1
|
Zhang Y, Xu F, Zhang Y, Chen S, Li H. Differential Methylation Analysis of Hypermelanosis in Chinese Tongue Sole (Cynoglossus semilaevis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:87. [PMID: 40399721 DOI: 10.1007/s10126-025-10467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/08/2025] [Indexed: 05/23/2025]
Abstract
Hypermelanosis on the blind side is a major concern in tongue sole (Cynoglossus semilaevis) aquaculture in China and causes great economic loss for farmers. To investigate the relationship between DNA methylation and hypermelanosis, different skin tissues on both the ocular and blind sides of both normal and hypermelanotic fish were used in this study, and set analysis was utilized to narrow and filter the possible, potential, and direct differentially methylated regions (DMRs). A total of 2278, 1015, and 6740 DMRs were discovered, which belonged to 1786, 908, and 4210 genes, for possible, potential, and direct methylation types, respectively. Enrichment analysis revealed that the genes harboring DMRs associated with hypermelanosis were involved in the development of the skeletal system and embryonic organs during morphogenesis. Tens of key genes were mutually found by comparing methylation results with reported transcriptomic, ncRNA, and genetic studies. These results implied that hypermelanosis on the blind side in tongue sole is a complex trait that is affected by both genetic factors and environmental conditions and is regulated by a complicated gene network.
Collapse
Affiliation(s)
- Yaqun Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
- Beidaihe Central Experimental Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Feng Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yitong Zhang
- Beidaihe Central Experimental Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China
| | - Songlin Chen
- Yellow Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Hengde Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China.
- Beidaihe Central Experimental Station, Chinese Academy of Fishery Sciences, Qinhuangdao, 066100, China.
| |
Collapse
|
2
|
Qu X, Yang R, Tan C, Chen H, Wang X. Astrocytes-Secreted WNT5B Disrupts the Blood-Brain Barrier Via ROR1/JNK/c-JUN Cascade During Meningitic Escherichia Coli Infection. Mol Neurobiol 2025; 62:661-673. [PMID: 38896157 DOI: 10.1007/s12035-024-04303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
The blood-brain barrier (BBB) is a complex structure that separates the central nervous system (CNS) from the peripheral blood circulation. Effective communication between different cell types within the BBB is crucial for its proper functioning and maintenance of homeostasis. In this study, we demonstrate that meningitic Escherichia coli (E. coli)-induced WNT5B plays a role in facilitating intercellular communication between astrocytes and brain microvascular endothelial cells (BMECs). We discovered that astrocytes-derived WNT5B activates the non-canonical WNT signaling pathway JNK/c-JUN in BMECs through its receptor ROR1, leading to inhibition of ZO-1 expression and impairment of the tight junction integrity in BMECs. Notably, our findings reveal that c-JUN, a transcription factor, directly regulates ZO-1 expression. By employing a dual luciferase reporting system and chromatin immunoprecipitation techniques, we identified specific binding sites of c-JUN on the ZO-1 promoter region. Overall, our study highlights the involvement of WNT5B in mediating intercellular communication between astrocytes and BMECs, provides insights into the role of WNT5B in meningitic E. coli-induced disruption of BBB integrity, and suggests potential therapeutic targeting of WNT5B as a strategy to address BBB dysfunction.
Collapse
Affiliation(s)
- Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
3
|
Shen J, Wang Q, Huang Q, Ying X, Wang Z, Xu Z, Dong J, Duan S. Recent Insights Into Wnt-Related tRNA-Derived Fragments (tRFs) in Human Diseases. J Cell Biochem 2025; 126:e30702. [PMID: 39835731 DOI: 10.1002/jcb.30702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/09/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
tRNA-derived fragments (tRFs) are a newly recognized class of small noncoding RNAs (sncRNAs) that play significant roles in various diseases. The Wnt pathway plays a key role in various physiological processes such as embryonic development, tissue renewal and regeneration. In the regulation of Wnt/β-catenin, Forkhead box k1(FOXK1), Frizzled class receptor 3 (FZD3), and Wnt5b can be targeted and inhibited by three tRFs: tRF3008A targets FOXK1 to inhibit colorectal cancer (CRC), 5'-tiRNAVal targets FZD3 to inhibit breast cancer (BrC), and tRF-22-8BWS7K092 targets Wnt5b to induce ferroptosis in lung cells. Additionally, tRF-24-V29K9UV3IU can inhibit the levels of FZD3, Van Gogh-like protein 1 (VANGL1), and cyclin D2 (CCND2) through an unexplained mechanism and play a role in inhibiting gastric cancer (GC). Clinical data has shown that the expression levels of certain tRFs are associated with the prognosis and pathological features of CRC and BrC patients. Low expression of tRF3008A is associated with poor prognosis and adverse pathological features in CRC patients, while high expression of tiRNA-Phe-GAA-003 and low expression of 5'-tiRNAVal are associated with poor prognosis and adverse pathological features in BrC patients. KEGG analysis has also shown that a variety of tRFs are involved in regulating the Wnt pathway and have been shown to play a role in a variety of diseases. For example, high expression of tRF-Gly-CCC-039 is associated with poor healing of diabetic foot, low expression of tsRNA-10277 is associated with high incidence of steroid-induced osteonecrosis of the femoral head (SONFH), high expression of tRF-22-8BWS7K092 is correlated with the severity of acute lung injury (ALI), and low expression of tsRNA-21109 is associated with the severity of systemic lupus erythematosus (SLE), and high expression of tRF-36-F900BY4D-84KRIME and tRF-23-87R8WP9IY, as well as low expression of tRF-40-86J8WPMN1E8Y7Z2R, were associated with high incidence of varicose vein (VV), and high expression of ts-34, was associated with high mortality of BrC. This article summarizes the biological function and mechanism of tRFs related to the Wnt pathway in cancer and other diseases, providing a new direction for subsequent translational medical research.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qinyuan Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xiaowei Ying
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhengfeng Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jingyin Dong
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Miranda-Carboni GA, Krum SA. Targeting WNT5B and WNT10B in osteosarcoma. Oncotarget 2024; 15:535-540. [PMID: 39102216 PMCID: PMC11299661 DOI: 10.18632/oncotarget.28617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
WNT signaling regulates osteosarcoma proliferation. However, there is controversy in the field of osteosarcoma as to whether WNT signaling is pro- or anti-tumorigenic. WNT-targeting therapeutics, both activators and inhibitors, are compared. WNT5B, a β-catenin-independent ligand, and WNT10B, a β-catenin-dependent WNT ligand, are each expressed in osteosarcomas, but they are not expressed in the same tumors. Furthermore, WNT10B and WNT5B regulate different histological subtypes of osteosarcomas. Using WNT signaling modulators as therapeutics may depend on the WNT ligand and/or the activated signaling pathway.
Collapse
Affiliation(s)
- Gustavo A. Miranda-Carboni
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Susan A. Krum
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Zhong BH, Dong M. The implication of ciliary signaling pathways for epithelial-mesenchymal transition. Mol Cell Biochem 2024; 479:1535-1543. [PMID: 37490178 PMCID: PMC11224103 DOI: 10.1007/s11010-023-04817-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT), which plays an essential role in development, tissue repair and fibrosis, and cancer progression, is a reversible cellular program that converts epithelial cells to mesenchymal cell states characterized by motility-invasive properties. The mostly signaling pathways that initiated and controlled the EMT program are regulated by a solitary, non-motile organelle named primary cilium. Acting as a signaling nexus, primary cilium dynamically concentrates signaling molecules to respond to extracellular cues. Recent research has provided direct evidence of connection between EMT and primary ciliogenesis in multiple contexts, but the mechanistic understanding of this relationship is complicated and still undergoing. In this review, we describe the current knowledge about the ciliary signaling pathways involved in EMT and list the direct evidence that shows the link between them, trying to figure out the intricate relationship between EMT and primary ciliogenesis, which may aid the future development of primary cilium as a novel therapeutic approach targeted to EMT.
Collapse
Affiliation(s)
- Bang-Hua Zhong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Perkins RS, Murray G, Suthon S, Davis L, Perkins NB, Fletcher L, Bozzi A, Schreiber SL, Lin J, Laxton S, Pillai RR, Wright AJ, Miranda‐Carboni GA, Krum SA. WNT5B drives osteosarcoma stemness, chemoresistance and metastasis. Clin Transl Med 2024; 14:e1670. [PMID: 38689429 PMCID: PMC11061378 DOI: 10.1002/ctm2.1670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Treatment for osteosarcoma, a paediatric bone cancer with no therapeutic advances in over three decades, is limited by a lack of targeted therapies. Osteosarcoma frequently metastasises to the lungs, and only 20% of patients survive 5 years after the diagnosis of metastatic disease. We found that WNT5B is the most abundant WNT expressed in osteosarcoma tumours and its expression correlates with metastasis, histologic subtype and reduced survival. METHODS Using tumor-spheroids to model cancer stem-like cells, we performed qPCR, immunoblotting, and immunofluorescence to monitor changes in gene and protein expression. Additionally, we measured sphere size, migration and forming efficiency to monitor phenotypic changes. Therefore, we characterised WNT5B's relevance to cancer stem-like cells, metastasis, and chemoresistance and evaluated its potential as a therapeutic target. RESULTS In osteosarcoma cell lines and patient-derived spheres, WNT5B is enriched in stem cells and induces the expression of the stemness gene SOX2. WNT5B promotes sphere size, sphere-forming efficiency, and cell proliferation, migration, and chemoresistance to methotrexate (but not cisplatin or doxorubicin) in spheres formed from conventional cell lines and patient-derived xenografts. In vivo, WNT5B increased osteosarcoma lung and liver metastasis and inhibited the glycosaminoglycan hyaluronic acid via upregulation of hyaluronidase 1 (HYAL1), leading to changes in the tumour microenvironment. Further, we identified that WNT5B mRNA and protein correlate with the receptor ROR1 in primary tumours. Targeting WNT5B through inhibition of WNT/ROR1 signalling with an antibody to ROR1 reduced stemness properties, including chemoresistance, sphere size and SOX2 expression. CONCLUSIONS Together, these data define WNT5B's role in driving osteosarcoma cancer stem cell expansion and methotrexate resistance and provide evidence that the WNT5B pathway is a promising candidate for treating osteosarcoma patients. KEY POINTS WNT5B expression is high in osteosarcoma stem cells leading to increased stem cell proliferation and migration through SOX2. WNT5B expression in stem cells increases rates of osteosarcoma metastasis to the lungs and liver in vivo. The hyaluronic acid degradation enzyme HYAL1 is regulated by WNT5B in osteosarcoma contributing to metastasis. Inhibition of WNT5B with a ROR1 antibody decreases osteosarcoma stemness.
Collapse
Affiliation(s)
- Rachel S. Perkins
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Center for Cancer ResearchUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Glenn Murray
- Department of PathologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of PathologyRegional One HospitalMemphisTennesseeUSA
| | - Sarocha Suthon
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Lindsey Davis
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Nicholson B. Perkins
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Lily Fletcher
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Amanda Bozzi
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Saylor L. Schreiber
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Jianjian Lin
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Steven Laxton
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Rahul R. Pillai
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Alec J. Wright
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- College of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Gustavo A. Miranda‐Carboni
- Department of PathologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Susan A. Krum
- Department of Orthopaedic Surgery and Biomedical EngineeringUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
- Center for Cancer ResearchUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
7
|
Xu X, Guo Y, Liu P, Zhang H, Wang Y, Li Z, Mei Y, Niu L, Liu R. Piezo Mediates the Mechanosensation and Injury-Repair of Pulpo-Dentinal Complex. Int Dent J 2024; 74:71-80. [PMID: 37833209 PMCID: PMC10829354 DOI: 10.1016/j.identj.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVES The aim of this research was to investigate the functions of Piezo channels in dentin defect, including mechanical signalling and odontoblast responses. METHODS Rat dentin-defect models were constructed, and spatiotemporal expression of Piezo proteins was detected in the pulpo-dentinal complex. Real-time polymerase chain reaction (rtPCR) was used to investigate the functional expression pattern of Piezo channels in odontoblasts. Moreover, RNA interference technology was employed to uncover the underlying mechanisms of the Piezo-driven inflammatory response and repair under fluid shear stress (FSS) conditions in vitro. RESULTS Piezo1 and Piezo2 were found to be widely expressed in the odontoblast layer and dental pulp in the rat dentin-defect model during the end stage of reparative dentin formation. The expression levels of the Piezo1 and Piezo2 genes in MDPC-23 cells were high in the initial stage under FSS loading and then decreased over time. Moreover, the expression trends of inflammatory, odontogenic, and mineralisation genes were generally contrary to those of Piezo1 and Piezo2 over time. After silencing of Piezo1/Piezo2, FSS stimulation resulted in significantly higher expression of inflammatory, odontogenesis, and mineralisation genes in MDPC-23 cells. Finally, the expression of genes involved in the integrin β1/ERK1 and Wnt5b/β-catenin signalling pathways was changed in response to RNA silencing of Piezo1 and Piezo2. CONCLUSIONS Piezo1 and Piezo2 may be involved in regulating the expression of inflammatory and odontogenic genes in odontoblasts stimulated by FSS.
Collapse
Affiliation(s)
- Xiaoqiao Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China
| | - Peiqi Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China
| | - Hui Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China
| | - Zhen Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China
| | - Yukun Mei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China; Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| | - Ruirui Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi' an, China; Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
8
|
Alve S, Gramolelli S, Jukonen J, Juteau S, Pink A, Manninen AA, Hänninen S, Monto E, Lackman MH, Carpén O, Saharinen P, Karaman S, Vaahtomeri K, Ojala PM. DLL4/Notch3/WNT5B axis mediates bidirectional prometastatic crosstalk between melanoma and lymphatic endothelial cells. JCI Insight 2024; 9:e171821. [PMID: 37971882 PMCID: PMC10906450 DOI: 10.1172/jci.insight.171821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Despite strong indications that interactions between melanoma and lymphatic vessels actively promote melanoma progression, the molecular mechanisms are not yet completely understood. To characterize molecular factors of this crosstalk, we established human primary lymphatic endothelial cell (LEC) cocultures with human melanoma cell lines. Here, we show that coculture with melanoma cells induced transcriptomic changes in LECs and led to multiple changes in their function. WNT5B, a paracrine signaling molecule upregulated in melanoma cells upon LEC interaction, was found to contribute to the functional changes in LECs. Moreover, WNT5B transcription was regulated by Notch3 in melanoma cells following the coculture with LECs, and Notch3 and WNT5B were coexpressed in melanoma patient primary tumor and metastasis samples. Moreover, melanoma cells derived from LEC coculture escaped efficiently from the primary site to the proximal tumor-draining lymph nodes, which was impaired upon WNT5B depletion. This supported the role of WNT5B in promoting the metastatic potential of melanoma cells through its effects on LECs. Finally, DLL4, a Notch ligand expressed in LECs, was identified as an upstream inducer of the Notch3/WNT5B axis in melanoma. This study elucidated WNT5B as a key molecular factor mediating bidirectional crosstalk between melanoma cells and lymphatic endothelium and promoting melanoma metastasis.
Collapse
Affiliation(s)
- Sanni Alve
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Silvia Gramolelli
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Joonas Jukonen
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Susanna Juteau
- Department of Pathology, Helsinki University Hospital (HUS), University of Helsinki, Helsinki, Finland
| | - Anne Pink
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Atte A. Manninen
- Department of Plastic Surgery, Park Hospital, Helsinki University Hospital (HUS), and
| | - Satu Hänninen
- Department of Pathology, Helsinki University Hospital (HUS), University of Helsinki, Helsinki, Finland
| | - Elisa Monto
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Madeleine H. Lackman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Helsinki Biobank, and
- Department of Pathology and Research Program in Systems Oncology, University of Helsinki, HUS Diagnostic Center, Helsinki University Hospital, Finland
| | - Pipsa Saharinen
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sinem Karaman
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum, Helsinki, Finland
| | - Kari Vaahtomeri
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum, Helsinki, Finland
| | - Päivi M. Ojala
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, Helsinki University Hospital (HUS), University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Motizuki M, Yokoyama T, Saitoh M, Miyazawa K. The Snail signaling branch downstream of the TGF-β/Smad3 pathway mediates Rho activation and subsequent stress fiber formation. J Biol Chem 2024; 300:105580. [PMID: 38141763 PMCID: PMC10821601 DOI: 10.1016/j.jbc.2023.105580] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023] Open
Abstract
Cancer cells acquire malignant phenotypes through an epithelial-mesenchymal transition, which is induced by environmental factors or extracellular signaling molecules, including transforming growth factor-β (TGF-β). Among epithelial-mesenchymal transition-associated cell responses, cell morphological changes and cell motility are closely associated with remodeling of the actin stress fibers. Here, we examined the TGF-β signaling pathways leading to these cell responses. Through knockdown experiments in A549 lung adenocarcinoma cells, we found that Smad3-mediated induction of Snail, but not that of Slug, is indispensable for morphological changes, stress fiber formation, and enhanced motility in cells stimulated with TGF-β. Ectopic expression of Snail in SMAD3-knockout cells rescued the defect in morphological changes and stress fiber formation by TGF-β, indicating that the role of Smad3 in these responses is to upregulate Snail expression. Mechanistically, Snail is required for TGF-β-induced upregulation of Wnt5b, which in turn activates RhoA and subsequent stress fiber formation in cooperation with phosphoinositide 3-kinase. However, ectopic expression of Snail in SMAD3-knockout cells failed to rescue the defect in cell motility enhancement by TGF-β, indicating that activation of the Smad3/Snail/Wnt5b axis is indispensable but not sufficient for enhancing cell motility; a Smad3-dependent but Snail-independent pathway to activate Rac1 is additionally required. Therefore, the Smad3-dependent pathway leading to enhanced cell motility has two branches: a Snail-dependent branch to activate RhoA and a Snail-independent branch to activate Rac1. Coordinated activation of these branches, together with activation of non-Smad signaling pathways, mediates enhanced cell motility induced by TGF-β.
Collapse
Affiliation(s)
- Mitsuyoshi Motizuki
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takashi Yokoyama
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Masao Saitoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan; Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
10
|
Yu EPY, Saxena V, Perin S, Ekker M. Loss of dlx5a/ dlx6a Locus Alters Non-Canonical Wnt Signaling and Meckel's Cartilage Morphology. Biomolecules 2023; 13:1347. [PMID: 37759750 PMCID: PMC10526740 DOI: 10.3390/biom13091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The dlx genes encode transcription factors that establish a proximal-distal polarity within neural crest cells to bestow a regional identity during craniofacial development. The expression regions of dlx paralogs are overlapping yet distinct within the zebrafish pharyngeal arches and may also be involved in progressive morphologic changes and organization of chondrocytes of the face. However, how each dlx paralog of dlx1a, dlx2a, dlx5a and dlx6a affects craniofacial development is still largely unknown. We report here that the average lengths of the Meckel's, palatoquadrate and ceratohyal cartilages in different dlx mutants were altered. Mutants for dlx5a-/- and dlx5i6-/-, where the entire dlx5a/dlx6a locus was deleted, have the shortest lengths for all three structures at 5 days post fertilization (dpf). This phenotype was also observed in 14 dpf larvae. Loss of dlx5i6 also resulted in increased proliferation of neural crest cells and expression of chondrogenic markers. Additionally, altered expression and function of non-canonical Wnt signaling were observed in these mutants suggesting a novel interaction between dlx5i6 locus and non-canonical Wnt pathway regulating ventral cartilage morphogenesis.
Collapse
Affiliation(s)
| | | | | | - Marc Ekker
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 94A, Canada (S.P.)
| |
Collapse
|
11
|
Chong W, Zhu X, Ren H, Ye C, Xu K, Wang Z, Jia S, Shang L, Li L, Chen H. Integrated multi-omics characterization of KRAS mutant colorectal cancer. Am J Cancer Res 2022; 12:5138-5154. [PMID: 35836817 PMCID: PMC9274732 DOI: 10.7150/thno.73089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/15/2022] [Indexed: 01/12/2023] Open
Abstract
KRAS mutation is the most frequent oncogenic aberration in colorectal cancer (CRC). The molecular mechanism and clinical implications of KRAS mutation in CRC remain unclear and show high heterogeneity within these tumors. Methods: We harnessed the multi-omics data (genomic, transcriptomic, proteomic, and phosphoproteomic etc.) of KRAS-mutant CRC tumors and performed unsupervised clustering to identify proteomics-based subgroups and molecular characterization. Results: In-depth analysis of the tumor microenvironment by single-cell transcriptomic revealed the cellular landscape of KRAS-mutant CRC tumors and identified the specific cell subsets with KRAS mutation. Integrated multi-omics analyses separated the KRAS-mutant tumors into two distinct molecular subtypes, termed KRAS-M1 (KM1) and KRAS-M2 (KM2). The two subtypes had a similar distribution of mutated residues in KRAS (G12D/V/C etc.) but were characterized by distinct features in terms of prognosis, genetic alterations, microenvironment dysregulation, biological phenotype, and potential therapeutic approaches. Proteogenomic analyses revealed that the EMT, TGF-β and angiogenesis pathways were enriched in the KM2 subtype and that the KM2 subtype was associated with the mesenchymal phenotype-related CMS4 subtype, which indicated stromal invasion and worse prognosis. The KM1 subtype was characterized predominantly by activation of the cell cycle, E2F and RNA transcription and was associated with the chromosomal instability (CIN)-related ProS-E proteomic subtype, which suggested cyclin-dependent features and better survival outcomes. Moreover, drug sensitivity analyses based on three compound databases revealed subgroup-specific agents for KM1 and KM2 tumors. Conclusions: This study clarifies the molecular heterogeneity of KRAS-mutant CRC and reveals new biological subtypes and therapeutic possibilities for these tumors.
Collapse
Affiliation(s)
- Wei Chong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xingyu Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Huicheng Ren
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chunshui Ye
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Kang Xu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhe Wang
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shengtao Jia
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.,✉ Corresponding authors: Dr. Hao Chen, Ph.D, Clinical Research Center of Shandong University, Unit of Clinical Epidemiology, Qilu Hospital of Shandong University, Jinan, Shandong 250021, P.R. China. E-mail: , . Prof. Leping Li, Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China. E-mail:
| | - Hao Chen
- Clinical Research Center of Shandong University, Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, 250021, China.,✉ Corresponding authors: Dr. Hao Chen, Ph.D, Clinical Research Center of Shandong University, Unit of Clinical Epidemiology, Qilu Hospital of Shandong University, Jinan, Shandong 250021, P.R. China. E-mail: , . Prof. Leping Li, Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China. E-mail:
| |
Collapse
|
12
|
Estrogen receptor alpha and NFATc1 bind to a bone mineral density-associated SNP to repress WNT5B in osteoblasts. Am J Hum Genet 2022; 109:97-115. [PMID: 34906330 DOI: 10.1016/j.ajhg.2021.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
Genetic factors and estrogen deficiency contribute to the development of osteoporosis. The single-nucleotide polymorphism (SNP) rs2887571 is predicted from genome-wide association studies (GWASs) to associate with osteoporosis but has had an unknown mechanism. Analysis of osteoblasts from 110 different individuals who underwent joint replacement revealed that the genotype of rs2887571 correlates with WNT5B expression. Analysis of our ChIP-sequencing data revealed that SNP rs2887571 overlaps with an estrogen receptor alpha (ERα) binding site. Here we show that 17β-estradiol (E2) suppresses WNT5B expression and further demonstrate the mechanism of ERα binding at the enhancer containing rs2887571 to suppress WNT5B expression differentially in each genotype. ERα interacts with NFATc1, which is predicted to bind directly at rs2887571. CRISPR-Cas9 and ChIP-qPCR experiments confirm differential regulation of WNT5B between each allele. Homozygous GG has a higher binding affinity for ERα than homozygous AA and results in greater suppression of WNT5B expression. Functionally, WNT5B represses alkaline phosphatase expression and activity, decreasing osteoblast differentiation and mineralization. Furthermore, WNT5B increases interleukin-6 expression and suppresses E2-induced expression of alkaline phosphatase during osteoblast differentiation. We show that WNT5B suppresses the differentiation of osteoblasts via receptor tyrosine kinase-like orphan receptor 1/2 (ROR1/2), which activates DVL2/3/RAC1/CDC42/JNK/SIN3A signaling and inhibits β-catenin activity. Together, our data provide mechanistic insight into how ERα and NFATc1 regulate the non-coding SNP rs2887571, as well as the function of WNT5B on osteoblasts, which could provide alternative therapeutic targets for osteoporosis.
Collapse
|