1
|
Khan HW, Zailan AA, Bhaskar Reddy AV, Goto M, Moniruzzaman M. Ionic liquid-based dispersive liquid-liquid microextraction of succinic acid from aqueous streams: COSMO-RS screening and experimental verification. ENVIRONMENTAL TECHNOLOGY 2024; 45:3828-3839. [PMID: 37415504 DOI: 10.1080/09593330.2023.2234669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
In the present investigation, a total of 108 combinations of ionic liquids (ILs) were screened using the conductor-like screening model for real solvents (COSMO-RS) with the aid of six cations and eighteen anions for the extraction of succinic acid (SA) from aqueous streams through dispersive liquid-liquid microextraction (DLLME). Using the screened ILs, an ionic liquid-based DLLME (IL-DLLME) was developed to extract SA and the role of different reaction parameters in the effectiveness of IL-DLLME approach was investigated. COSMO-RS results suggested that, quaternary ammonium and choline cations form effective IL combinations with [OH¯], [F¯], and [SO42¯] anions due to hydrogen bonding. In view of these results, one of the screened ILs, tetramethylammonium hydroxide [TMAm][OH] was chosen as the extractant in IL-DLLME process and acetonitrile was adopted as the dispersive solvent. The highest SA removal efficiency of 97.8% was achieved using 25 μL of IL [TMAm][OH] as a carrier and 500 μL of acetonitrile as dispersive solvent. The highest amount of SA was extracted with a stir time of 20 min at 300 rpm, followed by centrifugation for 5 min at 4500 rpm. Overall, the findings showed that IL-DLLME is efficient in extracting succinic acid from aqueous environments while adhering to the first-order kinetics.
Collapse
Affiliation(s)
- Huma Warsi Khan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak
| | - Anis Aina Zailan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak
| | | | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak
- Center of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar, Perak
| |
Collapse
|
2
|
Ameri E, Aghababai Beni A, Pournuroz Nodeh Z. Design and manufacture of emulsion liquid membrane based on various amine extractants for separation and extraction of succinic acid from fermentation broth. Chin J Chem Eng 2023; 61:173-179. [DOI: 10.1016/j.cjche.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Chen X, Hu Y, Tan Z. Innovative three-phase partitioning based on deep-eutectic solvents and sugars (sugaring-out effect) for cucumber peroxidase purification. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Dhamole PB, Joshi N, Bhat V. A review of recent developments in sugars and polyol based soluting out separation processes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Narisetty V, Okibe MC, Amulya K, Jokodola EO, Coulon F, Tyagi VK, Lens PNL, Parameswaran B, Kumar V. Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production. BIORESOURCE TECHNOLOGY 2022; 360:127513. [PMID: 35772717 DOI: 10.1016/j.biortech.2022.127513] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Succinic acid (SA) is used as a commodity chemical and as a precursor in chemical industry to produce other derivatives such as 1,4-butaneidol, tetrahydrofuran, fumaric acid, and bio-polyesters. The production of bio-based SA from renewable feedstocks has always been in the limelight owing to the advantages of renewability, abundance and reducing climate change by CO2 capture. Considering this, the current review focuses on various 2G feedstocks such as lignocellulosic biomass, crude glycerol, and food waste for cost-effective SA production. It also highlights the importance of producing SA via separate enzymatic hydrolysis and fermentation, simultaneous saccharification and fermentation, and consolidated bioprocessing. Furthermore, recent advances in genetic engineering, and downstream SA processing are thoroughly discussed. It also elaborates on the techno-economic analysis and life cycle assessment (LCA) studies carried out to understand the economics and environmental effects of bio-based SA synthesis.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | | | - K Amulya
- National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | | | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology (NIH), Roorkee 247667, Uttarakhand, India
| | - Piet N L Lens
- National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
6
|
Chen C, Zhang X, Liu C, Wu Y, Zheng G, Chen Y. Advances in downstream processes and applications of biological carboxylic acids derived from organic wastes. BIORESOURCE TECHNOLOGY 2022; 346:126609. [PMID: 34954356 DOI: 10.1016/j.biortech.2021.126609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Recovering carboxylic acids derived from organic wastes from fermentation broth is challenging. To provide a reference for future study and industrial application, this review summarized recent advances in recovery technologies of carboxylic acids including precipitation, extraction, adsorption, membrane-based processes, etc. Meanwhile, applications of recovered carboxylic acids are summarized as well to help choose suitable downstream processes according to purity requirement. Integrated processes are required to remove the impurities from the complicated fermentation broth, at the cost of loss and expense. Compared with chemical processes, biological synthesis is better options due to low requirements for the substrates. Generally, the use of toxic agents, consumption of acid/alkaline and membrane fouling hamper the sustainability and scale-up of the downstream processes. Future research on novel solvents and materials will facilitate the sustainable recovery and reduce the cost of the downstream processes.
Collapse
Affiliation(s)
- Chuang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guanghong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
7
|
Mancini E, Ramin P, Styrbæck P, Bjergholt C, Soheil Mansouri S, Gernaey KV, Luo J, Pinelo M. Separation of succinic acid from fermentation broth: Dielectric exclusion, Donnan effect and diffusion as the most influential mass transfer mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Zhou X, Sun Y, Zhan H, Liu H, Wang X, Xu Y, Li Y, Xiu Z, Tong Y. Ionic liquid-based multi-stage sugaring-out extraction of lactic acid from simulated broth and actual lignocellulosic fermentation broth. BIORESOUR BIOPROCESS 2021; 8:123. [PMID: 38650301 PMCID: PMC10992251 DOI: 10.1186/s40643-021-00481-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
In this study, ionic liquid-based sugaring-out extraction was developed to separate lactic acid from the synthetic solution and actual lignocellulosic fermentation broth. Except for [EOHmim]BF4, the ILs with BF4- and OTF- anion can form aqueous two-phase system (ATPS) with the aid of saccharides. With the same kind of saccharides, the ATPS formation ability of ILs could be promoted by increasing the side-chain length of ILs in the order of [Hmim]BF4 ≈ [Bmim]BF4 ˃ [Emim]BF4 due to the decrease in ILs' kosmotropicity. On the other hand, for the same type of ILs, an ATPS was formed more easily with glucose than with xylose. When IL concentration varied from 35% (w/w) to 40% (w/w) at a low glucose concentration of 15% (w/w), an interesting phase reversal was observed. When lactic acid was undissociated at pH 2.0, 51.8% LA and 92.3% [Bmim]BF4 were partitioned to the top phase, and 97.0% glucose to the bottom phase using an ATPS consisting of 25% (w/w) glucose and 45% (w/w) IL. The total recovery of LA would increase to 89.0% in three-stage sugaring-out extraction from synthetic solution. In three-stage sugaring-out extraction from the filtered and unfiltered fermentation broth obtained via simultaneous saccharification and co-fermentation (SSCF) of acid-pretreated corn stover by the microbial consortium, the total recovery of LA was 89.5% and 89.8%, respectively. Furthermore, the total removal ratio of cells and pigments from the unfiltered broth was 68.4% and 65.4%, respectively. The results support IL-based sugaring-out extraction as a potential method for the recovery of lactic acid from actual fermentation broth.
Collapse
Affiliation(s)
- Xu Zhou
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning, 116024, People's Republic of China
| | - Yaqin Sun
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning, 116024, People's Republic of China.
| | - Hongjun Zhan
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning, 116024, People's Republic of China
| | - Haijun Liu
- Jilin COFCO Biochemistry Co., Ltd. (National Engineering Research Center of Corn Deep Processing), Changchun, Jilin, 130033, People's Republic of China
| | - Xiaoyan Wang
- Jilin COFCO Biochemistry Co., Ltd. (National Engineering Research Center of Corn Deep Processing), Changchun, Jilin, 130033, People's Republic of China
| | - Yang Xu
- Jilin COFCO Biochemistry Co., Ltd. (National Engineering Research Center of Corn Deep Processing), Changchun, Jilin, 130033, People's Republic of China
| | - Yi Li
- Jilin COFCO Biochemistry Co., Ltd. (National Engineering Research Center of Corn Deep Processing), Changchun, Jilin, 130033, People's Republic of China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning, 116024, People's Republic of China
| | - Yi Tong
- Jilin COFCO Biochemistry Co., Ltd. (National Engineering Research Center of Corn Deep Processing), Changchun, Jilin, 130033, People's Republic of China.
| |
Collapse
|
9
|
Xu H, Li X, Hao Y, Zhao X, Cheng Y, Zhang J. Highly selective separation of acteoside from Cistanche tubulosa using an ionic liquid based aqueous two–phase system. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
|
11
|
Moharkar S, Dhamole PB. Sugaring-out extraction of erythromycin from fermentation broth. KOREAN J CHEM ENG 2021; 38:90-97. [PMID: 33432252 PMCID: PMC7787404 DOI: 10.1007/s11814-020-0680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022]
Abstract
This study reports the sugaring-out extraction of erythromycin from fermentation broth using acetonitrile (ACN) as solvent and glucose as a mass separating agent. Different process parameters-glucose concentration, temperature, ACN/water ratio and pH-were optimized to achieve maximum extraction of erythromycin. 88% (w/w) of erythromycin was extracted from the model system with following optimized conditions: glucose 156.3 g/L; temperature 4 °C; ACN/water ratio 1 and pH 8.3. Further, the effect of typical fermentation media components (starch, soybean flour, CaCO3, NaCl and (NH4)2SO4) on sugaring out extraction of erythromycin was also investigated. Starch, soybean flour and CaCO3 were observed to affect erythromycin extraction only at higher concentration. Removal of suspended solids from simulated as well as real broth prior to extraction enhanced the extraction efficiency (from 72% to 87%). Sugaring out extraction of erythromycin was found to be more effective than salting out extraction. Also, higher partition coefficient was achieved in the present work than other reported methods using carbohydrates as mass separating agent. Further, it was found that the antimicrobial activity of erythromycin was preserved during sugaring out extraction of erythromycin.
Collapse
Affiliation(s)
- Sharayu Moharkar
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Pradip Babanrao Dhamole
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| |
Collapse
|
12
|
Fu C, Li Z, Sun Z, Xie S. A review of salting-out effect and sugaring-out effect: driving forces for novel liquid-liquid extraction of biofuels and biochemicals. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1980-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Aqueous two-phase extraction of bioactive compounds from haskap leaves (Lonicera caerulea): Comparison of salt/ethanol and sugar/propanol systems. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117399] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Li Y, Dai JY, Xiu ZL. Salting-out extraction of acetoin from fermentation broths using hydroxylammonium ionic liquids as extractants. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Kee PE, Ng TC, Lan JCW, Ng HS. Recent development of unconventional aqueous biphasic system: characteristics, mechanisms and applications. Crit Rev Biotechnol 2020; 40:555-569. [DOI: 10.1080/07388551.2020.1747388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Phei Er Kee
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Kuala Lumpur, Cheras, Malaysia
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - Tze-Cheng Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Kuala Lumpur, Cheras, Malaysia
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - Hui-Suan Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Kuala Lumpur, Cheras, Malaysia
| |
Collapse
|
16
|
Xiao Y, Zhang Z, Wang Y, Gao B, Chang J, Zhu D. Two-Stage Crystallization Combining Direct Succinimide Synthesis for the Recovery of Succinic Acid From Fermentation Broth. Front Bioeng Biotechnol 2020; 7:471. [PMID: 32010679 PMCID: PMC6974449 DOI: 10.3389/fbioe.2019.00471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/23/2019] [Indexed: 11/20/2022] Open
Abstract
Succinic acid is an important chemical and raw material widely used in medicine, food, biodegradable materials, fine chemicals, and other industrial fields. However, traditional methods for purifying succinic acid from fermentation broth are costly, poorly efficient, and harmful to the environment. In this study, an efficient method for purifying succinic acid from the fermentation broth of Escherichia coli NZN111 was developed through crystallization and co-crystallization with urea. First, the filtrate was collected by filtering the fermentation broth, and pH was adjusted to 2.0 by supplementing sulfuric acid. Crystallization was carried out at 8°C for 4 h to obtain succinic acid crystals. The recovery rate and purity of succinic acid were 73.4% and over 99%, respectively. Then, urea was added to the remaining solution with a mass ratio of urea to residual succinic acid of 4:1 (m urea /m SA ). The second crystallization was carried out at pH 2 and 4°C for 12 h to obtain succinic acid-urea co-crystal. The recovery rate of succinic acid residue was 92.0%. The succinic acid-urea crystal was further mixed with phosphorous acid (4.2% of the mass of succinic acid co-crystal) and maintained at 195°C for 6 h to synthesize succinimide, and the yield was >80%. This novel and efficient purification process was characterized by the significantly reduced urea consumption, and high succinic acid recovery (totally 95%), and high succinimide synthesis yield (80%). Thus, this study potentially provided a novel and efficient strategy for the industrial production of succinic acid and succinimide.
Collapse
Affiliation(s)
- Yiwen Xiao
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhibin Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Ya Wang
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Boliang Gao
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jun Chang
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Du Zhu
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
17
|
Mahdavi P, Nojavan S, Asadi S. Sugaring-out assisted electromembrane extraction of basic drugs from biological fluids: Improving the efficiency and stability of extraction system. J Chromatogr A 2019; 1608:460411. [DOI: 10.1016/j.chroma.2019.460411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/20/2019] [Accepted: 07/29/2019] [Indexed: 11/30/2022]
|
18
|
Sun Y, Zhang X, Zheng Y, Yan L, Xiu Z. Sugaring-out extraction combining crystallization for recovery of succinic acid. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|