1
|
Lv M, Li X, Zheng C, Tian W, Yang H, Yin Z, Zhou B. Exosomal miR-130b-3p suppresses metastasis of non-small cell lung cancer cells by targeting DEPDC1 via TGF-β signaling pathway. Int J Biol Macromol 2024; 275:133594. [PMID: 38960258 DOI: 10.1016/j.ijbiomac.2024.133594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Exosomal miRNAs have vital functions in mediating intercellular communication as well as tumor occurrence and development. Thus, our research was aimed at exploring the regulatory mechanisms of exosomal miR-130b-3p/DEP domain containing 1 (DEPDC1)/transforming growth factor-β (TGF-β) signaling pathway in non-small cell lung cancer (NSCLC). Here we indicated that exosomal miR-130b-3p expression decreased in the serum of NSCLC patients, and it was of significant diagnostic value. Moreover, elevated miR-130b-3p levels suppressed the proliferation and migration of NSCLC cells, and enhanced their apoptosis. Conversely, miR-130b-3p down-regulation led to an opposite effect. As the upstream of DEPDC1, miR-130b-3p directly bound to 3'UTR in DEPDC1 to regulate its expression. DEPDC1 levels affected the proliferation, migration, and apoptosis of NSCLC cells via TGF-β signaling pathway. Exosomal miR-130b-3p was highly expressed in BEAS-2B cells, besides, BEAS-2B cells transferred exosomal miR-130b-3p to NSCLC cells. Finally, exosomal miR-130b-3p suppressed NSCLC cell growth and migration, promoted their apoptosis via TGF-β signaling pathway by decreasing DEPDC1 expression, and suppressed epithelial-mesenchymal transition (EMT) in NSCLC cells. In conclusion, exosomal miR-130b-3p has the potential to be a predictive biomarker for NSCLC, thereby stimulating the exploration of diagnostic and therapeutic approaches targeting NSCLC.
Collapse
Affiliation(s)
- Meiwen Lv
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Chang Zheng
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Wen Tian
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - He Yang
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Baosen Zhou
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Dionisi F, Landoni V, Widesott L, Nardangeli A, Fracchiolla F, Siniscalchi B, Soriani A, Turkaj A, Righetto R, Amelio D, Farace P, Goanta L, Trianni A, Lorentini S, Cianchetti M, Sanguineti G. Dosimetric and NTCP advantages of robust proton therapy over robust VMAT for Stage III NSCLC in the immunotherapy era. Phys Med 2024; 123:103410. [PMID: 38878630 DOI: 10.1016/j.ejmp.2024.103410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
AIMS To assess the robustness and to define the dosimetric and NTCP advantages of pencil-beam-scanning proton therapy (PBSPT) compared with VMAT for unresectable Stage III non-small lung cancer (NSCLC) in the immunotherapy era. MATERIAL AND METHODS 10 patients were re-planned with VMAT and PBSPT using: 1) ITV-based robust optimization with 0.5 cm setup uncertainties and (for PBSPT) 3.5 % range uncertainties on free-breathing CT 2) CTV-based RO including all 4DCTs anatomies. Target coverage (TC), organs at risk dose and TC robustness (TCR), set at V95%, were compared. The NTCP risk for radiation pneumonitis (RP), 24-month mortality (24MM), G2 + acute esophageal toxicity (ET), the dose to the immune system (EDIC) and the left anterior descending (LAD) coronary artery V15 < 10 % were registered. Wilcoxon test was used. RESULTS Both PBSPT methods improved TC and TCR (p < 0.01). The mean lung dose and lung V20 were lower with PBSPT (p < 0.01). Median mean heart dose reduction with PBSPT was 8 Gy (p < 0.001). PT lowered median LAD V15 (p = 0.004). ΔNTCP > 5 % with PBSPT was observed for two patients for RP and for five patients for 24 MM. ΔNTCP for ≥ G2 ET was not in favor of PBSPT for all patients. PBSPT halved median EDIC (4.9/5.1 Gy for ITV/CTV-based VMAT vs 2.3 Gy for both ITV/CTV-based PBSPT, p < 0.01). CONCLUSIONS PBSPT is a robust approach with significant dosimetric and NTCP advantages over VMAT; the EDIC reduction could allow for a better integration with immunotherapy. A clinical benefit for a subset of NSCLC patients is expected.
Collapse
Affiliation(s)
- F Dionisi
- Department of Research and Advanced Technology, Radiotherapy Unit, IRCCS Regina Elena National Cancer Institute-Rome, Italy.
| | - V Landoni
- Laboratory of Medical Physics and Expert Systems, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - L Widesott
- Medical Physics Department, APSS, Trento, Italy
| | - A Nardangeli
- Department of Research and Advanced Technology, Radiotherapy Unit, IRCCS Regina Elena National Cancer Institute-Rome, Italy
| | | | | | - A Soriani
- Laboratory of Medical Physics and Expert Systems, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - A Turkaj
- Proton Therapy Unit, APSS, Trento, Italy
| | - R Righetto
- Medical Physics Department, APSS, Trento, Italy
| | - D Amelio
- Proton Therapy Unit, APSS, Trento, Italy
| | - P Farace
- Medical Physics Department, APSS, Trento, Italy
| | - L Goanta
- Department of Research and Advanced Technology, Radiotherapy Unit, IRCCS Regina Elena National Cancer Institute-Rome, Italy
| | - A Trianni
- Medical Physics Department, APSS, Trento, Italy
| | - S Lorentini
- Medical Physics Department, APSS, Trento, Italy
| | | | - G Sanguineti
- Department of Research and Advanced Technology, Radiotherapy Unit, IRCCS Regina Elena National Cancer Institute-Rome, Italy
| |
Collapse
|
3
|
Xie M, Wang X, Wang P, Liu A, Wen Y, Xiao B. Efficacy of immune checkpoint inhibitors along with chemotherapy in non-small cell lung cancer and the impact on adverse reactions and serum tumor markers. Am J Transl Res 2023; 15:5276-5283. [PMID: 37692929 PMCID: PMC10492085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE To examine the efficacy of immune checkpoint inhibitors along with chemotherapy in non-small cell lung cancer (NSCLC) and the effect on adverse reactions and serum tumor markers. METHODS Data of 112 NSCLC patients admitted to Geriatric respiratory department, Xi'an International Medical Center Hospital from February 2018 to March 2021 were analyzed retrospectively. Among them, 54 patients treated with concurrent chemotherapy were labeled as the control group (CG), and 58 patients treated with PD-1/PD-L1 inhibitors in addition to chemotherapy were the observation group (OG). The two groups were compared in terms of immune function indexes, therapeutic efficacy, incidence of adverse reactions, 1-year survival rate, serum tumor markers before and after treatment, and independent risk factors affecting patients' prognosis. RESULTS Compared to the CG, the OG exhibited significantly better therapeutic efficacy. The levels of IgG, IgA and IgM 6 months after treatment were significantly higher in both groups than those before treatment, and the elevations in the OG were more evident than those in the CG, and the OG demonstrated markedly lower Recombinant Cytokeratin Fragment Antigen 21-1 (CYFRA21-1), Carcinoembryonic antigen (CEA) and Carbohydrate antigen 125 (CA125) levels after treatment than the CG did. Between the two groups, there was no significant difference identified in the incidence of adverse reactions, but the OG was observed to have much higher 1-year survival rate. The pathological stage, differentiation and treatment regimen were independent risk factors affecting patients' prognosis. CONCLUSION For NSCLC patients, the adoption of PD-1/PD-L1 inhibitors following chemoradiotherapy shows potential in enhancing clinical efficacy, boosting patients' immune function, and improving long-term survival rates, with premising safety profile.
Collapse
Affiliation(s)
- Miao Xie
- Geriatric Respiratory Department, Xi'an International Medical Center Hospital No. 777 Xitai Road, High Tech Zone, Xi'an 710075, Shaanxi, China
| | - Xinlin Wang
- Interventional Oncology Department, The Third People's Hospital of Gansu Province No. 763 Jiatan Road, Chengguan District, Lanzhou 730000, Gansu, China
| | - Peng Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital No. 161 Xiwu Road, Xincheng District, Xi'an 710075, Shaanxi, China
| | - An Liu
- Geriatric Department I, Xi'an International Medical Center Hospital No. 777 Xitai Road, High Tech Zone, Xi'an 710075, Shaanxi, China
| | - Yurong Wen
- Radiology Interventional Department, Lanzhou University Second Hospital No. 82 Cuiyingmen, Chengguan District, Lanzhou 730000, Gansu, China
| | - Bing Xiao
- Interventional Oncology Department, The Third People's Hospital of Gansu Province No. 763 Jiatan Road, Chengguan District, Lanzhou 730000, Gansu, China
| |
Collapse
|
4
|
Gates EDH, Hippe DS, Vesselle HJ, Zeng J, Bowen SR. Independent association of metabolic tumor response on FDG-PET with pulmonary toxicity following risk-adaptive chemoradiation for unresectable non-small cell lung cancer: Inherent radiosensitivity or immune response? Radiother Oncol 2023; 185:109720. [PMID: 37244360 PMCID: PMC10525017 DOI: 10.1016/j.radonc.2023.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND In the context of a phase II trial of risk-adaptive chemoradiation, we evaluated whether tumor metabolic response could serve as a correlate of treatment sensitivity and toxicity. METHODS Forty-five patients with AJCCv7 stage IIB-IIIB NSCLC enrolled on the FLARE-RT phase II trial (NCT02773238). [18F]fluorodeoxyglucose (FDG) PET-CT images were acquired prior to treatment and after 24 Gy during week 3. Patients with unfavorable on-treatment tumor response received concomitant boosts to 74 Gy total over 30 fractions rather than standard 60 Gy. Metabolic tumor volume and mean standardized uptake value (SUVmean) were calculated semi-automatically. Risk factors of pulmonary toxicity included concurrent chemotherapy regimen, adjuvant anti-PDL1 immunotherapy, and lung dosimetry. Incidence of CTCAE v4 grade 2+ pneumonitis was analyzed using the Fine-Gray method with competing risks of metastasis or death. Peripheral germline DNA microarray sequencing measured predefined candidate genes from distinct pathways: 96 DNA repair, 53 immunology, 38 oncology, 27 lung biology. RESULTS Twenty-four patients received proton therapy, 23 received ICI, 26 received carboplatin-paclitaxel, and 17 pneumonitis events were observed. Pneumonitis risk was significantly higher for patients with COPD (HR 3.78 [1.48, 9.60], p = 0.005), those treated with immunotherapy (HR 2.82 [1.03, 7.71], p = 0.043) but not with carboplatin-paclitaxel (HR 1.98 [0.71, 5.54], p = 0.19). Pneumonitis rates were similar among selected patients receiving 74 Gy radiation vs 60 Gy (p = 0.33), proton therapy vs photon (p = 0.60), or with higher lung dosimetric V20 (p = 0.30). Patients in the upper quartile decrease in SUVmean (>39.7%) were at greater risk for pneumonitis (HR 4.00 [1.54, 10.44], p = 0.005) and remained significant in multivariable analysis (HR 3.34 [1.23, 9.10], p = 0.018). Germline DNA gene alterations in immunology pathways were most frequently associated with pneumonitis. CONCLUSION Tumor metabolic response as measured by mean SUV is associated with increased pneumonitis risk in a clinical trial cohort of NSCLC patients independent of treatment factors. This may be partially attributed to patient-specific differences in immunogenicity.
Collapse
Affiliation(s)
- Evan D H Gates
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Daniel S Hippe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Hubert J Vesselle
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Jing Zeng
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States; Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
5
|
Bowen SR, Hippe DS, Thomas HM, Sasidharan B, Lampe PD, Baik CS, Eaton KD, Lee S, Martins RG, Santana-Davila R, Chen DL, Kinahan PE, Miyaoka RS, Vesselle HJ, Houghton AM, Rengan R, Zeng J. Prognostic Value of Early Fluorodeoxyglucose-Positron Emission Tomography Response Imaging and Peripheral Immunologic Biomarkers: Substudy of a Phase II Trial of Risk-Adaptive Chemoradiation for Unresectable Non-Small Cell Lung Cancer. Adv Radiat Oncol 2022; 7:100857. [PMID: 35387421 PMCID: PMC8977846 DOI: 10.1016/j.adro.2021.100857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose We sought to examine the prognostic value of fluorodeoxyglucose-positron emission tomography (PET) imaging during chemoradiation for unresectable non-small cell lung cancer for survival and hypothesized that tumor PET response is correlated with peripheral T-cell function. Methods and Materials Forty-five patients with American Joint Committee on Cancer version 7 stage IIB-IIIB non-small cell lung cancer enrolled in a phase II trial and received platinum-doublet chemotherapy concurrent with 6 weeks of radiation (NCT02773238). Fluorodeoxyglucose-PET was performed before treatment start and after 24 Gy of radiation (week 3). PET response status was prospectively defined by multifactorial radiologic interpretation. PET responders received 60 Gy in 30 fractions, while nonresponders received concomitant boosts to 74 Gy in 30 fractions. Peripheral blood was drawn synchronously with PET imaging, from which germline DNA sequencing, T-cell receptor sequencing, and plasma cytokine analysis were performed. Results Median follow-up was 18.8 months, 1-year overall survival (OS) 82%, 1-year progression-free survival 53%, and 1-year locoregional control 88%. Higher midtreatment PET total lesion glycolysis was detrimental to OS (1 year 87% vs 63%, P < .001), progression-free survival (1 year 60% vs 26%, P = .044), and locoregional control (1 year 94% vs 65%, P = .012), even after adjustment for clinical/treatment factors. Twenty-nine of 45 patients (64%) were classified as PET responders based on a priori definition. Higher tumor programmed death-ligand 1 expression was correlated with response on PET (P = .017). Higher T-cell receptor richness and clone distribution slope were associated with improved OS (P = .018-0.035); clone distribution slope was correlated with PET response (P = .031). Conclusions Midchemoradiation PET imaging is prognostic for survival; PET response may be linked to tumor and peripheral T-cell biomarkers.
Collapse
Affiliation(s)
- Stephen R. Bowen
- Radiation Oncology and
- Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Daniel S. Hippe
- Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Hannah M. Thomas
- Department of Radiation Oncology, Christian Medical College, Vellore, India
| | | | - Paul D. Lampe
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Christina S. Baik
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Keith D. Eaton
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Sylvia Lee
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Renato G. Martins
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Rafael Santana-Davila
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Delphine L. Chen
- Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Paul E. Kinahan
- Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Robert S. Miyaoka
- Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Hubert J. Vesselle
- Radiology, University of Washington School of Medicine, Seattle, Washington
| | - A. McGarry Houghton
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ramesh Rengan
- Radiation Oncology and
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | |
Collapse
|