1
|
Sardarabadi H, Kiani S, Karkhanechi H, Mousavi SM, Saljoughi E, Matsuyama H. Effect of Nanofillers on Properties and Pervaporation Performance of Nanocomposite Membranes: A Review. MEMBRANES 2022; 12:membranes12121232. [PMID: 36557140 PMCID: PMC9785865 DOI: 10.3390/membranes12121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 05/12/2023]
Abstract
In recent years, a well-known membrane-based process called pervaporation (PV), has attracted remarkable attention due to its advantages for selective separation of a wide variety of liquid mixtures. However, some restrictions of polymeric membranes have led to research studies on developing membranes for efficient separation in the PV process. Recent studies have focused on preparation of nanocomposite membranes as an effective method to improve both selectivity and permeability of polymeric membranes. The present study provides a review of PV nanocomposite membranes for various applications. In this review, recent developments in the field of nanocomposite membranes, including the fabrication methods, characterization, and PV performance, are summarized.
Collapse
Affiliation(s)
- Hamideh Sardarabadi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Shirin Kiani
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Hamed Karkhanechi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Seyed Mahmoud Mousavi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ehsan Saljoughi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Correspondence:
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Yeang QW, Sulong AB, Tan SH. Electrospun carboxyl‐functionalised multi‐walled carbon nanotube/poly(vinyl alcohol) asymmetric pervaporation membrane: Application and modeling. J Appl Polym Sci 2022. [DOI: 10.1002/app.51953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qian Wen Yeang
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia Seri Ampangan Malaysia
| | - Abu Bakar Sulong
- Faculty of Engineering and Built Environment, Department of Mechanical and Materials Engineering Universiti Kebangsaan Malaysia Bangi Selangor Malaysia
| | - Soon Huat Tan
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia Seri Ampangan Malaysia
| |
Collapse
|
3
|
Amir M, Bano N, Baker A, Zia Q, Banawas S, Zaheer MR, Shariq M, Nawaz MS, Khan MF, Azad ZRAA, Gupta A, Iqbal D. Isolation and optimization of extracellular PHB depolymerase producer Aeromonas caviae Kuk1-(34) for sustainable solid waste management of biodegradable polymers. PLoS One 2022; 17:e0264207. [PMID: 35421107 PMCID: PMC9009665 DOI: 10.1371/journal.pone.0264207] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/05/2022] [Indexed: 11/19/2022] Open
Abstract
Bioplastics, synthesized by several microbes, accumulates inside cells under stress conditions as a storage material. Several microbial enzymes play a crucial role in their degradation. This research was carried to test the biodegradability of poly-β-hydroxybutyrate (PHB) utilizing PHB depolymerase, produced by bacteria isolated from sewage waste soil samples. Potent PHB degrader was screened based on the highest zone of hydrolysis followed by PHB depolymerase activity. Soil burial method was employed to check their degradation ability at different incubation periods of 15, 30, and 45 days at 37±2°C, pH 7.0 at 60% moisture with 1% microbial inoculum of Aeromonas caviae Kuk1-(34) (MN414252). Without optimized conditions, 85.76% of the total weight of the PHB film was degraded after 45 days. This degradation was confirmed with Fourier-transform infrared spectroscopy (FTIR) and Scanning electron microscope (SEM) analysis. The presence of bacterial colonies on the surface of the degraded film, along with crest, holes, surface erosion, and roughness, were visible. Media optimization was carried out in statistical mode using Plackett Burman (PB) and Central Composite Design (CCD) of Response Surface Methodology (RSM) by considering ten different factors. Analysis of Variance (ANOVA), Pareto chart, response surface plots, and F-value of 3.82 implies that the above statistical model was significant. The best production of PHB depolymerase enzyme (14.98 U/mL) was observed when strain Kuk1-(34) was grown in a media containing 0.1% PHB, K2HPO4 (1.6 gm/L) at 27 ℃ for seven days. Exploiting these statistically optimized conditions, the culture was found to be a suitable candidate for the management of solid waste, where 94.4% of the total weight of the PHB film was degraded after 45 days of incubation.
Collapse
Affiliation(s)
- Mohammad Amir
- Protein Research Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Naushin Bano
- Protein Research Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Abu Baker
- Protein Research Laboratory, Department of Bioengineering, Integral University, Lucknow, India
| | - Qamar Zia
- Health and Basic Science Research Centre, Majmaah University, Majmaah, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Saeed Banawas
- Health and Basic Science Research Centre, Majmaah University, Majmaah, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Mohd Rehan Zaheer
- Department of Science, Gagan College of Management and Technology, Aligarh, India
| | - Mohammad Shariq
- Department of Physics, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Md Sarfaraz Nawaz
- Department of Chemistry, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Mohd Farhan Khan
- Department of Science, Gagan College of Management and Technology, Aligarh, India
- Nano Solver Lab, Department of Mechanical Engineering, Z. H. College of Engineering & Technology, Aligarh Muslim University, Aligarh, India
| | - Z R Azaz Ahmad Azad
- Department of Post-Harvest Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Anamika Gupta
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
4
|
Vatanpour V, Yavuzturk Gul B, Zeytuncu B, Korkut S, İlyasoğlu G, Turken T, Badawi M, Koyuncu I, Saeb MR. Polysaccharides in fabrication of membranes: A review. Carbohydr Polym 2022; 281:119041. [DOI: 10.1016/j.carbpol.2021.119041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
|
5
|
Gao J, Li T, Song M, Zhao Y, Wang A. Effective dispersion of oxidized multi-walled carbon nanotubes using a water-soluble N, O-carboxymethyl chitosan via non-covalent interaction. RSC Adv 2022; 12:23754-23761. [PMID: 36090392 PMCID: PMC9394589 DOI: 10.1039/d2ra03592h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Dispersible multi-walled carbon nanotubes (MWCNTs) in water have been widely applied in the nanotechnology field. This study reports a water-soluble N,O-carboxymethyl chitosan(N,O-CMCS) assisted individual dispersion of oxidized multi-walled carbon nanotubes (oMWCNTs) as a dispersant. First, the dispersing agent N,O-CMCS was successfully synthesized using the nucleophilic substitution of deacetylated chitosan with chloroacetic acid in an alkaline solution. It was further confirmed using Fourier transform infrared spectroscopy (FTIR). Second, after the treatment with the concentrated hydrochloric acid, the prepared oMWCNTs were dispersed in an aqueous solution of N,O-CMCS under ultrasonic vibrations. Finally, the dispersed aqueous solution was subjected to centrifugation to collect the supernatant of individually dispersed N,O-CMCS/oMWCNTs. In addition, transmission electron microscopy (TEM) further confirmed that the purity of oMWCNTs was improved after the acidification progress. Besides, the stability of the dispersion solution was evidenced by digital photos of oMWCNTs dispersed by N,O-CMCS before and after. Moreover, the UV-vis spectrum (the characteristic peak of dispersed oMWCNTs downshifted 13 nm) showed that the supernatant was enriched by the individual oMWCNTs. In particular, the analytical results of FTIR (the –NH2 band of N,O-CMCS downshifted 7 cm−1), resonance Raman spectroscopy (the ID/IG ratio of dispersed oMWCNTs only increased 0.14), and XRD identified the formation of a non-convalent interaction between N,O-CMCS and oMWCNTs. These findings reveal the dispersing nature of N,O-CMCS towards oMWCNTs in water media. The stability of a dispersion solution was evidenced by images of oMWCNTs-dispersed by N,O-CMCS before (b) and after (a). UV-vis further showed that individual oMWCNTs were enriched via the non-covalent interaction between oMWCNTs and N,O-CMCS.![]()
Collapse
Affiliation(s)
- Jinling Gao
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Tongtong Li
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mingzhe Song
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuyao Zhao
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Anxu Wang
- College of Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| |
Collapse
|
6
|
Raeisi Z, Moheb A, Arani MN, Sadeghi M. Non-covalently-functionalized CNTs incorporating poly(vinyl alcohol) mixed matrix membranes for pervaporation separation of water-isopropanol mixtures. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Understanding the Barrier and Mechanical Behavior of Different Nanofillers in Chitosan Films for Food Packaging. Polymers (Basel) 2021; 13:polym13050721. [PMID: 33653012 PMCID: PMC7956210 DOI: 10.3390/polym13050721] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
The continuous petroleum-based plastics manufacturing generates disposal issues, spreading the problem of plastic pollution and its rise in the environment. Recently, innovative techniques and scientific research promoted biopolymers as the primary alternative for traditional plastics, raising and expanding global bioplastic production. Due to its unmatched biological and functional attributes, chitosan (Ch) has been substantially explored and employed as a biopolymeric matrix. Nevertheless, the hydrophilicity and the weak mechanical properties associated with this biopolymer represent a significant intrinsic restriction to its implementation into some commercial applications, namely, in food packaging industries. Distinct methodologies have been utilized to upgrade the mechanical and barrier properties of Ch, such as using organic or inorganic nanofillers, crosslinkers, or blends with other polymers. This review intends to analyze the most recent works that combine the action of different nanoparticle types with Ch films to reinforce their mechanical and barrier properties.
Collapse
|
8
|
Marques A, Luz SMD. Use of biodegradable polymer for development of environmental tracers: a bibliometric review. POLIMEROS 2021. [DOI: 10.1590/0104-1428.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Adriana Marques
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Brasil
| | | |
Collapse
|
9
|
Separation of Benzene/Cyclohexane Mixtures by Pervaporation Using Poly (Ethylene-Co-Vinylalcohol) and Carbon Nanotube-Filled Poly (Vinyl Alcohol-Co-Ethylene) Membranes. SEPARATIONS 2020. [DOI: 10.3390/separations7040068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Poly(ethylene-co-vinylalcohol) (E-VOH) and carbon nanotube-filled poly (vinyl alcohol-co-ethylene) (E-VOH/CNT) were used as membranes to separate benzene/cyclohexane mixtures by pervaporation technique. To reach this goal, E-VOH and E-VOH/CNT membranes were prepared by solvent casting method and characterized by differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The swelling tests were used to study the mass transfer of the benzene/cyclohexane mixture and their pure components. The separation by pervaporation process was carried out at 25 °C in which the effect of CNTs incorporated into E-VOH matrix and the initial concentration of benzene in the feed on the permeate flux, j, and separation factor, β, performance was investigated. The results obtained were very promising, in which the integration of CNTs through E-VOH chains increased the absorption area and raised the flux to 740 g/m2∙h. The separation factor increased to 9.03 and the pervaporation separation reached an index of 5942.2 g/m2∙h for the azeotropic mixture during 3 h of the separation process. In contrast, for the unfilled E-VOH membrane, it was found that these parameters were a rise of 280 g∙m−2∙h−1, separation factor of 12.90 and pervaporation separation index of 3332.0 g/m2∙h, under the same conditions. Likewise, the calculation of the performance of the E-VOH/CNT membrane with regard to that of the unfilled membrane indicated 2.64 for the total flux and 0.70 for the separation factor. It was also revealed that the best compromise of the filled membrane in terms of total cumulative flux and separation factor is obtained for the feed containing the azeotropic mixture.
Collapse
|
10
|
Jiménez-Gómez CP, Cecilia JA. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020; 25:E3981. [PMID: 32882899 PMCID: PMC7504732 DOI: 10.3390/molecules25173981] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022] Open
Abstract
Although chitin is of the most available biopolymers on Earth its uses and applications are limited due to its low solubility. The deacetylation of chitin leads to chitosan. This biopolymer, composed of randomly distributed β-(1-4)-linked D-units, has better physicochemical properties due to the facts that it is possible to dissolve this biopolymer under acidic conditions, it can adopt several conformations or structures and it can be functionalized with a wide range of functional groups to modulate its superficial composition to a specific application. Chitosan is considered a highly biocompatible biopolymer due to its biodegradability, bioadhesivity and bioactivity in such a way this biopolymer displays a wide range of applications. Thus, chitosan is a promising biopolymer for numerous applications in the biomedical field (skin, bone, tissue engineering, artificial kidneys, nerves, livers, wound healing). This biopolymer is also employed to trap both organic compounds and dyes or for the selective separation of binary mixtures. In addition, chitosan can also be used as catalyst or can be used as starting molecule to obtain high added value products. Considering these premises, this review is focused on the structure and modification of chitosan as well as its uses and applications.
Collapse
Affiliation(s)
| | - Juan Antonio Cecilia
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Malaga, Spain;
| |
Collapse
|
11
|
Qazi RA, Khan MS, Shah LA, Ullah R, Kausar A, Khattak R. Eco-friendly electronics, based on nanocomposites of biopolyester reinforced with carbon nanotubes: a review. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1719137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Raina Aman Qazi
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
- National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Mohammad Saleem Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Rizwan Ullah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Ayesha Kausar
- National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
- National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Rozina Khattak
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| |
Collapse
|
12
|
Dudek G, Turczyn R, Konieczny K. Robust poly(vinyl alcohol) membranes containing chitosan/chitosan derivatives microparticles for pervaporative dehydration of ethanol. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Esmaeili M, Rajabi L, Bakhtiari O. Preparation and characterization of chitosan-boehmite nanocomposite membranes for pervaporative ethanol dehydration. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1646611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mohsen Esmaeili
- Polymer Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| | - Laleh Rajabi
- Polymer Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| | - Omid Bakhtiari
- Membrane Research Center, Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| |
Collapse
|
14
|
Raeisi Z, Moheb A, Sadeghi M, Abdolmaleki A, Alibouri M. Titanate nanotubes–incorporated poly(vinyl alcohol) mixed matrix membranes for pervaporation separation of water-isopropanol mixtures. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Gupta O, Roy S, Mitra S. Enhanced membrane distillation of organic solvents from their aqueous mixtures using a carbon nanotube immobilized membrane. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Yeang QW, Sulong AB, Tan SH. Asymmetric membrane containing electrospun Cu-BTC/poly(vinyl alcohol) for pervaporation dehydration of 1,4-dioxane. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Roy S, Singha NR. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects. MEMBRANES 2017; 7:membranes7030053. [PMID: 28885591 PMCID: PMC5618138 DOI: 10.3390/membranes7030053] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022]
Abstract
Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.
Collapse
Affiliation(s)
- Sagar Roy
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Kolkata-700106, West Bengal, India.
| |
Collapse
|
18
|
Rivas LF, Casarin SA, Nepomuceno NC, Alencar MI, Agnelli JAM, Medeiros ESD, Wanderley Neto ADO, Oliveira MPD, Medeiros AMD, Santos ASFE. Reprocessability of PHB in extrusion: ATR-FTIR, tensile tests and thermal studies. POLIMEROS 2017. [DOI: 10.1590/0104-1428.2406] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Sianipar M, Kim SH, Khoiruddin K, Iskandar F, Wenten IG. Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv 2017. [DOI: 10.1039/c7ra08570b] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Various approaches have been investigated to functionalize CNT for achieving a high dispersion of CNT as well as high compatibility between CNT and polymer matrix which lead to improvement of membrane properties and performances.
Collapse
Affiliation(s)
- Merry Sianipar
- Research Center for Nanosciences and Nanotechnology
- Institut Teknologi Bandung
- Bandung 40132
- Indonesia
| | - Seung Hyun Kim
- Civil Engineering Department
- Kyungnam University
- Changwon-si
- Republic of Korea
| | - Khoiruddin Khoiruddin
- Chemical Engineering Department
- Institut Teknologi Bandung (ITB)
- Bandung 40132
- Indonesia
| | - Ferry Iskandar
- Research Center for Nanosciences and Nanotechnology
- Institut Teknologi Bandung
- Bandung 40132
- Indonesia
- Department of Physics
| | - I Gede Wenten
- Research Center for Nanosciences and Nanotechnology
- Institut Teknologi Bandung
- Bandung 40132
- Indonesia
- Chemical Engineering Department
| |
Collapse
|
20
|
Salehi E, Daraei P, Arabi Shamsabadi A. A review on chitosan-based adsorptive membranes. Carbohydr Polym 2016; 152:419-432. [DOI: 10.1016/j.carbpol.2016.07.033] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
|
21
|
Jafari Sanjari A, Asghari M. A Review on Chitosan Utilization in Membrane Synthesis. CHEMBIOENG REVIEWS 2016. [DOI: 10.1002/cben.201500020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Dudek G, Gnus M, Strzelewicz A, Turczyn R, Krasowska M. Permeation of ethanol and water vapors through chitosan membranes with ferroferric oxide particles cross-linked by glutaraldehyde and sulfuric(VI) acid. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1173701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Małgorzata Gnus
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Anna Strzelewicz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Monika Krasowska
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
23
|
Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int J Biol Macromol 2016; 89:161-74. [PMID: 27126172 DOI: 10.1016/j.ijbiomac.2016.04.069] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 02/02/2023]
Abstract
Traditional mineral oil based plastics are important commodity to enhance the comfort and quality of life but the accumulation of these plastics in the environment has become a major universal problem due to their low biodegradation. Solution to the plastic waste management includes incineration, recycling and landfill disposal methods. These processes are very time consuming and expensive. Biopolymers are important alternatives to the petroleum-based plastics due to environment friendly manufacturing processes, biodegradability and biocompatibility. Therefore use of novel biopolymers, such as polylactide, polysaccharides, aliphatic polyesters and polyhydroxyalkanoates is of interest. PHAs are biodegradable polyesters of hydroxyalkanoates (HA) produced from renewable resources by using microorganisms as intracellular carbon and energy storage compounds. Even though PHAs are promising candidate for biodegradable polymers, however, the production cost limit their application on an industrial scale. This article provides an overview of various substrates, microorganisms for the economical production of PHAs and its copolymers. Recent advances in PHAs to reduce the cost and to improve the performance of PHAs have also been discussed.
Collapse
Affiliation(s)
- Anbreen Anjum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| |
Collapse
|
24
|
Kampeerapappun P. The electrospun polyhydroxybutyrate fibers reinforced with cellulose nanocrystals: Morphology and properties. J Appl Polym Sci 2016. [DOI: 10.1002/app.43273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Piyaporn Kampeerapappun
- Division of Textile Chemical Engineering; Faculty of Textile Industries Rajamangala University of Technology Krungthep; Bangkok 10210 Thailand
| |
Collapse
|
25
|
Ong YT, Ahmad AL, Zein SHS, Sudesh K, Tan SH. Rebuttal to the comment on article “Poly(3-hydroxybutyrate)-functionalised multi-walled carbon nanotubes/chitosan green nanocomposite membranes and their application in pervaporation”. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2015.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Ong YT, Ahmad AL, Zein SHS, Tan H. Authors' Reply to the Letter to the Editor: Reply to "Non green perspective on biodegradable polymer nanocomposites". BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2015. [DOI: 10.1590/0104-6632.20150324r20150178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - Huat Tan
- Universiti Sains Malaysia, Malaysia
| |
Collapse
|
27
|
Gao B, Jiang Z, Zhao C, Gomaa H, Pan F. Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.05.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
|
29
|
Zargar V, Asghari M, Dashti A. A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. CHEMBIOENG REVIEWS 2015. [DOI: 10.1002/cben.201400025] [Citation(s) in RCA: 470] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Mallakpour S, Madani M. Effects of glucose-functionalized multiwalled carbon nanotubes on the structural, mechanical, and thermal properties of chitosan nanocomposite films. J Appl Polym Sci 2015. [DOI: 10.1002/app.42022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory; Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Islamic Republic of Iran
- Nanotechnology and Advanced Materials Institute, Isfahan University of Technology; Isfahan 84156-83111 Islamic Republic of Iran
- Center of Excellence in Sensors and Green Chemistry; Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Islamic Republic of Iran
| | - Maryam Madani
- Organic Polymer Chemistry Research Laboratory; Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Islamic Republic of Iran
| |
Collapse
|
31
|
Radhakrishnan J, Gandham GSPD, Sethuraman S, Subramanian A. Phase-induced porous composite microspheres sintered scaffold with protein–mineral interface for bone tissue engineering. RSC Adv 2015. [DOI: 10.1039/c4ra15104f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phase induced porous composite microspheres were solvent/non-solvent sintered to construct 3D multi-scale porous biomimetic scaffolds with and without protein for bone tissue engineering.
Collapse
Affiliation(s)
- Janani Radhakrishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur
- India
| | | | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur
- India
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur
- India
| |
Collapse
|
32
|
Mallakpour S, Madani M. Valine amino acid-functionalized multiwalled carbon nanotube/chitosan green nanocomposite membranes. HIGH PERFORM POLYM 2014. [DOI: 10.1177/0954008314561245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of this research was to align functionalized multiwalled carbon nanotubes (MWCNT)–valine amino acid into a chitosan matrix. At first, the MWCNTs were functionalized with valine amino acid and chitosan/grafted MWCNT-valine composites were prepared via covalently bonding of chitosan on the surface of MWCNT-valine. The functionalized MWCNTs and resulting films were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, field-emission scanning electron microscopy, and transmission electron microscopy. A significant synergistic effect of MWCNT provided enhanced mechanical properties and thermal stability on the obtained nanocomposites.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, Islamic Republic of Iran
- Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, Islamic Republic of Iran
- Center of Excellence in Sensors and Green Chemistry, Department of Chemistry, Isfahan University of Technology, Isfahan, Islamic Republic of Iran
| | - Maryam Madani
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, Islamic Republic of Iran
| |
Collapse
|
33
|
Enhanced desalination via functionalized carbon nanotube immobilized membrane in direct contact membrane distillation. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.08.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Amirilargani M, Tofighy MA, Mohammadi T, Sadatnia B. Novel Poly(vinyl alcohol)/Multiwalled Carbon Nanotube Nanocomposite Membranes for Pervaporation Dehydration of Isopropanol: Poly(sodium 4-styrenesulfonate) as a Functionalization Agent. Ind Eng Chem Res 2014. [DOI: 10.1021/ie501929m] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad Amirilargani
- Research
and Technology Center for Membrane Processes, Department of Chemical
Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Maryam Ahmadzadeh Tofighy
- Research
and Technology Center for Membrane Processes, Department of Chemical
Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Toraj Mohammadi
- Research
and Technology Center for Membrane Processes, Department of Chemical
Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Behrouz Sadatnia
- Petrochemical Research and Technology Company (NPC-rt), National Petrochemical Company (NPC), Tehran, Iran
| |
Collapse
|
35
|
Shen JN, Chu YX, Ruan HM, Wu LG, Gao CJ, Van der Bruggen B. Pervaporation of benzene/cyclohexane mixtures through mixed matrix membranes of chitosan and Ag+/carbon nanotubes. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.03.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Yee KF, Ong YT, Mohamed AR, Tan SH. Novel MWCNT-buckypaper/polyvinyl alcohol asymmetric membrane for dehydration of etherification reaction mixture: Fabrication, characterisation and application. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Bhadra M, Roy S, Mitra S. Enhanced desalination using carboxylated carbon nanotube immobilized membranes. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.10.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Effects of poly (allylamine hydrochloride) as a new functionalization agent for preparation of poly vinyl alcohol/multiwalled carbon nanotubes membranes. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.07.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Pandey RP, Shahi VK. Functionalized silica–chitosan hybrid membrane for dehydration of ethanol/water azeotrope: Effect of cross-linking on structure and performance. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.04.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Ong YT, Yee KF, Cheng YK, Tan SH. A Review on the Use and Stability of Supported Liquid Membranes in the Pervaporation Process. SEPARATION AND PURIFICATION REVIEWS 2013. [DOI: 10.1080/15422119.2012.716134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Yeang QW, Zein SHS, Sulong AB, Tan SH. Comparison of the pervaporation performance of various types of carbon nanotube-based nanocomposites in the dehydration of acetone. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Shuit SH, Ong YT, Lee KT, Subhash B, Tan SH. Membrane technology as a promising alternative in biodiesel production: A review. Biotechnol Adv 2012; 30:1364-80. [DOI: 10.1016/j.biotechadv.2012.02.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/31/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
|