1
|
Liu C, Si Z, Wu H, Zhuang Y, Zhang C, Zhang G, Zhang X, Qin P. High-/Low-Molecular-Weight PDMS Photo-Copolymerized Membranes for Ethanol Recovery. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chang Liu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Hanzhu Wu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yan Zhuang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Ganggang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Xinmiao Zhang
- Environmental Protection Research Institute, Beijing Research Institute of Chemical Industry, Beijing100000, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
2
|
Fabrication of polydimethylsiloxane mixed matrix membranes for recovery of ethylene glycol butyl ether from water by pervaporation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Peng P, Lan Y, Xu A, Liu M. Enhanced ethanol pervaporative selectivity of polydimethylsiloxane membranes by incorporating with graphene oxide@silica core‐shell structure. J Appl Polym Sci 2022. [DOI: 10.1002/app.53449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ping Peng
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
- Science and Technology on Sanming Institute of Fluorochemical Industry Sanming China
| | - Yongqiang Lan
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
| | - Amei Xu
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
| | - Mengyao Liu
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering Sanming University Sanming China
| |
Collapse
|
4
|
Zhan X, Zhao X, Ge R, Gao Z, Wang L, Sun X, Li J. Constructing high-efficiency transport pathways via incorporating DP-POSS into PEG membranes for pervaporative desulfurization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Peng L, Wu Z, Wang B, Liu H, Zhang C, Gu X. Fabrication of high-stability W-MFI zeolite membranes for ethanol/water mixture separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Nejad SMH, Mostafavi AH, Hosseini SS, Zeng H, Shao L. Enhancing performance of polyacrylonitrile membranes for pervaporation dehydration of ethanol by tailoring morphology and process parameters. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Mituła K, Januszewski R, Duszczak J, Rzonsowska M, Dudziec B. High thermally stable polysiloxanes cross-linked with di(alkenyl)functionalized DDSQs exhibiting swelling abilities. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
PVA-Based MMMs for Ethanol Dehydration via Pervaporation: A Comparison Study between Graphene and Graphene Oxide. SEPARATIONS 2022. [DOI: 10.3390/separations9020026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Two different types of 2D nanosheets, including hydrophobic graphene (GR) and hydrophilic graphene oxide (GO), were filled into poly (vinyl alcohol) (PVA) polymers to prepare mixed matrix membranes (MMMs) for ethanol dehydration via pervaporation. The relationship between the physical/chemical properties of graphene and pervaporation performance of MMMs was investigated by a comparison of GR/PVA and GO/PVA MMMs in microstructure and PV performance. The incorporation of GO nanosheets into PVA reduced PVA crystallinity and enhanced the membrane hydrophilicity, while the incorporation of GR into PVA led to the opposite results. The incorporation of GR/GO into PVA depressed the PVA membrane swelling degree, and the incorporation of GR showed a more obvious depression effect. GR/PVA MMMs showed a much higher separation factor than GO/PVA MMMs, while they exhibited a much lower permeation flux than GO/PVA MMMs and pristine PVA membranes. The huge difference in microstructure and performance between GO/PVA and GR/PVA MMMs was strongly associated with the oxygen-containing groups on graphene lamellae. The higher permeation flux of GO/PVA MMMs was ascribed to the facilitated transport of water molecules induced by oxygen-containing groups and exclusive channels provided by GO lamellae, while the much lower permeation flux and higher separation factor GR/PVA MMMs was resulted from the smaller GR interplanar spacing (0.33 nm) and hydrophobicity as well as barrier effect of GR lamellae on the sorption and diffusion of water molecules. It was presumed that graphene intercalated with an appropriate number of oxygen-containing groups might be a good choice to prepare PVA-based MMMs for ethanol dehydration, which would combine the advantages of GR’s high interlayer diffusion selectivity and GO’s high permeation properties. The investigation might open a door to achieve both of high permeation flux and separation factor of PVA-based MMMs by tuning the microstructure of graphene.
Collapse
|
9
|
Li J, Huang M, Wei P, Zhang Y, Zhao X, Liu C, Zhou Z, Zhang L. Comprehensive analysis on anomalous phenomenon of
ethanol‐soluble
poly(vinyl butyral) membrane for ethanol recovery via pervaporation. AIChE J 2022. [DOI: 10.1002/aic.17560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Junjun Li
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Mi Huang
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Ping Wei
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Yaqin Zhang
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Xuean Zhao
- Department of Physics Zhejiang University Hangzhou China
| | - Chunbo Liu
- Key Laboratory of Tobacco Chemistry of Yunnan, R&D Center China Tobacco Yunnan Industrial Co., Ltd Kunming China
| | - Zhijun Zhou
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Lin Zhang
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| |
Collapse
|
10
|
Zhan X, Zhao X, Gao Z, Ge R, Lu J, Wang L, Li J. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Liu C, Xue T, Yang Y, Ouyang J, Chen H, Yang S, Li G, Cai D, Si Z, Li S, Qin P. Effect of crosslinker 3-methacryloxypropylmethyldimethoxysilane on UV-crosslinked PDMS-PTFPMS block copolymer membranes for ethanol pervaporation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Peng P, Lan Y, Liang L, Jia K. Membranes for bioethanol production by pervaporation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:10. [PMID: 33413629 PMCID: PMC7791809 DOI: 10.1186/s13068-020-01857-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bioethanol as a renewable energy resource plays an important role in alleviating energy crisis and environmental protection. Pervaporation has achieved increasing attention because of its potential to be a useful way to separate ethanol from the biomass fermentation process. RESULTS This overview of ethanol separation via pervaporation primarily concentrates on transport mechanisms, fabrication methods, and membrane materials. The research and development of polymeric, inorganic, and mixed matrix membranes are reviewed from the perspective of membrane materials as well as modification methods. The recovery performance of the existing pervaporation membranes for ethanol solutions is compared, and the approaches to further improve the pervaporation performance are also discussed. CONCLUSIONS Overall, exploring the possibility and limitation of the separation performance of PV membranes for ethanol extraction is a long-standing topic. Collectively, the quest is to break the trade-off between membrane permeability and selectivity. Based on the facilitated transport mechanism, further exploration of ethanol-selective membranes may focus on constructing a well-designed microstructure, providing active sites for facilitating the fast transport of ethanol molecules, hence achieving both high selectivity and permeability simultaneously. Finally, it is expected that more and more successful research could be realized into commercial products and this separation process will be deployed in industrial practices in the near future.
Collapse
Affiliation(s)
- Ping Peng
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Yongqiang Lan
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China.
- Key Laboratory of Biobased Material Science & Technology (Education Ministry), Northeast Forestry University, Harbin, 150040, China.
| | - Lun Liang
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| | - Kemeng Jia
- Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, 365004, Fujian, China
| |
Collapse
|
13
|
Bermudez Jaimes JH, Torres Alvarez ME, Bannwart de Moraes E, Wolf Maciel MR, Maciel Filho R. Separation and Semi-Empiric Modeling of Ethanol-Water Solutions by Pervaporation Using PDMS Membrane. Polymers (Basel) 2020; 13:E93. [PMID: 33383641 PMCID: PMC7795344 DOI: 10.3390/polym13010093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
High energy demand, competitive fuel prices and the need for environmentally friendly processes have led to the constant development of the alcohol industry. Pervaporation is seen as a separation process, with low energy consumption, which has a high potential for application in the fermentation and dehydration of ethanol. This work presents the experimental ethanol recovery by pervaporation and the semi-empirical model of partial fluxes. Total permeate fluxes between 15.6-68.6 mol m-2 h-1 (289-1565 g m-2 h-1), separation factor between 3.4-6.4 and ethanol molar fraction between 16-171 mM (4-35 wt%) were obtained using ethanol feed concentrations between 4-37 mM (1-9 wt%), temperature between 34-50 ∘C and commercial polydimethylsiloxane (PDMS) membrane. From the experimental data a semi-empirical model describing the behavior of partial-permeate fluxes was developed considering the effect of both the temperature and the composition of the feed, and the behavior of the apparent activation energy. Therefore, the model obtained shows a modified Arrhenius-type behavior that calculates with high precision the partial-permeate fluxes. Furthermore, the versatility of the model was demonstrated in process such as ethanol recovery and both ethanol and butanol dehydration.
Collapse
Affiliation(s)
- John Hervin Bermudez Jaimes
- School of Chemical Engineering, Separation Process Development Laboratory, State University of Campinas, Albert Einstein 500, Campinas 13083-582, Brazil; (M.E.T.A.); (E.B.d.M.); (M.R.W.M.); (R.M.F.)
| | | | | | | | | |
Collapse
|
14
|
Sharma S, Kundu A, Basu S, Shetti NP, Aminabhavi TM. Sustainable environmental management and related biofuel technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111096. [PMID: 32734892 DOI: 10.1016/j.jenvman.2020.111096] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 05/06/2023]
Abstract
Environmental sustainability criteria and rising energy demands, exhaustion of conventional resources of energy followed by environmental degradation due to abrupt climate changes have shifted the attention of scientists to seek renewable sources of green and clean energy for sustainable development. Bioenergy is an excellent alternative since it can be applied for several energy-requirements after utilizing suitable conversion methodology. This review elucidates all aspects of biofuels (bioethanol, biodiesel, and butanol) and their sustainability criteria. The principal focus is on the latest developments in biofuel production chiefly stressing on the role of nanotechnology. A plethora of investigations regarding the emerging techniques for process improvement like integration methods, less energy-intensive distillation techniques, and bioengineering of microorganisms are discussed. This can assist in making biofuel-production in a real-world market more economically and environmentally viable.
Collapse
Affiliation(s)
- Surbhi Sharma
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - Aayushi Kundu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India; Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India; Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, India.
| | - Nagaraj P Shetti
- Center for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi, 580 027, India.
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, SET's College of Pharmacy, Dharwad, 580 002, Karnataka, India.
| |
Collapse
|