1
|
Arcanjo GS, Dos Santos CR, Cavalcante BF, Moura GDA, Ricci BC, Mounteer AH, Santos LVS, Queiroz LM, Amaral MC. Improving biological removal of pharmaceutical active compounds and estrogenic activity in a mesophilic anaerobic osmotic membrane bioreactor treating municipal sewage. CHEMOSPHERE 2022; 301:134716. [PMID: 35487362 DOI: 10.1016/j.chemosphere.2022.134716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The contamination of water sources by pharmaceutically active compounds (PhACs) and their effect on aquatic communities and human health have become an environmental concern worldwide. Membrane bioreactors (MBRs) are an alternative to improve biological removal of recalcitrant organic compounds from municipal sewage. Their efficiency can be increased by using high retention membranes such as forward osmosis (FO) and membrane distillation (MD). Thus, this research aimed to evaluate the performance of an anaerobic osmotic MBR coupled with MD (OMBR-MD) in the treatment of municipal sewage containing PhACs and estrogenic activity. A submerged hybrid FO-MD module was integrated into the bioreactor. PhACs removal was higher than 96% due to biological degradation, biosorption and membrane retention. Biological removal of the PhACs was affected by the salinity build-up in the bioreactor, with reduction in biodegradation after 32 d. However, salinity increment had little or no effect on biosorption removal. The anaerobic OMBR-MD removed >99.9% of estrogenic activity, resulting in a distillate with 0.14 ng L-1 E2-eq, after 22 d, and 0.04 ng L-1 E2-eq, after 32 d. OMBR-MD treatment promoted reduction in environmental and human health risks from high to low, except for ketoprofen, which led to medium acute environmental and human health risks. Carcinogenic risks were reduced from unacceptable to negligible, regarding estrogenic activity. Thus, the hybrid anaerobic OMBR-MD demonstrated strong performance in reducing risks, even when human health is considered.
Collapse
Affiliation(s)
- Gemima S Arcanjo
- Department of Environmental Engineering - Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil; Department of Civil Engineering - Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Carolina R Dos Santos
- Department of Sanitary and Environmental Engineering - Universidade Federal de Minas Gerais, 30270-901, Belo Horizonte, MG, Brazil
| | - Bárbara F Cavalcante
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela de A Moura
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Bárbara C Ricci
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ann H Mounteer
- Department of Civil Engineering - Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lucilaine V S Santos
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Luciano M Queiroz
- Department of Environmental Engineering - Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil
| | - Míriam Cs Amaral
- Department of Sanitary and Environmental Engineering - Universidade Federal de Minas Gerais, 30270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Arslan S, Eyvaz M, Güçlü S, Yüksekdağ A, Koyuncu İ, Yüksel E. Pressure Assisted Application of Tubular Nanofiber Forward Osmosis Membrane in Membrane Bioreactor Coupled with Reverse Osmosis System. J WATER CHEM TECHNO+ 2021. [DOI: 10.3103/s1063455x21010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Kim Y, Kim LH, Vrouwenvelder JS, Ghaffour N. Effect of organic micropollutants on biofouling in a forward osmosis process integrating seawater desalination and wastewater reclamation. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123386. [PMID: 32653793 DOI: 10.1016/j.jhazmat.2020.123386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
This study systematically investigated the effect of organic micropollutants (OMPs) on biofouling in forward osmosis (FO) integrating wastewater treatment and seawater dilution. Synthetic seawater (0.6 M sodium chloride) was used as a draw solution and synthetic municipal wastewater as a feed solution. To evaluate the impact of OMPs in a replicate parallel study, wastewater was supplemented with a mixture of 7 OMPs (OMPs-feed) and without OMPs (control) during 8 batch filtration cycles with feed and draw solution replacement after each filtration. The FO performance (water flux), development and microbial composition properties of biofilm layers on the wastewater side of the FO membrane were studied. Compared to the control without OMPs, the FO fed with OMPs containing wastewater showed (i) initially the same water flux and flux decline during the first filtration cycle, (ii) with increasing filtration cycle a lower flux decline and (iii) lower concentrations for the total cells, ATP, EPS carbohydrates and proteins in biofilm layers, and (iv) a lower diversity of the biofilm microbial community composition (indicating selective pressure) and (v) increasing rejection of 6 of the 7 OMPs. In essence, biofouling on the FO membrane showed (i) a lower flux decline in the presence of OMPs in the feed water and (ii) a higher OMPs rejection, both illustrating better membrane performance. This study has a significant implication for optimizing osmotic dilution in terms of FO operation and OMPs rejection.
Collapse
Affiliation(s)
- Youngjin Kim
- Department of Environmental Engineering, Sejong Campus, Korea University, 2511, Sejong-ro, Jochiwon-eup, Sejong-si, 30019, Republic of Korea
| | - Lan Hee Kim
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Johannes S Vrouwenvelder
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
4
|
Wang X, Wang H, Xie M. Secret underneath: Fouling of membrane support layer in anaerobic osmotic membrane bioreactor (AnOMBR). J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Li Y, Xu Z, Xie M, Zhang B, Li G, Luo W. Resource recovery from digested manure centrate: Comparison between conventional and aquaporin thin-film composite forward osmosis membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Ly QV, Hu Y, Li J, Cho J, Hur J. Characteristics and influencing factors of organic fouling in forward osmosis operation for wastewater applications: A comprehensive review. ENVIRONMENT INTERNATIONAL 2019; 129:164-184. [PMID: 31128437 DOI: 10.1016/j.envint.2019.05.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Wastewater reuse is considered one of the most promising practices for the achievement of sustainable water management on a global scale. In the context of the safe reuse of water, membrane filtration is a competitive technique due to its superior efficiency in several processes. However, membrane fouling by organics is an inevitable challenge that is encountered during the practical application of membrane processes. The resolution of the membrane fouling challenge requires an in-depth understanding of many complex interactions between organic foulants and the membrane. In the last few decades, the forward osmosis (FO) membrane process, which exploits osmosis as a driving force, has emerged as an effective technology for water production with low energy consumption, thus leveraging the water-energy nexus. However, their successful application is severely hampered by membrane fouling, which is caused by such complex fouling mechanisms as cake enhanced osmotic pressure (CEOP), reverse salt diffusion (RSD), internal, and external concentration polarization as well as by the traditional fouling processes encompassing colloids, microbial (biofouling), inorganic, and organic fouling. Of these fouling types, the fouling potential of organic matter in FO has not been given sufficient attention, in particular, when FO is applied to wastewater treatment. This paper aims to provide a comprehensive overview of FO membrane fouling for wastewater applications with a special focus on the identification of the major factors that lead to the unique properties of organic fouling in this filtration process. Based on the critical assessment of organic fouling formation and the governing mechanisms, proposals were advanced for future research aimed at the mitigation of FO membrane fouling to enhance process efficiency in wastewater applications.
Collapse
Affiliation(s)
- Quang Viet Ly
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea; State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Yunxia Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Jinwoo Cho
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
7
|
Li Y, Yang Y, Li C, Hou LA. Comparison of performance and biofouling resistance of thin-film composite forward osmosis membranes with substrate/active layer modified by graphene oxide. RSC Adv 2019; 9:6502-6509. [PMID: 35518494 PMCID: PMC9060938 DOI: 10.1039/c8ra08838a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/19/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, the influence mechanisms of graphene oxide (GO) on the membrane substrate/active layer for improving the water flux and anti-biofouling ability of thin-film composite (TFC) membranes in forward osmosis (FO) were systematically investigated. We fabricated a pristine TFC membrane, a TFC membrane in which the substrate or polyamide active layer was modified by GO (TFN-S membrane or TFN-A membrane), and a TFC membrane in which both the substrate and active layer were functionalized by GO (TFN-S + A membrane). Our results showed that the TFN-S membrane possesses a higher water flux (∼27.2%) than the TFN-A because the substrate that contained GO could improve the porous structure and porosity, while the TFN-A membrane exhibited a lower reverse salt flux and higher salt rejection than the TFN-S membrane, indicating that the surface properties played a more important role than the substrate for the salt rejection. Regarding the biofouling experiment, the TFN-A and TFN-S + A membranes facilitated a higher antifouling performance than the TFN-S and TFC membranes after 72 h of operation because of the greater hydrophilicity, lower roughness and facilitated higher bactericidal activity on the GO-modified surface. In addition, the biovolume and biofilm thickness of the TFN-A and TFN-S + A membranes were found to follow the same trend as flux decline performance. In conclusion, the substrate modified by GO could greatly improve the water flux, whereas the GO-functionalized active layer is favorable for salt rejection and biofouling mitigation. The advantage of TFN-A in biofouling mitigation suggests that the antibacterial effect of GO has a stronger influence on biofouling control than the changes of hydrophilicity and roughness. The substrate modified by GO could greatly improve water flux, whereas the GO-functionalized active layer is favorable for biofouling mitigation.![]()
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing
- China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing
- China
| | - Chen Li
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing
- China
| | - Li-an Hou
- State Key Laboratory of Water Environment Simulation
- School of Environment
- Beijing Normal University
- Beijing
- China
| |
Collapse
|
8
|
Li Y, Liu H, Li G, Luo W, Sun Y. Manure digestate storage under different conditions: Chemical characteristics and contaminant residuals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:19-25. [PMID: 29778678 DOI: 10.1016/j.scitotenv.2018.05.128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
In this study, chemical characteristics and contaminant residuals in livestock manure digestate were investigated during storage under different conditions. Results show that storing digestate openly under the mesophilic condition (30 ± 1 °C) led to water evaporation and thus considerable mass reduction. As a result, concentrative effect occurred to increase the contents of organic matter, nutrients, and heavy metals during digestate storage. By contrast, ammonium (NH4+) concentration in digestate decreased over storage period. The concentrative effect and NH4+ reduction could be mitigated by storing digestate with coverage and/or under psychrophilic conditions (e.g. 15 ± 1 °C). Regardless of storage conditions, organic matter was further biodegraded, thereby reducing the residuals of antibiotics in digestate. Antibiotic removal was more notable when digestate was stored under mesophilic conditions. Nevertheless, additional processes to control heavy metals and antibiotics in digestate are still necessary before agricultural applications.
Collapse
Affiliation(s)
- Yun Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Hang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Luo W, Arhatari B, Gray SR, Xie M. Seeing is believing: Insights from synchrotron infrared mapping for membrane fouling in osmotic membrane bioreactors. WATER RESEARCH 2018; 137:355-361. [PMID: 29574245 DOI: 10.1016/j.watres.2018.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/16/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
We employed synchrotron infrared (IR) mapping to resolve forward osmosis (FO) membrane fouling in osmotic membrane bioreactor (OMBR). Synchrotron IR mapping offers a unique perspective to elucidate the fouling mechanisms and associated consequences in OMBR operation. We demonstrated the spatial distribution and relative intensity of carbohydrate and protein longitudinally along of the fouled FO membrane at the conclusion of OMBR operation. Both transmission and attenuated total reflection (ATR) modes were used to map the cross-section and surface of the fouled FO membrane. Micro X-ray computed tomography revealed patchy, "sand-dune" features on the membrane surface at the conclusion of OMBR operation. Synchrotron IR-ATR mapping demonstrated that the development of membrane fouling layer in OMBR operation was initiated by polysaccharide-like carbohydrate, followed by layering with protein-like substance, resulting in a characteristic "sand-dune" three dimensional feature. Synchrotron FTIR mapping shed light on foulant occurrence and accumulation in the draw solution. Strong penetration of protein-like substance into membrane matrix was visualised, resulting the detection of protein adsorption in the region of membrane supporting layer.
Collapse
Affiliation(s)
- Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Benedicta Arhatari
- ARC Centre of Excellence for Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe University, Victoria 3086, Australia
| | - Stephen R Gray
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
10
|
Luo W, Phan HV, Xie M, Hai FI, Price WE, Elimelech M, Nghiem LD. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal. WATER RESEARCH 2017; 109:122-134. [PMID: 27883917 DOI: 10.1016/j.watres.2016.11.036] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
This study systematically compares the performance of osmotic membrane bioreactor - reverse osmosis (OMBR-RO) and conventional membrane bioreactor - reverse osmosis (MBR-RO) for advanced wastewater treatment and water reuse. Both systems achieved effective removal of bulk organic matter and nutrients, and almost complete removal of all 31 trace organic contaminants investigated. They both could produce high quality water suitable for recycling applications. During OMBR-RO operation, salinity build-up in the bioreactor reduced the water flux and negatively impacted the system biological treatment by altering biomass characteristics and microbial community structure. In addition, the elevated salinity also increased soluble microbial products and extracellular polymeric substances in the mixed liquor, which induced fouling of the forward osmosis (FO) membrane. Nevertheless, microbial analysis indicated that salinity stress resulted in the development of halotolerant bacteria, consequently sustaining biodegradation in the OMBR system. By contrast, biological performance was relatively stable throughout conventional MBR-RO operation. Compared to conventional MBR-RO, the FO process effectively prevented foulants from permeating into the draw solution, thereby significantly reducing fouling of the downstream RO membrane in OMBR-RO operation. Accumulation of organic matter, including humic- and protein-like substances, as well as inorganic salts in the MBR effluent resulted in severe RO membrane fouling in conventional MBR-RO operation.
Collapse
Affiliation(s)
- Wenhai Luo
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Hop V Phan
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|