1
|
Liu C, Si Z, Wu H, Zhuang Y, Zhang C, Zhang G, Zhang X, Qin P. High-/Low-Molecular-Weight PDMS Photo-Copolymerized Membranes for Ethanol Recovery. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chang Liu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Hanzhu Wu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yan Zhuang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Ganggang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Xinmiao Zhang
- Environmental Protection Research Institute, Beijing Research Institute of Chemical Industry, Beijing100000, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
2
|
Transmission of sodium chloride in PDMS membrane during Pervaporation based on polymer relaxation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Zhan X, Zhao X, Gao Z, Ge R, Lu J, Wang L, Li J. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Serna-Vázquez J, Zamidi Ahmad M, Castro-Muñoz R. Simultaneous production and extraction of bio-chemicals produced from fermentations via pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Kamtsikakis A, Delepierre G, Weder C. Cellulose nanocrystals as a tunable nanomaterial for pervaporation membranes with asymmetric transport properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Peng P, Lan Y, Liang L, Jia K. Membranes for bioethanol production by pervaporation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:10. [PMID: 33413629 PMCID: PMC7791809 DOI: 10.1186/s13068-020-01857-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bioethanol as a renewable energy resource plays an important role in alleviating energy crisis and environmental protection. Pervaporation has achieved increasing attention because of its potential to be a useful way to separate ethanol from the biomass fermentation process. RESULTS This overview of ethanol separation via pervaporation primarily concentrates on transport mechanisms, fabrication methods, and membrane materials. The research and development of polymeric, inorganic, and mixed matrix membranes are reviewed from the perspective of membrane materials as well as modification methods. The recovery performance of the existing pervaporation membranes for ethanol solutions is compared, and the approaches to further improve the pervaporation performance are also discussed. CONCLUSIONS Overall, exploring the possibility and limitation of the separation performance of PV membranes for ethanol extraction is a long-standing topic. Collectively, the quest is to break the trade-off between membrane permeability and selectivity. Based on the facilitated transport mechanism, further exploration of ethanol-selective membranes may focus on constructing a well-designed microstructure, providing active sites for facilitating the fast transport of ethanol molecules, hence achieving both high selectivity and permeability simultaneously. Finally, it is expected that more and more successful research could be realized into commercial products and this separation process will be deployed in industrial practices in the near future.
Collapse
Affiliation(s)
- Ping Peng
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Yongqiang Lan
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China.
- Key Laboratory of Biobased Material Science & Technology (Education Ministry), Northeast Forestry University, Harbin, 150040, China.
| | - Lun Liang
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Kemeng Jia
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| |
Collapse
|
7
|
Castro-Muñoz R. Breakthroughs on tailoring pervaporation membranes for water desalination: A review. WATER RESEARCH 2020; 187:116428. [PMID: 33011568 DOI: 10.1016/j.watres.2020.116428] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Due to the increase in worldwide population and urbanization, water scarcity is today one of the tough challenges of society. To date, several ongoing initiatives and strategies are aiming to find feasible alternatives to produce drinking water. Seawater desalination is addressed as a latent alternative to solve such an issue. When dealing with desalination, membrane-based technologies (such as reverse osmosis, membrane distillation, pervaporation, among others) have been successfully proposed. Pervaporation (PV) is likely the membrane operation with the less permeation rate but providing high rejection of salts. Thereby, "membranologists" are extensively working in developing new suitable membranes for pervaporation desalination. Therefore, the goal of this review paper is to elucidate and provide a comprehensive outlook of the most recent works (over the last 5-years) at developing new concepts of membranes (e.g. ultra-thin, mixed matrix/composite and inorganic) for desalination, as well as the relevant strategies in fabricating enhanced PV membranes. At this point, an important emphasis has been paid to the relevant insights in the field. This paper also addresses some principles of PV and the main drawbacks of the technique and its membranes. Through reviewing the literature, the future trends, needs, and recommendations for the new researchers are given.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110Toluca de Lerdo, Mexico.
| |
Collapse
|
8
|
Castro-Muñoz R, Galiano F, Figoli A. Recent advances in pervaporation hollow fiber membranes for dehydration of organics. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.09.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Hedden RC. High-throughput screening of polymeric membranes for liquid mixture separation. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Castro-Muñoz R, González-Valdez J, Ahmad MZ. High-performance pervaporation chitosan-based membranes: new insights and perspectives. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Today, the need of replacing synthetic polymers in the membrane preparation for diverse pervaporation (PV) applications has been recognized collectively and scientifically. Chitosan (CS), a bio-polymer, has been studied and proposed to achieve this goal especially in specific azeotropic water-organic, organic-water, and organic-organic separations, as well as in assisting specific processes (e.g. seawater desalination and chemical reactions). Different concepts of CS-based membranes have been developed, which include material blending and composite and mixed matrix membranes which have been tested for different separations. Hereby, the goal of this review is to provide a critical overview of the ongoing CS-based membrane developments, paying a special attention to the most relevant findings and results in the field. Furthermore, future trends of CS-based membranes in PV technology are presented, as well as concluding remarks and suggested strategies for the new scientist in the field.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas , 2000 San Antonio Buenavista , 50110 Toluca de Lerdo , Mexico
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science , Av. Eugenio Garza Sada 2501 , Monterrey, N.L. 64849 , Mexico
| | - M. Zamidi Ahmad
- Organic Materials Innovation Center (OMIC) , University of Manchester , Oxford Road , Manchester M13 9PL , UK
| |
Collapse
|
11
|
Mousavinezhad SA, Mousavi SM, Saljoughi E. Removal of 1,2,4‐Trimethylbenzene from Water by Pervaporation Using Styrene–Butadiene–Styrene (SBS) Membrane Incorporated with Carbon Black Nanoparticles. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seyed Ali Mousavinezhad
- Chemical Engineering Department, Faculty of EngineeringFerdowsi University of Mashhad Mashhad Iran
| | - Seyed Mahmoud Mousavi
- Chemical Engineering Department, Faculty of EngineeringFerdowsi University of Mashhad Mashhad Iran
| | - Ehsan Saljoughi
- Chemical Engineering Department, Faculty of EngineeringFerdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
12
|
Mousavinezhad SA, Mousavi SM, Saljoughi E. Preparation and characterization of styrene-butadiene-styrene membrane incorporated with graphene nanosheets for pervaporative removal of 1,2,4-trimethylbenzene from water. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120689. [PMID: 31202062 DOI: 10.1016/j.jhazmat.2019.05.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/14/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
In the present study, novel styrene-butadiene-styrene (SBS) membranes were prepared by the addition of graphene (Gr) nanosheets to the casting solution and were utilized in the pervaporative separation of a dilute solution of 1,2,4-trimethylbenzene (1,2,4-TMB) as a volatile organic compound (VOC) in water. Several characterizations such as field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical tensile test, and determination of water contact angle and swelling degree were conducted to investigate the properties of the prepared membranes. The results showed that with the addition of Gr the membrane thermal stability and hydrophobicity were increased while there was an optimum Gr loading to achieve the highest elastic modulus and tensile strength. Moreover, it was found that by increasing the Gr concentration up to 0.5 wt. %, the separation factor and pervaporation separation index (PSI) were increased by 250% and 43% compared to pure SBS membrane and reached 930 and 545 kg/m2h, respectively.
Collapse
Affiliation(s)
- S A Mousavinezhad
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - S M Mousavi
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - E Saljoughi
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
New Trends in Biopolymer-Based Membranes for Pervaporation. Molecules 2019; 24:molecules24193584. [PMID: 31590357 PMCID: PMC6803837 DOI: 10.3390/molecules24193584] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 11/25/2022] Open
Abstract
Biopolymers are currently the most convenient alternative for replacing chemically synthetized polymers in membrane preparation. To date, several biopolymers have been proposed for such purpose, including the ones derived from animal (e.g., polybutylene succinate, polylactic acid, polyhydroxyalcanoates), vegetable sources (e.g., starch, cellulose-based polymers, alginate, polyisoprene), bacterial fermentation products (e.g., collagen, chitin, chitosan) and specific production processes (e.g., sericin). Particularly, these biopolymer-based membranes have been implemented into pervaporation (PV) technology, which assists in the selective separation of azeotropic water-organic, organic-water, organic-organic mixtures, and specific separations of chemical reactions. Thereby, the aim of the present review is to present the current state-of-the-art regarding the different concepts on preparing membranes for PV. Particular attention is paid to the most relevant insights in the field, highlighting the followed strategies by authors for such successful approaches. Finally, by reviewing the ongoing development works, the concluding remarks and future trends are addressed.
Collapse
|
14
|
Unlu D. Concentration of aroma compounds by pervaporation process using polyvinyl chloride membrane. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Derya Unlu
- Chemical Engineering Department Bursa Technical University Bursa Turkey
| |
Collapse
|
15
|
Castro-Muñoz R, Galiano F, Figoli A. Chemical and bio-chemical reactions assisted by pervaporation technology. Crit Rev Biotechnol 2019; 39:884-903. [PMID: 31382780 DOI: 10.1080/07388551.2019.1631248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since several decades ago, the application of pervaporation (PV) technology has been mainly aimed at the separation of different types of water-organic, organic-water and organic-organic mixtures, reaching its large-scale application in industry for the dehydration of organics. Today, the versatility and high selectivity toward specific compounds have led its consideration to other types of application such as the assisted chemical and bio-chemical reactions. The focus of this review is to provide a compelling overview on the recent developments of PV combined with chemical and bio-chemical reactions. After a general introduction of PV and its theoretical background, particular emphasis is given to the results obtained in the field for different reactions considered, identifying the key features and weak points of PV in such particular applications. Furthermore, future trends and perspectives are also addressed according to the latest literature reports.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- a Department of Inorganic Technology, University of Chemistry and Technology Prague , Prague 6 , Czech Republic.,b Institute on Membrane Technology, ITM-CNR, c/o University of Calabria , Rende , Italy.,c Nanoscience Institute of Aragon (INA), Universidad de Zaragoza , Zaragoza , Spain.,d Tecnológico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista , Toluca de Lerdo , México
| | - Francesco Galiano
- b Institute on Membrane Technology, ITM-CNR, c/o University of Calabria , Rende , Italy
| | - Alberto Figoli
- b Institute on Membrane Technology, ITM-CNR, c/o University of Calabria , Rende , Italy
| |
Collapse
|
16
|
Castro-Muñoz R. Pervaporation: The emerging technique for extracting aroma compounds from food systems. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.02.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
The potential of pervaporation for biofuel recovery from fermentation: An energy consumption point of view. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.09.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Monteleone M, Esposito E, Fuoco A, Lanč M, Pilnáček K, Friess K, Bezzu CG, Carta M, McKeown NB, Jansen JC. A Novel Time Lag Method for the Analysis of Mixed Gas Diffusion in Polymeric Membranes by On-Line Mass Spectrometry: Pressure Dependence of Transport Parameters. MEMBRANES 2018; 8:E73. [PMID: 30177638 PMCID: PMC6161161 DOI: 10.3390/membranes8030073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022]
Abstract
This paper presents a novel method for transient and steady state mixed gas permeation measurements, using a quadrupole residual gas analyser for the on-line determination of the permeate composition. The on-line analysis provides sufficiently quick response times to follow even fast transient phenomena, enabling the unique determination of the diffusion coefficient of the individual gases in a gas mixture. Following earlier work, the method is further optimised for higher gas pressures, using a thin film composite and a thick dense styrene-butadiene-styrene (SBS) block copolymer membrane. Finally, the method is used to calculate the CO₂/CH₄ mixed gas diffusion coefficients of the spirobisfluorene-based polymer of intrinsic microporosity, PIM-SBF-1. It is shown that the modest pressure dependence of the PIM-SBF-1 permeability can be ascribed to a much stronger pressure dependence of the diffusion coefficient, which partially compensates the decreasing solubility of CO₂ with increasing pressure, typical for the strong sorption behaviour in PIMs. The characteristics of the instrument are discussed and suggestions are given for even more versatile measurements under stepwise increasing pressure conditions. This is the first report on mixed gas diffusion coefficients at different pressures in a polymer of intrinsic microporosity.
Collapse
Affiliation(s)
- Marcello Monteleone
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17/C, 87036 Rende (CS), Italy.
| | - Elisa Esposito
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17/C, 87036 Rende (CS), Italy.
| | - Alessio Fuoco
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17/C, 87036 Rende (CS), Italy.
| | - Marek Lanč
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Kryštof Pilnáček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Caterina Grazia Bezzu
- EastChem, School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Mariolino Carta
- Department of Chemistry, College of Science, Swansea University, Grove Building, Singleton Park, SA2 8PP Swansea, UK.
| | - Neil Bruce McKeown
- EastChem, School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | | |
Collapse
|
19
|
Fan L, Xu Y, Zhou X, Chen F, Fu Q. Effect of salt concentration in spinning solution on fiber diameter and mechanical property of electrospun styrene-butadiene-styrene tri-block copolymer membrane. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Cardoso VM, Bernardo A, Giulietti M. Ethanol absorption from CO2 using solutions of glycerol and glycols. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1458027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Valdemir M. Cardoso
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - André Bernardo
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Marco Giulietti
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
21
|
Castro-Muñoz R, Iglesia ÓDL, Fíla V, Téllez C, Coronas J. Pervaporation-Assisted Esterification Reactions by Means of Mixed Matrix Membranes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01564] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Roberto Castro-Muñoz
- University of Chemistry and Technology Prague, Technická
5, 16628 Prague 6, Czech Republic
- Department of Chemical and Environmental Engineering and Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Óscar de la Iglesia
- Centro Universitario de la Defensa Zaragoza, Academia General Militar, 50090 Zaragoza, Spain
| | - Vlastimil Fíla
- University of Chemistry and Technology Prague, Technická
5, 16628 Prague 6, Czech Republic
| | - Carlos Téllez
- Department of Chemical and Environmental Engineering and Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Joaquín Coronas
- Department of Chemical and Environmental Engineering and Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
22
|
Castro-Muñoz R, Galiano F, Fíla V, Drioli E, Figoli A. Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: current state of the art. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Over the last few decades, different polymers have been employed as materials in membrane preparation for pervaporation (PV) application, which are currently used in the preparation of mixed matrix membranes (MMMs) for ethanol recovery and ethanol dehydration. The ethanol-water and water-ethanol mixtures are, in fact, the most studied PV systems since the bioethanol production is strongly increasing its demand. The present review focuses on the current state of the art and future trends on ethanol purification by using MMMs in PV. A particular emphasis will, therefore, be placed on the enhancement of specific components transport and selectivity through the incorporation of inorganic materials into polymeric membranes, mentioning key principles on suitable filler selection for a synergistic effect toward such separations. In addition, the following topics will be discussed: (i) the generalities of PV, including the theoretical aspects and its role in separation; (ii) a general overview of the methodologies for the preparation of MMMs; and (iii) the most recent findings based on MMMs for both ethanol recovery and ethanol dehydration for better evolution in the field. From the last decade of literature inputs, the poly(vinyl alcohol) has been the most used polymeric matrix targeting ethanol dehydration, while the zeolites have been the most used embedded materials. Today, the latest developments on MMM preparation declare that the future efforts will be directed to the chemical modification of polymeric materials as well as the incorporation of novel fillers or enhancing the existing ones through chemical modification.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Institute on Membrane Technology, ITM-CNR , c/o University of Calabria , 87030 Rende (CS) , Italy
- University of Chemistry and Technology Prague , Department of Inorganic Technology , Prague 6 , Czech Republic
- Nanoscience Institute of Aragon (INA) , Universidad de Zaragoza , 50018 Zaragoza , Spain
| | - Francesco Galiano
- Institute on Membrane Technology, ITM-CNR , c/o University of Calabria , Via P. Bucci 17c , 87030 Rende (CS) , Italy
| | - Vlastimil Fíla
- University of Chemistry and Technology Prague , Department of Inorganic Technology , Prague 6 , Czech Republic
| | - Enrico Drioli
- Institute on Membrane Technology, ITM-CNR , c/o University of Calabria , 87030 Rende (CS) , Italy
| | - Alberto Figoli
- Institute on Membrane Technology, ITM-CNR , c/o University of Calabria , Via P. Bucci 17c , 87030 Rende (CS) , Italy
| |
Collapse
|
23
|
A novel electrospun, hydrophobic, and elastomeric styrene-butadiene-styrene membrane for membrane distillation applications. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Roy S, Singha NR. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects. MEMBRANES 2017; 7:membranes7030053. [PMID: 28885591 PMCID: PMC5618138 DOI: 10.3390/membranes7030053] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022]
Abstract
Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.
Collapse
Affiliation(s)
- Sagar Roy
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Kolkata-700106, West Bengal, India.
| |
Collapse
|