1
|
Li Y, Fan T, Cui W, Wang X, Ramakrishna S, Long YZ. Harsh environment-tolerant and robust PTFE@ZIF-8 fibrous membrane for efficient photocatalytic organic pollutants degradation and oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
2
|
Safford HR, Bischel HN. Flow cytometry applications in water treatment, distribution, and reuse: A review. WATER RESEARCH 2019; 151:110-133. [PMID: 30594081 DOI: 10.1016/j.watres.2018.12.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Ensuring safe and effective water treatment, distribution, and reuse requires robust methods for characterizing and monitoring waterborne microbes. Methods widely used today can be limited by low sensitivity, high labor and time requirements, susceptibility to interference from inhibitory compounds, and difficulties in distinguishing between viable and non-viable cells. Flow cytometry (FCM) has recently gained attention as an alternative approach that can overcome many of these challenges. This article critically and systematically reviews for the first time recent literature on applications of FCM in water treatment, distribution, and reuse. In the review, we identify and examine nearly 300 studies published from 2000 to 2018 that illustrate the benefits and challenges of using FCM for assessing source-water quality and impacts of treatment-plant discharge on receiving waters, wastewater treatment, drinking water treatment, and drinking water distribution. We then discuss options for combining FCM with other indicators of water quality and address several topics that cut across nearly all applications reviewed. Finally, we identify priority areas in which more work is needed to realize the full potential of this approach. These include optimizing protocols for FCM-based analysis of waterborne viruses, optimizing protocols for specifically detecting target pathogens, automating sample handling and preparation to enable real-time FCM, developing computational tools to assist data analysis, and improving standards for instrumentation, methods, and reporting requirements. We conclude that while more work is needed to realize the full potential of FCM in water treatment, distribution, and reuse, substantial progress has been made over the past two decades. There is now a sufficiently large body of research documenting successful applications of FCM that the approach could reasonably and realistically see widespread adoption as a routine method for water quality assessment.
Collapse
Affiliation(s)
- Hannah R Safford
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States
| | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States.
| |
Collapse
|
4
|
Van Nevel S, Koetzsch S, Proctor CR, Besmer MD, Prest EI, Vrouwenvelder JS, Knezev A, Boon N, Hammes F. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. WATER RESEARCH 2017; 113:191-206. [PMID: 28214393 DOI: 10.1016/j.watres.2017.01.065] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.
Collapse
Affiliation(s)
- S Van Nevel
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - S Koetzsch
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - C R Proctor
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland; Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - M D Besmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - E I Prest
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - J S Vrouwenvelder
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands; Wetsus, Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands; King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - A Knezev
- Het Waterlaboratorium, J.W. Lucasweg 2, 2031 BE, Haarlem, The Netherlands
| | - N Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - F Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland.
| |
Collapse
|
5
|
Younas H, Fei Y, Shao J, He Y. Developing an antibacterial super-hydrophilic barrier between bacteria and membranes to mitigate the severe impacts of biofouling. BIOFOULING 2016; 32:1089-1102. [PMID: 27669899 DOI: 10.1080/08927014.2016.1229775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Biofouling produces concentrated microbial populations with highly resistive biofilms and is considered to be a serious obstacle for a wide range of membrane technology applications. An antibacterial super-hydrophilic barrier could help to reduce biofouling by preventing direct contact between membranes and bacteria. In this study, an antibacterial super-hydrophilic barrier consisting of a layer of TiO2 nanoparticles (NPs) was developed on polyvinylidene fluoride (PVDF)-based membrane via a facile technique. The results demonstrated that the presence of TiO2 NPs eliminated the first step of biofouling, ie bacterial adhesion to the membrane. In addition, after bacterial deposition onto the membrane during ultrafiltration (UF), the TiO2 NPs significantly retarded bacterial growth and reproduction (the second step of biofouling). During UF, the membrane flux decreased due to bacterial deposition, but 85% of the flux was recovered through physical cleaning using water. This study sheds light on the potential advantages of antibacterial super-hydrophilic membranes for biofouling mitigation.
Collapse
Affiliation(s)
- Hassan Younas
- a School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai , PR China
| | - Yuhuan Fei
- a School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai , PR China
| | - Jiahui Shao
- a School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai , PR China
| | - Yiliang He
- a School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai , PR China
| |
Collapse
|
6
|
Identifying the Gaps in Practice for Combating Lead in Drinking Water in Hong Kong. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13100970. [PMID: 27706062 PMCID: PMC5086709 DOI: 10.3390/ijerph13100970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/10/2016] [Accepted: 09/26/2016] [Indexed: 11/18/2022]
Abstract
Excessive lead has been found in drinking water in Hong Kong in tests carried out in 2015. Investigations have identified that the problem in public rental housing estates was caused by the problematic solders used in the plumbing, and recommendations on enhancing the quality control system and strengthening the relevant water quality standards have been proposed. The cause for the same problem happening in other premises where soldering has not been adopted for water pipe connections is left unidentified. Considering the unidentified cause and the recommendations made, this study aims to identify the gaps in practice followed in Hong Kong for safeguarding the water quality of new installations. A holistic review of governing ordinances and regulations, products and materials used and the testing and commissioning requirements adopted in Hong Kong and elsewhere in the world were conducted. Based on international practices and parametric analysis, it was found that there are gaps in practices followed in Hong Kong, which are directly and indirectly leading to the lead-in-water crisis. Recommendations for improvement in the quality control system, and the water quality standards including the allowable lead content and leaching limit for products and materials and the testing and commissioning requirements on plumbing installations have been made. The review and the identified gaps would become useful reference for countries in strengthening their relevant water quality standards.
Collapse
|