis in zebrafish. Using a stably segregating dnah10 mutant zebrafish, we showed that the ependymal monocilia lining the hindbrain and spinal canal displayed reduced beat frequency, which was correlated with the disassembly of the Reissner fiber and the onset of body curvatures. Taken together, these results suggest that monocilia function in larval zebrafish contributes to the polymerization of the Reissner fiber and straightening of the body axis.
Collapse
Affiliation(s)
- Yunjia Wang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Nutritional Sciences, 200 W 24th Street, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Benjamin R Troutwine
- Department of Nutritional Sciences, 200 W 24th Street, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hongqi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Ryan S Gray
- Department of Nutritional Sciences, 200 W 24th Street, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Muñoz-Montecinos C, Romero A, Sepúlveda V, Vira MÁ, Fehrmann-Cartes K, Marcellini S, Aguilera F, Caprile T, Fuentes R. Turning the Curve Into Straight: Phenogenetics of the Spine Morphology and Coordinate Maintenance in the Zebrafish. Front Cell Dev Biol 2022; 9:801652. [PMID: 35155449 PMCID: PMC8826430 DOI: 10.3389/fcell.2021.801652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
The vertebral column, or spine, provides mechanical support and determines body axis posture and motion. The most common malformation altering spine morphology and function is adolescent idiopathic scoliosis (AIS), a three-dimensional spinal deformity that affects approximately 4% of the population worldwide. Due to AIS genetic heterogenicity and the lack of suitable animal models for its study, the etiology of this condition remains unclear, thus limiting treatment options. We here review current advances in zebrafish phenogenetics concerning AIS-like models and highlight the recently discovered biological processes leading to spine malformations. First, we focus on gene functions and phenotypes controlling critical aspects of postembryonic aspects that prime in spine architecture development and straightening. Second, we summarize how primary cilia assembly and biomechanical stimulus transduction, cerebrospinal fluid components and flow driven by motile cilia have been implicated in the pathogenesis of AIS-like phenotypes. Third, we highlight the inflammatory responses associated with scoliosis. We finally discuss recent innovations and methodologies for morphometrically characterize and analyze the zebrafish spine. Ongoing phenotyping projects are expected to identify novel and unprecedented postembryonic gene functions controlling spine morphology and mutant models of AIS. Importantly, imaging and gene editing technologies are allowing deep phenotyping studies in the zebrafish, opening new experimental paradigms in the morphometric and three-dimensional assessment of spinal malformations. In the future, fully elucidating the phenogenetic underpinnings of AIS etiology in zebrafish and humans will undoubtedly lead to innovative pharmacological treatments against spinal deformities.
Collapse
Affiliation(s)
- Carlos Muñoz-Montecinos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Adrián Romero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Vania Sepúlveda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María Ángela Vira
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karen Fehrmann-Cartes
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de las Américas, Concepción, Chile
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
16
|
Lu C, Yang D, Lei C, Wang R, Guo T, Luo H. Identification of Two Novel DNAAF2 Variants in Two Consanguineous Families with Primary Ciliary Dyskinesia. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1415-1423. [PMID: 34785929 PMCID: PMC8591118 DOI: 10.2147/pgpm.s338981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023]
Abstract
Background Dynein axonemal assembly factor 2 (DNAAF2) is involved in the early preassembly of dynein in the cytoplasm, which is essential for motile cilia function. Primary ciliary dyskinesia (PCD) associated with DNAAF2 variants has rarely been reported in females with infertility. Moreover, there is no report linking DNAAF2 to scoliosis in human. Materials and Methods We recruited patients from two consanguineous families with a clinical diagnosis of PCD and collected their clinical history, laboratory tests, and radiographic data. Sequencing and bioinformatics analysis were then performed. Immunofluorescence and high-speed microscope analysis were used to support the pathogenicity of the variant. Results Proband 1, a 26-year-old female from family I, exhibited scoliosis, bronchiectasis, sinusitis, situs inversus, and infertility. We found a novel homozygous missense variant in DNAAF2, c.491T>C, p.(Leu164Pro) in this patient. Subsequent immunofluorescence indicated the absence of outer dynein arm and inner dynein arm of cilia, and high-speed microscopy analysis showed that the most of the cilia are static, which support the pathogenicity of this variant. Proband 2, a 53-year-old female, presented with bronchiectasis, sinusitis, and infertility. In this patient, a new homozygous frameshift variant DNAAF2, c.822del, p.(Ala275Profs*10) was identified. The disease-causing variants mentioned above are not included in the current authorized genetic databases. Conclusion Our findings expand the spectrum of DNAAF2 variants and link DNAAF2 to female infertility and likely scoliosis in patients with PCD.
Collapse
Affiliation(s)
- Chenyang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Danhui Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Cheng Lei
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Rongchun Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Ting Guo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| |
Collapse
|
17
|
Lv X, Xu J, Jiang J, Wu P, Tan R, Wang B. Genetic animal models of scoliosis: A systematical review. Bone 2021; 152:116075. [PMID: 34174503 DOI: 10.1016/j.bone.2021.116075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Scoliosis is a complex disease with undetermined pathogenesis and has a strong relationship with genetics. Models of scoliosis in animals have been established for better comprehending its pathogenesis and treatment. In this review, we searched all the genetic animal models with body curvature in databases, and reviewed the related genes and scoliosis types. Meanwhile, we also summarized the pathogenesis of scoliosis reported so far. Summarizing the positive phenotypic animal models contributes to a better understanding on the pathogenesis of scoliosis and facilitates the selection of experimental models when a possible pathogenic factor is concerned.
Collapse
Affiliation(s)
- Xin Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jinghong Xu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jiajiong Jiang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Pengfei Wu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Renchun Tan
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
18
|
Diversity and function of motile ciliated cell types within ependymal lineages of the zebrafish brain. Cell Rep 2021; 37:109775. [PMID: 34610312 PMCID: PMC8524669 DOI: 10.1016/j.celrep.2021.109775] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/16/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Motile cilia defects impair cerebrospinal fluid (CSF) flow and can cause brain and spine disorders. The development of ciliated cells, their impact on CSF flow, and their function in brain and axial morphogenesis are not fully understood. We have characterized motile ciliated cells within the zebrafish brain ventricles. We show that the ventricles undergo restructuring through development, involving a transition from mono- to multiciliated cells (MCCs) driven by gmnc. MCCs co-exist with monociliated cells and generate directional flow patterns. These ciliated cells have different developmental origins and are genetically heterogenous with respect to expression of the Foxj1 family of ciliary master regulators. Finally, we show that cilia loss from the tela choroida and choroid plexus or global perturbation of multiciliation does not affect overall brain or spine morphogenesis but results in enlarged ventricles. Our findings establish that motile ciliated cells are generated by complementary and sequential transcriptional programs to support ventricular development. Glutamylated tubulin is enriched in cilia of foxj1-expressing cells in the zebrafish Motile ciliated ependymal cells in the zebrafish forebrain are highly diverse Gmnc drives the transition from mono- to multiciliated cells at juvenile stage Lack of multiciliation does not impact brain and spine morphogenesis
Collapse
|
19
|
Mechanics of neural tube morphogenesis. Semin Cell Dev Biol 2021; 130:56-69. [PMID: 34561169 DOI: 10.1016/j.semcdb.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
The neural tube is an important model system of morphogenesis representing the developmental module of out-of-plane epithelial deformation. As the embryonic precursor of the central nervous system, the neural tube also holds keys to many defects and diseases. Recent advances begin to reveal how genetic, cellular and environmental mechanisms work in concert to ensure correct neural tube shape. A physical model is emerging where these factors converge at the regulation of the mechanical forces and properties within and around the tissue that drive tube formation towards completion. Here we review the dynamics and mechanics of neural tube morphogenesis and discuss the underlying cellular behaviours from the viewpoint of tissue mechanics. We will also highlight some of the conceptual and technical next steps.
Collapse
|
20
|
Tang NLS, Dobbs MB, Gurnett CA, Qiu Y, Lam TP, Cheng JCY, Hadley-Miller N. A Decade in Review after Idiopathic Scoliosis Was First Called a Complex Trait-A Tribute to the Late Dr. Yves Cotrel for His Support in Studies of Etiology of Scoliosis. Genes (Basel) 2021; 12:1033. [PMID: 34356049 PMCID: PMC8306836 DOI: 10.3390/genes12071033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023] Open
Abstract
Adolescent Idiopathic Scoliosis (AIS) is a prevalent and important spine disorder in the pediatric age group. An increased family tendency was observed for a long time, but the underlying genetic mechanism was uncertain. In 1999, Dr. Yves Cotrel founded the Cotrel Foundation in the Institut de France, which supported collaboration of international researchers to work together to better understand the etiology of AIS. This new concept of AIS as a complex trait evolved in this setting among researchers who joined the annual Cotrel meetings. It is now over a decade since the first proposal of the complex trait genetic model for AIS. Here, we review in detail the vast information about the genetic and environmental factors in AIS pathogenesis gathered to date. More importantly, new insights into AIS etiology were brought to us through new research data under the perspective of a complex trait. Hopefully, future research directions may lead to better management of AIS, which has a tremendous impact on affected adolescents in terms of both physical growth and psychological development.
Collapse
Affiliation(s)
- Nelson L. S. Tang
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Functional Genomics and Biostatistical Computing Laboratory, CUHK Shenzhen Research Institute, Shenzhen 518000, China
| | - Matthew B. Dobbs
- Dobbs Clubfoot Center, Paley Orthopedic and Spine Institute, West Palm Beach, FL 33401, USA;
| | - Christina A. Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA;
| | - Yong Qiu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - T. P. Lam
- Department of Orthopaedics & Traumatology and SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.P.L.); (J.C.Y.C.)
| | - Jack C. Y. Cheng
- Department of Orthopaedics & Traumatology and SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.P.L.); (J.C.Y.C.)
| | - Nancy Hadley-Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80012, USA;
| |
Collapse
|
21
|
Prevalence of POC5 Coding Variants in French-Canadian and British AIS Cohort. Genes (Basel) 2021; 12:genes12071032. [PMID: 34356048 PMCID: PMC8306370 DOI: 10.3390/genes12071032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a complex common disorder of multifactorial etiology defined by a deviation of the spine in three dimensions that affects approximately 2% to 4% of adolescents. Risk factors include other affected family members, suggesting a genetic component to the disease. The POC5 gene was identified as one of the first ciliary candidate genes for AIS, as three variants were identified in large families with multiple members affected with idiopathic scoliosis. To assess the prevalence of p.(A429V), p.(A446T), and p.(A455P) POC5 variants in patients with AIS, we used next-generation sequencing in our cohort of French-Canadian and British families and sporadic cases. Our study highlighted a prevalence of 13% for POC5 variants, 7.5% for p.(A429V), and 6.4% for p.(A446T). These results suggest a higher prevalence of the aforementioned POC5 coding variants in patients with AIS compared to the general population.
Collapse
|
22
|
Aboitiz F, Montiel JF. The Enigmatic Reissner's Fiber and the Origin of Chordates. Front Neuroanat 2021; 15:703835. [PMID: 34248511 PMCID: PMC8261243 DOI: 10.3389/fnana.2021.703835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/03/2021] [Indexed: 12/02/2022] Open
Abstract
Reissner’s fiber (RF) is a secreted filament that floats in the neural canal of chordates. Since its discovery in 1860, there has been no agreement on its primary function, and its strong conservation across chordate species has remained a mystery for comparative neuroanatomists. Several findings, including the chemical composition and the phylogenetic history of RF, clinical observations associating RF with the development of the neural canal, and more recent studies suggesting that RF is needed to develop a straight vertebral column, may shed light on the functions of this structure across chordates. In this article, we will briefly review the evidence mentioned above to suggest a role of RF in the origin of fundamental innovations of the chordate body plan, especially the elongation of the neural tube and maintenance of the body axis. We will also mention the relevance of RF for medical conditions like hydrocephalus, scoliosis of the vertebral spine and possibly regeneration of the spinal cord.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan F Montiel
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago, Chile
| |
Collapse
|
23
|
Tun WM, Poologasundarampillai G, Bischof H, Nye G, King ONF, Basham M, Tokudome Y, Lewis RM, Johnstone ED, Brownbill P, Darrow M, Chernyavsky IL. A massively multi-scale approach to characterizing tissue architecture by synchrotron micro-CT applied to the human placenta. J R Soc Interface 2021; 18:20210140. [PMID: 34062108 PMCID: PMC8169212 DOI: 10.1098/rsif.2021.0140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022] Open
Abstract
Multi-scale structural assessment of biological soft tissue is challenging but essential to gain insight into structure-function relationships of tissue/organ. Using the human placenta as an example, this study brings together sophisticated sample preparation protocols, advanced imaging and robust, validated machine-learning segmentation techniques to provide the first massively multi-scale and multi-domain information that enables detailed morphological and functional analyses of both maternal and fetal placental domains. Finally, we quantify the scale-dependent error in morphological metrics of heterogeneous placental tissue, estimating the minimal tissue scale needed in extracting meaningful biological data. The developed protocol is beneficial for high-throughput investigation of structure-function relationships in both normal and diseased placentas, allowing us to optimize therapeutic approaches for pathological pregnancies. In addition, the methodology presented is applicable in the characterization of tissue architecture and physiological behaviours of other complex organs with similarity to the placenta, where an exchange barrier possesses circulating vascular and avascular fluid spaces.
Collapse
Affiliation(s)
- W. M. Tun
- Diamond Light Source, Didcot OX11 0DE, UK
| | | | - H. Bischof
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, Manchester, UK
- MAHSC, St Mary's Hospital, NHS MFT, Manchester M13 9WL, UK
| | - G. Nye
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK
| | | | - M. Basham
- Diamond Light Source, Didcot OX11 0DE, UK
- Rosalind Franklin Institute, Didcot OX11 0DE, UK
| | - Y. Tokudome
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - R. M. Lewis
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - E. D. Johnstone
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, Manchester, UK
- MAHSC, St Mary's Hospital, NHS MFT, Manchester M13 9WL, UK
| | - P. Brownbill
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, Manchester, UK
- MAHSC, St Mary's Hospital, NHS MFT, Manchester M13 9WL, UK
| | - M. Darrow
- SPT Labtech Ltd, Melbourn SG8 6HB, UK
| | - I. L. Chernyavsky
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, Manchester, UK
- MAHSC, St Mary's Hospital, NHS MFT, Manchester M13 9WL, UK
- Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|