1
|
Lopatina A, Esmaeili M, Anugwom I, Mänttäri M, Kallioinen-Mänttäri M. Effect of Low Concentrations of Lithium Chloride Additive on Cellulose-Rich Ultrafiltration Membrane Performance. MEMBRANES 2023; 13:198. [PMID: 36837701 PMCID: PMC9964057 DOI: 10.3390/membranes13020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Various water treatment processes make extensive use of porous polymeric membranes. A key objective in membrane fabrication is to improve membrane selectivity without sacrificing other properties such as permeability. Herein, LiCl (0-2 wt.%) was utilised as a preforming agent in fabricating biomass-derived cellulosic membranes. The fabricated membranes were characterised by dope solution viscosity, surface and cross-sectional morphology, pure water flux, relative molecular mass cut-off (MWCO, 35 kDa), membrane chemistry, and hydrophilicity. The results demonstrated that at the optimum LiCl concentration (0.4 wt.%), there is an interplay of thermodynamic instability and kinetic effects during membrane formation, wherein the membrane morphology and hydrophilicity can be preferably altered and thus lead to the formation of the membrane with better rejection at no detriment to its permeability.
Collapse
|
2
|
Zhu R, Fu X, Jin S, Ma R, He Z, Zhang D, Long Z. Water and oil-resistant paper materials based on sodium alginate/hydroxypropyl methylcellulose/polyvinyl butyral/nano-silica with biodegradable and high barrier properties. Int J Biol Macromol 2023; 225:162-171. [PMID: 36252631 DOI: 10.1016/j.ijbiomac.2022.10.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Despite many technical challenges in the development of safe and environmentally friendly food packaging paper materials with excellent water and oil resistance using simple methods, producing paper-based functional materials using bio-based polymers is currently an important topic in the food packaging industry. In this study, novel water and oil-resistant coatings for the paper were developed through the combination of sodium alginate (SA), hydroxypropyl methylcellulose (HPMC), polyvinyl butyral (PVB), and hydrophobic silica nanoparticles (HSNPs). To impart oil-repellency to paper, SA and HPMC were first mixed uniformly and coated on the base paper, which was pre-treated with calcium chloride solution. A compact and tough coating layer was formed on paper due to the hydrogen bonding between SA and HPMC molecules, and the crosslinking between SA and Ca2+ ions in the base paper. High water resistance of the paper was achieved through the coating of PVB and HSNPs on top of the coating of SA/HPMC. The final coated paper demonstrated outstanding oil resistance (kit rating: 12/12), water resistance (Cobb value: 4.23 g/m2), low water vapor transmission rate (100 g/m2·24 h), and improved mechanical properties. This fluorine-free, and biodegradable barrier paper will find excellent applications in the food packaging industry.
Collapse
Affiliation(s)
- Ruifeng Zhu
- Laboratory of Papermaking, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaotong Fu
- Laboratory of Papermaking, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Shengnan Jin
- Laboratory of Papermaking, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Rui Ma
- Laboratory of Papermaking, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhibin He
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Dan Zhang
- Laboratory of Papermaking, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhu Long
- Laboratory of Papermaking, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Mokarizadeh H, Moayedfard S, Maleh MS, Mohamed SIGP, Nejati S, Esfahani MR. The role of support layer properties on the fabrication and performance of thin-film composite membranes: The significance of selective layer-support layer connectivity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
De Guzman MR, Ang MBMY, Huang SH, Huang QY, Chiao YH, Lee KR. Optimal Performance of Thin-Film Composite Nanofiltration-Like Forward Osmosis Membranes Set Off by Changing the Chemical Structure of Diamine Reacted with Trimesoyl Chloride through Interfacial Polymerization. Polymers (Basel) 2021; 13:polym13040544. [PMID: 33673191 PMCID: PMC7918250 DOI: 10.3390/polym13040544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
Thin-film composite (TFC) polyamide membranes formed through interfacial polymerization can function more efficiently by tuning the chemical structure of participating monomers. Accordingly, three kinds of diamine monomers were considered to take part in interfacial polymerization. Each diamine was reacted with trimesoyl chloride (TMC) to manufacture TFC polyamide nanofiltration (NF)-like forward osmosis (FO) membranes. The diamines differed in chemical structure; the functional group present between the terminal amines was classified as follows: aliphatic group of 1,3-diaminopropane (DAPE); cyclohexane in 1,3-cyclohexanediamine (CHDA); and aromatic or benzene ring in m-phenylenediamine (MPD). For FO tests, deionized water and 1 M aqueous sodium sulfate solution were used as feed and draw solution, respectively. Interfacial polymerization conditions were also varied: concentrations of water and oil phases, time of contact between the water-phase solution and the membrane substrate, and polymerization reaction time. The resultant membranes were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and surface contact angle measurement to identify the chemical structure, morphology, roughness, and hydrophilicity of the polyamide layer, respectively. The results of FO experiments revealed that among the three diamine monomers, CHDA turned out to be the most effective, as it led to the production of TFC NF-like FO membrane with optimal performance. Then, the following optimum conditions were established for the CHDA-based membrane: contact between 2.5 wt.% aqueous CHDA solution and polysulfone (PSf) substrate for 2 min, and polymerization reaction between 1 wt.% TMC solution and 2.5 wt.% CHDA solution for 30 s. The composite CHDA-TMC/PSf membrane delivered a water flux (Jw) of 18.24 ± 1.33 LMH and a reverse salt flux (Js) of 5.75 ± 1.12 gMH; therefore, Js/Jw was evaluated to be 0.32 ± 0.07 (g/L).
Collapse
Affiliation(s)
- Manuel Reyes De Guzman
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China;
| | - Micah Belle Marie Yap Ang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (K.-R.L.)
| | - Shu-Hsien Huang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (K.-R.L.)
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan;
- Correspondence:
| | - Qing-Yi Huang
- Department of Chemical and Materials Engineering, National Ilan University, Yilan 26047, Taiwan;
| | - Yu-Hsuan Chiao
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan; (M.B.M.Y.A.); (K.-R.L.)
- Research Center for Circular Economy, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
5
|
Suzaimi ND, Goh PS, Ismail AF, Mamah SC, Malek NANN, Lim JW, Wong KC, Hilal N. Strategies in Forward Osmosis Membrane Substrate Fabrication and Modification: A Review. MEMBRANES 2020; 10:E332. [PMID: 33171847 PMCID: PMC7695145 DOI: 10.3390/membranes10110332] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 01/13/2023]
Abstract
Forward osmosis (FO) has been recognized as the preferred alternative membrane-based separation technology for conventional water treatment technologies due to its high energy efficiency and promising separation performances. FO has been widely explored in the fields of wastewater treatment, desalination, food industry and bio-products, and energy generation. The substrate of the typically used FO thin film composite membranes serves as a support for selective layer formation and can significantly affect the structural and physicochemical properties of the resultant selective layer. This signifies the importance of substrate exploration to fine-tune proper fabrication and modification in obtaining optimized substrate structure with regards to thickness, tortuosity, and porosity on the two sides. The ultimate goal of substrate modification is to obtain a thin and highly selective membrane with enhanced hydrophilicity, antifouling propensity, as well as long duration stability. This review focuses on the various strategies used for FO membrane substrate fabrication and modification. An overview of FO membranes is first presented. The extant strategies applied in FO membrane substrate fabrications and modifications in addition to efforts made to mitigate membrane fouling are extensively reviewed. Lastly, the future perspective regarding the strategies on different FO substrate layers in water treatment are highlighted.
Collapse
Affiliation(s)
- Nur Diyana Suzaimi
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Stanley Chinedu Mamah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
- Department of Chemical Engineering, Alex Ekwueme Federal University, Ebonyi State 84001, Nigeria
| | - Nik Ahmad Nizam Nik Malek
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor 81310, Malaysia;
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | - Kar Chun Wong
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; (N.D.S.); (P.S.G.); (A.F.I.); (S.C.M.); (K.C.W.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| |
Collapse
|
6
|
Liu P, Zhang S, Han R, Bu X, Jian X. Effect of Additives on the Performance of PPBES Composite Forward Osmosis Hollow Fiber Membranes. ACS OMEGA 2020; 5:23148-23156. [PMID: 32954165 PMCID: PMC7495731 DOI: 10.1021/acsomega.0c02914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
A polyamide composite forward osmosis (FO) hollow fiber membrane was successfully prepared with a novel copoly(phthalazinone biphenyl ether sulfone) (PPBES) polymer. Effects of different additives including ethylene glycol methyl ether (EGME) and lithium chloride anhydrous (LiCl) in the dope solution on the morphologies and properties of PPBES support membranes and composite FO hollow fiber membranes were investigated. With the increase of EGME content in the dope solution, the water flux of PPBES support membranes and FO hollow fiber membranes decreased. When LiCl was added into the dope solution, the water flux of FO hollow fiber membranes improved significantly with the increase of LiCl content. Additionally, the FO performance of the PPBES membrane was further optimized by adding triethylamine (TEA) in the interfacial polymerization (IP) process. In comparison with other FO membranes, the novel PPBES composite FO hollow fiber membrane displayed a remarkably high water flux of 45.3 L/m2 h and a low specific reverse salt flux of 0.15 g/L.
Collapse
Affiliation(s)
- Peng Liu
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- College
of Materials Science and Engineering, Shenyang
Jianzhu University, Shenyang 110168, P. R. China
| | - Shouhai Zhang
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning
High Performance Polymer Engineering Research Center, Dalian 116024, P. R. China
| | - Runlin Han
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaoman Bu
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xigao Jian
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning
High Performance Polymer Engineering Research Center, Dalian 116024, P. R. China
| |
Collapse
|