1
|
Wang Y, Zhu Y, Wang K, Tan Y, Bing X, Jiang J, Fang W, Chen L, Liao H. Principles and research progress of physical prevention and control technologies for algae in eutrophic water. iScience 2024; 27:109990. [PMID: 38840838 PMCID: PMC11152667 DOI: 10.1016/j.isci.2024.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
The abnormal reproduction of algae in water worldwide is prominent in the context of human interference and global climate change. This study first thoroughly analyzed the effects of physical factors, such as light, temperature, hydrodynamics, and operational strategies, on algal growth and their mechanisms. Physical control techniques are safe and have great potential for preventing abnormal algal blooms in the absence of chemical reagents. The focus was on the principles and possible engineering applications of physical shading, ultrasound, micro-current, and ultraviolet (UV) technologies, in controlling abnormal algal reproduction. Physical shading can inhibit or weaken photosynthesis in algae, thereby inhibiting their growth. Ultrasound mainly affects the physiological and biochemical activities of cells by destroying the cell walls, air cells, and active enzymes. Micro-currents destroy the algal cell structure through direct and indirect oxidation, leading to algal cell death. UV irradiation can damage DNA, causing organisms to be unable to reproduce or algal cells to die directly. This article comprehensively summarizes and analyzes the advantages of physical prevention and control technologies for the abnormal reproduction of algae, providing a scientific basis for future research. In the future, attempts will be made toward appropriately and comprehensively utilizing various physical technologies to control algal blooms. The establishment of an intelligent, comprehensive physical prevention and control system to achieve environmentally friendly, economical, and effective physical prevention and control of algae, such as the South-to-North Water Diversion Project in China, is of great importance for specific waters.
Collapse
Affiliation(s)
- Yuyao Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Yuanrong Zhu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kuo Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yidan Tan
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaojie Bing
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Juan Jiang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Environment, Hohai University, Nanjing 210098, China
| | - Wen Fang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Chen
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Haiqing Liao
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Zhang J, Cheng L, Huang L, Ng PH, Huang Q, Marques AR, MacKinnon B, Huang L, Yang Y, Ye R, Sophie SH. In situ generation of highly localized chlorine by laser-induced graphene electrodes during electrochemical disinfection. CHEMOSPHERE 2023:139123. [PMID: 37285986 DOI: 10.1016/j.chemosphere.2023.139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Laser-induced graphene (LIG) has gained popularity for electrochemical water disinfection due to its efficient antimicrobial activity when activated with low voltages. However, the antimicrobial mechanism of LIG electrodes is not yet fully understood. This study demonstrated an array of mechanisms working synergistically to inactivate bacteria during electrochemical treatment using LIG electrodes, including the generation of oxidants, changes in pH-specifically high alkalinity associated with the cathode, and electro-adsorption on the electrodes. All these mechanisms may contribute to the disinfection process when bacteria are close to the surface of the electrodes where inactivation was independent of the reactive chlorine species (RCS); however, RCS was likely responsible for the predominant cause of antibacterial effects in the bulk solution (i.e., ≥100 mL in our study). Furthermore, the concentration and diffusion kinetics of RCS in solution was voltage-dependent. At 6 V, RCS achieved a high concentration in water, while at 3 V, RCS was highly localized on the LIG surface but not measurable in water. Despite this, the LIG electrodes activated by 3 V achieved a 5.5-log reduction in Escherichia coli (E.coli) after 120-min electrolysis without detectable chlorine, chlorate, or perchlorate in the water, suggesting a promising system for efficient, energy-saving, and safe electro-disinfection.
Collapse
Affiliation(s)
- Ju Zhang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Le Cheng
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Liqing Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Pok Him Ng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Qianjun Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Ana Rita Marques
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Brett MacKinnon
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Libei Huang
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Yefeng Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - St-Hilaire Sophie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| |
Collapse
|
3
|
Huang T, Song D, Liu L, Zhang S. Cobalt recovery from the stripping solution of spent lithium-ion battery by a three-dimensional microbial fuel cell. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Liu H, Ni XY, Huo ZY, Peng L, Li GQ, Wang C, Wu YH, Hu HY. Carbon Fiber-Based Flow-Through Electrode System (FES) for Water Disinfection via Direct Oxidation Mechanism with a Sequential Reduction-Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3238-3249. [PMID: 30768244 DOI: 10.1021/acs.est.8b07297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Flow-through configuration for electrochemical disinfection is considered as a promising approach to minimize the formation of toxic byproducts and energy consumption via the enhanced convective mass transport as compared with conventional flow-by one. Under this hydrodynamic condition, it is essential to ascertain the effect of sequential electro-redox processes with the cathode/anode then anode/cathode arrangements on disinfection performance. Here, carbon fiber felt (CFF) was utilized to construct two flow-through electrode systems (FESs) with sequential reduction-oxidation (cathode-anode) or oxidation-reduction (anode-cathode) processes to systematically compare their disinfection performance toward a model Escherichia coli ( E. coli) pathogen. In-situ sampling and live/dead backlight staining experiments revealed that E. coli inactivation mainly occurred on anode via an adsorption-inactivation-desorption process. In reduction-oxidation system, after the cathode-pretreatment, bulk solution pH increased significantly, leading to the negative charge of E. coli cells. Hence, E. coli cells were adsorbed and inactivated easily on the subsequent anode, finally resulting in its much better disinfection performance and energy efficiency than the oxidation-reduction system. Application of 3.0 V resulted in ∼6.5 log E. coli removal at 1500 L m-2 h-1 (50 mL min-1), suggesting that portable devices can be designed from CFF-based FES with potential application for point-of-use water disinfection.
Collapse
Affiliation(s)
- Hai Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Xin-Ye Ni
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Zheng-Yang Huo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Lu Peng
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory , Tsinghua-Berkeley Shenzhen Institute , Shenzhen 518055 , PR China
| | - Guo-Qiang Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Chun Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory , Tsinghua-Berkeley Shenzhen Institute , Shenzhen 518055 , PR China
| |
Collapse
|
5
|
Mathuriya AS, Jadhav DA, Ghangrekar MM. Architectural adaptations of microbial fuel cells. Appl Microbiol Biotechnol 2018; 102:9419-9432. [PMID: 30259099 DOI: 10.1007/s00253-018-9339-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/29/2018] [Accepted: 08/22/2018] [Indexed: 02/05/2023]
Abstract
Conventional wastewater treatment consumes a large amount of money worldwide for removal of pollutants prior to its discharge into water body or facilitating reuse. Decreasing energy expenditure during wastewater treatment and rather recovering some value-added products while treating wastewater is an important goal for researchers. Microbial fuel cells (MFCs) are representative bioelectrochemical systems, which offer energy-efficient wastewater treatment. MFCs convert chemical energy of organic matter into electrical energy by using biocatalytic activities. Although MFCs are not truly commercialized, they have potential to make energy-gaining wastewater treatment technologies and represent their capabilities successfully. Over the last decade, MFCs have developed remarkably in almost every dimension including wastewater treatment capabilities, power output, and cost optimization; however, its architectural design is an important consideration for scaling up. Here, we review various architectural advancements and technology up-gradation MFCs have experienced during its journey, to take this technology step forward for commercialization.
Collapse
Affiliation(s)
- Abhilasha S Mathuriya
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201306, India.
| | - Dipak A Jadhav
- School of Water Resources, Indian Institute of Technology, Kharagpur, 721302, India
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|