1
|
Wu F, Li Q, Zhang Z, Zhou X, Pang R. A review on antifouling polyamide reverse osmosis membrane for seawater desalination. ENVIRONMENTAL RESEARCH 2025; 274:121305. [PMID: 40054552 DOI: 10.1016/j.envres.2025.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 05/04/2025]
Abstract
Reverse osmosis (RO) membrane technology is well-established in desalination. Aromatic polyamide (PA) thin-film composite (TFC) membrane dominates the commercial RO membrane market due to its high-salt rejection, water flux, and excellent chemical, thermal, and mechanical stabilization. However, membrane fouling is a common problem that has seriously hindered the wide application of RO membrane technology. This paper reviewed the PA RO membrane fouling types, and membrane fouling factors. Antifouling measures for RO membranes were summarized, including pretreatment, periodic cleaning, and modification of the support layer and PA layer. The future development of antifouling RO membranes was clarified.
Collapse
Affiliation(s)
- Feixiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China; Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215100, China
| | - Qi Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China; Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215100, China
| | - Zhien Zhang
- Department of Geosciences and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Xingfu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Ruizhi Pang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China; Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215100, China.
| |
Collapse
|
2
|
Sood Y, Singh K, Mudila H, Lokhande P, Singh L, Kumar D, Kumar A, Mubarak NM, Dehghani MH. Insights into properties, synthesis and emerging applications of polypyrrole-based composites, and future prospective: A review. Heliyon 2024; 10:e33643. [PMID: 39027581 PMCID: PMC11255519 DOI: 10.1016/j.heliyon.2024.e33643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Recent advancements in polymer science and engineering underscore the importance of creating sophisticated soft materials characterized by well-defined structures and adaptable properties to meet the demands of emerging applications. The primary objective of polymeric composite technology is to enhance the functional utility of materials for high-end purposes. Both the inherent qualities of the materials and the intricacies of the synthesis process play pivotal roles in advancing their properties and expanding their potential applications. Polypyrrole (PPy)-based composites, owing to their distinctive properties, hold great appeal for a variety of applications. Despite the limitations of PPy in its pure form, these constraints can be effectively overcome through hybridization with other materials. This comprehensive review thoroughly explores the existing literature on PPy and PPy-based composites, providing in-depth insights into their synthesis, properties, and applications. Special attention is given to the advantages of intrinsically conducting polymers (ICPs) and PPy in comparison to other ICPs. The impact of doping anions, additives, and oxidants on the properties of PPy is also thoroughly examined. By delving into these aspects, this overview aims to inspire researchers to delve into the realm of PPy-based composites, encouraging them to explore new avenues for flexible technology applications.
Collapse
Affiliation(s)
- Yuvika Sood
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kartika Singh
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Harish Mudila
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - P.E. Lokhande
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago, 7810003, Chile
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, Himachal Pradesh, 175001, India
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Anil Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Baskaran D, Dhamodharan D, Behera US, Byun HS. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds. ENVIRONMENTAL RESEARCH 2024; 251:118472. [PMID: 38452912 DOI: 10.1016/j.envres.2024.118472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Volatile organic compounds (VOCs) are harmful pollutants emitted from industrial processes. They pose a risk to human health and ecosystems, even at low concentrations. Controlling VOCs is crucial for good air quality. This review aims to provide a comprehensive understanding of the various methods used for controlling VOC abatement. The advancement of mono-functional treatment techniques, including recovery such as absorption, adsorption, condensation, and membrane separation, and destruction-based methods such as natural degradation methods, advanced oxidation processes, and reduction methods were discussed. Among these methods, advanced oxidation processes are considered the most effective for removing toxic VOCs, despite some drawbacks such as costly chemicals, rigorous reaction conditions, and the formation of secondary chemicals. Standalone technologies are generally not sufficient and do not perform satisfactorily for the removal of hazardous air pollutants due to the generation of innocuous end products. However, every integration technique complements superiority and overcomes the challenges of standalone technologies. For instance, by using catalytic oxidation, catalytic ozonation, non-thermal plasma, and photocatalysis pretreatments, the amount of bioaerosols released from the bioreactor can be significantly reduced, leading to effective conversion rates for non-polar compounds, and opening new perspectives towards promising techniques with countless benefits. Interestingly, the three-stage processes have shown efficient decomposition performance for polar VOCs, excellent recoverability for nonpolar VOCs, and promising potential applications in atmospheric purification. Furthermore, the review also reports on the evolution of mathematical and artificial neural network modeling for VOC removal performance. The article critically analyzes the synergistic effects and advantages of integration. The authors hope that this article will be helpful in deciding on the appropriate strategy for controlling interested VOCs.
Collapse
Affiliation(s)
- Divya Baskaran
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea; Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai-600077, India
| | - Duraisami Dhamodharan
- Interdisciplinary Research Centre for Refining and Advanced Chemicals, King Fahd, University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Uma Sankar Behera
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, Jeonnam 59626, South Korea.
| |
Collapse
|
4
|
He Y, Zhang Y, Liang F, Zhu Y, Jin J. Chlorine resistant polyamide desalination membrane prepared via organic-organic interfacial polymerization. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Gan G, Fan S, Li X, Zhang Z, Hao Z. Adsorption and membrane separation for removal and recovery of volatile organic compounds. J Environ Sci (China) 2023; 123:96-115. [PMID: 36522017 DOI: 10.1016/j.jes.2022.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity, high volatility, and poor degradability. It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations. In China, clear directions and requirements for reduction of VOCs have been given in the "national plan on environmental improvement for the 13th Five-Year Plan period". Therefore, the development of efficient technologies for removal and recovery of VOCs is of great significance. Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions. Among them, adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects. This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs. Firstly, adsorption and membrane separation were found to be the research hotspots through bibliometric analysis. Then, a comprehensive understanding of their mechanisms, factors, and current application statuses was discussed. Finally, the challenges and perspectives in this emerging field were briefly highlighted.
Collapse
Affiliation(s)
- Guoqiang Gan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
6
|
A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Liao Z, Wu Y, Cao S, Yuan S, Fang Y, Qin J, Shi J, Shi C, Ou C, Zhu J. Facile in situ decorating polyacrylonitrile membranes using polyoxometalates for enhanced separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Xiong Z, Huang Y, Huang Z, Shi Y, Qu F, Zhang G, Yang J, Zhao S. Confining Nano-Fe 3O 4 in the Superhydrophilic Membrane Skin Layer to Minimize Internal Fouling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26044-26056. [PMID: 35609300 DOI: 10.1021/acsami.2c04685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane surface fouling is often reversible as it can be mitigated by enhancing the crossflow shear force. However, membrane internal fouling is often irreversible and thus more challenging. In this study, we developed a new superhydrophilic poly(vinylidene fluoride) (P-PVDF) membrane confined with nano-Fe3O4 in the top skin layer via reverse filtration to reduce internal fouling. The surface of the P-PVDF membrane confined with nano-Fe3O4 had superwetting properties (water contact angle reaching 0° within 1 s), increased roughness (from 182 to 239 nm), and enhanced water affinity. The Fe3O4@P-PVDF membrane surface showed a thicker and enhanced hydration layer, which prevented foulants from approaching membrane surfaces and pores, thereby improving the rejection. For example, when 50 ppm humic acid (HA) solution was used as the feed, the removal efficiency of the Fe3O4@P-PVDF membrane was ∼67%, while the HA removal of the P-PVDF membrane was only ∼20%. The results from the resistance-in-series model showed that nanoconfinement of Fe3O4 in the top skin layer of the membrane allowed foulants to accumulate on the membrane surface (i.e., surface fouling) rather than within the internal pores (i.e., internal fouling). The filtration results under crossflow fouling and cleaning confirmed that the Fe3O4@P-PVDF membrane had higher surface fouling but it was much more reversible and much lower internal fouling compared with the control membrane. Our fouling analysis offers new insights into mass transfer mechanisms of the membrane with a nanoconfinement-enhanced hydration layer. This study provides an effective strategy to develop membranes with low internal fouling propensities.
Collapse
Affiliation(s)
- Zhu Xiong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, Guangdong, P. R. China
| | - Yongshi Huang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zehui Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, Guangdong, P. R. China
| | - Yiwen Shi
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, Guangdong, P. R. China
| | - Fangshu Qu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Gaosheng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, Guangdong, P. R. China
| | - Jingxin Yang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shuaifei Zhao
- Geelong, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
9
|
Enhancing the long-term separation stability of TFC membrane by the covalent bond between synthetic amino-substituted polyethersulfone substrate and polyamide layer. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
|
11
|
Liao Z, Zhu J, Li X, Van der Bruggen B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118567] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Shukla AK, Alam J, Alhoshan MS, Ali FAA, Mishra U, Hamid AA. Thin-Film Nanocomposite Membrane Incorporated with Porous Zn-Based Metal-Organic Frameworks: Toward Enhancement of Desalination Performance and Chlorine Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28818-28831. [PMID: 34105354 DOI: 10.1021/acsami.1c05469] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic framework (MOF) materials have received extensive attention for the design of advanced thin-film nanocomposite (TFN) membranes with excellent permselectivity. However, the relationship between the unique physicochemical properties and performance of engineered MOF-based membranes has yet to be extensively investigated. In this work, we investigate the incorporation of porous zinc-based MOFs (Zn-MOFs) into a polyamide active layer for the fabrication of TFN membranes on porous poly(phenylsulfone) (PPSU) support layers through an interfacial polymerization approach. The actual effects of varying the amount of Zn-MOF added as a nanofiller on the physicochemical properties and desalination performance of TFN membranes are studied. The presence and layout of Zn-MOFs on the top layer of the membranes were confirmed by X-ray photoelectron spectroscopy, scanning electron microscopy, and ζ potential analysis. The characterization results revealed that Zn-MOFs strongly bind with polyamide and significantly change the membrane chemistry and morphology. The results indicate that all four studied TFN membranes with incorporated Zn-MOFs enhanced the water permeability while retaining high salt rejection compared to a thin-film composite membrane. Moreover, the highest-performing membrane (50 mg/L Zn-MOF added nanofiller) not only exhibited a water permeability of 2.46 ± 0.12 LMH/bar but also maintained selectivity to reject NaCl (>90%) and Na2SO4 (>95%), similar to benchmark values. Furthermore, the membranes showed outstanding water stability throughout 72 h filtration and chlorine resistance after a 264 h chlorine-soaking test because of the better compatibility between the polyamide and Zn-MOF nanofiller. Therefore, the developed TFN membrane has potential to solve trade-off difficulties between permeability and selectivity. Our findings indicate that porous Zn-MOFs play a significant role in the development of a TFN membrane with high desalination performance and chlorine resistance.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mansour Saleh Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, P.O. Box 2022, Riyadh 11451, Saudi Arabia
| | - Fekri Abdulraqeb Ahmed Ali
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Umesh Mishra
- Department of Civil Engineering, National Institute of Technology, Jirania, Agartala 799046, Tripura (W), India
| | - Ali Awadh Hamid
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Nguyen MN, Trinh PB, Burkhardt CJ, Schäfer AI. Incorporation of single-walled carbon nanotubes in ultrafiltration support structure for the removal of steroid hormone micropollutants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Ou C, Li S, Wang Z, Qin J, Wang Q, Liao Z, Li J. Organic Nanobowls Modified Thin Film Composite Membrane for Enhanced Purification Performance toward Different Water Resources. MEMBRANES 2021; 11:membranes11050350. [PMID: 34068612 PMCID: PMC8151631 DOI: 10.3390/membranes11050350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
The structure and composition of nanofillers have a significant influence on polyamide nanofiltration (NF) membranes. In this work, an asymmetric organic nanobowl containing a concave cavity was synthesized and incorporated into a polyamide layer to prepare thin film nanocomposite (TFN) membranes via an interfacial polymerization process. Benefiting from the hydrophilicity, hollow cavity and charge property of the compatible organic nanobowls, the separation performance of the developed TFN membrane was significantly improved. The corresponding water fluxes increased to 119.44 ± 5.56, 141.82 ± 3.24 and 130.27 ± 2.05 L/(m2·h) toward Na2SO4, MgCl2 and NaCl solutions, respectively, with higher rejections, compared with the control thin film composite (TFC) and commercial (CM) membranes. Besides this, the modified TFN membrane presented a satisfying purification performance toward tap water, municipal effluent and heavy metal wastewater. More importantly, a better antifouling property of the TFN membrane than TFC and CM membranes was achieved with the assistance of organic nanobowls. These results indicate that the separation performance of the TFN membrane can be elevated by the incorporation of organic nanobowls.
Collapse
Affiliation(s)
- Changjin Ou
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
| | - Sisi Li
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
| | - Zhongyi Wang
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
| | - Juan Qin
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
| | - Qian Wang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Zhipeng Liao
- Nantong Key Laboratory of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 222100, China; (C.O.); (S.L.); (Z.W.); (J.Q.)
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Correspondence: (Z.L.); (J.L.)
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Correspondence: (Z.L.); (J.L.)
| |
Collapse
|
15
|
Liu C, Wang W, Yang B, Xiao K, Zhao H. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies. WATER RESEARCH 2021; 195:116976. [PMID: 33706215 DOI: 10.1016/j.watres.2021.116976] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Membrane technology has been widely used in the wastewater treatment and seawater desalination. In recent years, the reverse osmosis (RO) membrane represented by polyamide (PA) has made great progress because of its excellent properties. However, the conventional PA RO membranes still have some scientific problems, such as membrane fouling, easy degradation after chlorination, and unclear mechanisms of salt retention and water flux, which seriously impede the widespread use of RO membrane technology. This paper reviews the progress in the research and development of the RO membrane, with key focus on the mechanisms and strategies of the contemporary separation, anti-fouling and chlorine resistance of the PA RO membrane. This review seeks to provide state-of-the-art insights into the mitigation strategies and basic mechanisms for some of the key challenges. Under the guidance of the fundamental understanding of each mechanism, operation and modification strategies are discussed, and reasonable analysis is carried out, which can address some key technical challenges. The last section of the review focuses on the technical issues, challenges, and future perspective of these mechanisms and strategies. Advances in synergistic mechanisms and strategies of the PA RO membranes have been rarely reviewed; thus, this review can serve as a guide for new entrants to the field of membrane water treatment and established researchers.
Collapse
Affiliation(s)
- Chao Liu
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjing Wang
- Institute of Ecology & Environment Governance, Hebei University, Baoding 071002, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Efficient and rapid multiscale approach of polymer membrane degradation and stability: Application to formulation of harmless non-oxidative biocide for polyamide and PES/PVP membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Zhang X, Huang H, Li X, Wang J, Wei Y, Zhang H. Bioinspired chlorine-resistant tailoring for polyamide reverse osmosis membrane based on tandem oxidation of natural α-lipoic acid on the surface. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Liao Z, Nguyen MN, Wan G, Xie J, Ni L, Qi J, Li J, Schäfer AI. Low pressure operated ultrafiltration membrane with integration of hollow mesoporous carbon nanospheres for effective removal of micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122779. [PMID: 32387831 DOI: 10.1016/j.jhazmat.2020.122779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
An effective way to remove micropollutants is desirable for water purification. In this work, a dual-functional ultrafiltration (DFUF) membrane was fabricated by loading hollow mesoporous carbon nanospheres (HMCNs) into the finger-like support layer pores of the polymeric ultrafiltration (UF) membrane. The designed DFUF membrane combines the high selectivity of ultrafiltration that removes macromolecules based on size exclusion mechanism, and excellent adsorption capacity of HMCNs towards micropollutants in water. When tetracycline (TCN) and 17β-Estradiol (E2) were selected as model micropollutants, corresponding 97 % and 94 % removal were achieved at a low pressure less than 0.15 bar and a flux of 50 and 64 L h-1 m-2 (estimated residence time less than 6 s), respectively. Moreover, simultaneous removal of multiple pollutants was demonstrated by filtering a mixture containing TCN and polyethylene glycols (PEG) 600 kDa macromolecules. Over a long filtration period (more than 60 h) that produced 3180 L/m2 of permeate, the TCN concentration reduced from 100 μg/L in the feed to less than 10 μg/L in the permeate. The above results indicate that the DFUF membrane is capable of removing the small molecular and macromolecular pollutants simultaneously at low pressure, and hence offers remarkable potential in water treatment applications.
Collapse
Affiliation(s)
- Zhipeng Liao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minh Nhat Nguyen
- Membrane Technology Department, Institute of Functional Interfaces (IFG-MT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gaojie Wan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Xie
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Linhan Ni
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Andrea Iris Schäfer
- Membrane Technology Department, Institute of Functional Interfaces (IFG-MT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
19
|
Fazullin DD, Mavrin GV, Salakhova AN. Synthesis and Characterization of a Multilayer Membrane with Surface Layers for Water Desalination. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620020067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Zhao S, Golestani M, Penesyan A, Deng B, Zheng C, Strezov V. Antibiotic enhanced dopamine polymerization for engineering antifouling and antimicrobial membranes. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Song X, Wang Y, Jiao C, Huang M, Wang GH, Jiang H. Microstructure regulation of polyamide nanocomposite membrane by functional mesoporous polymer for high-efficiency desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117783] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Li Y, He S, Zhou Z, Zhou S, Huang S, Fane AG, Zheng C, Zhang Y, Zhao S. Carboxylated Nanodiamond-Enhanced Photocatalytic Membranes with Improved Antifouling and Self-Cleaning Properties. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06389] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Li
- School of Environment and Energy, South China University of Technology, Guangzhou 511442, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shu He
- School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhuang Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 511442, China
| | - Shaofeng Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 511442, China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 511442, China
| | - Anthony G. Fane
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongqing Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 511442, China
| | - Shuaifei Zhao
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3200, Australia
| |
Collapse
|
23
|
Silva Júnior FAGD, Vieira SA, Botton SDA, Costa MMD, Oliveira HPD. Antibacterial activity of polypyrrole-based nanocomposites: a mini-review. POLIMEROS 2020. [DOI: 10.1590/0104-1428.08020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Ni L, Liao Z, Chen K, Xie J, Li Q, Qi J, Sun X, Wang L, Li J. Defect-engineered UiO-66-NH2 modified thin film nanocomposite membrane with enhanced nanofiltration performance. Chem Commun (Camb) 2020; 56:8372-8375. [DOI: 10.1039/d0cc01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Defect-engineered UiO-66-NH2 was introduced into a polyamide layer to form a thin film nanocomposite (TFN) membrane.
Collapse
Affiliation(s)
- Linhan Ni
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology
- Nanjing
- China
| | - Zhipeng Liao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology
- Nanjing
- China
| | - Ke Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology
- Nanjing
- China
| | - Jia Xie
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology
- Nanjing
- China
| | - Qin Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology
- Nanjing
- China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology
- Nanjing
- China
| | - Xiuyun Sun
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology
- Nanjing
- China
| | - Lianjun Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology
- Nanjing
- China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology
- Nanjing
- China
| |
Collapse
|
25
|
Liao Z, Fang X, Li Q, Xie J, Ni L, Wang D, Sun X, Wang L, Li J. Resorcinol-formaldehyde nanobowls modified thin film nanocomposite membrane with enhanced nanofiltration performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117468] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Li Q, Liao Z, Fang X, Wang D, Xie J, Sun X, Wang L, Li J. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Petrusová Z, Machanová K, Stanovský P, Izák P. Separation of organic compounds from gaseous mixtures by vapor permeation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Liao Z, Fang X, Xie J, Li Q, Wang D, Sun X, Wang L, Li J. Hydrophilic Hollow Nanocube-Functionalized Thin Film Nanocomposite Membrane with Enhanced Nanofiltration Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5344-5352. [PMID: 30638012 DOI: 10.1021/acsami.8b19121] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The performance of thin film nanocomposite (TFN) membrane is significantly determined by the inherent structure and composition of the incorporated nanofillers. In this work, hydrophilic hollow nanocubes (HHNs) derived from zeolitic imidazolate framework 8 (ZIF-8) were incorporated into the polyamide layer via an interfacial polymerization approach. The HHNs with abundant hydroxyl groups on the surface were obtained by etching solid ZIF-8 using tannic acid. Benefiting from the hydrophilicity, hollow structure, and negative charge of HHNs, the outstanding nanofiltration performance of the composite membrane was achieved. With the assistance of HHNs, the permeance and Na2SO4 rejection of the TFN membrane increased up to 19.4 ± 0.6 L/(m2·h·bar) and 95.2 ± 1.4%, corresponding to an improvement of 190% of the permeance and 2.0% of the rejection compared to the pristine thin film composite membrane. Comparatively, the performance of TFN membranes prepared with solid ZIF-8 only shows 116% improvements of the permeance with slightly increased salt rejection. More importantly, the antifouling property of the TFN-4H membrane was also elevated. The flux recovery ratios of the TFN-4H membrane are 93.2 and 84.7% corresponding to humic acid and bovine serum albumin solutions, respectively. The results indicate that the nanofiltration performance of the composite membrane was significantly enhanced with the incorporation of HHNs.
Collapse
Affiliation(s)
- Zhipeng Liao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Xiaofeng Fang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Jia Xie
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Qin Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Dapeng Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Xiuyun Sun
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Lianjun Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| |
Collapse
|