1
|
He Q, Li X, Chai W, Chen L, Mao X. A novel functionalized graphdiyne oxide membrane for efficient removal and rapid detection of mercury in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133711. [PMID: 38340563 DOI: 10.1016/j.jhazmat.2024.133711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In practice, efficient, rapid and simple removal of Hg(II) from water using nano adsorbents remains an extreme challenge at present. In this work, a novel Hg(II) adsorbent based on functionalized graphdiyne oxide (GDYO-3M) membrane was designed for the purpose of effective and prompt removal of Hg(II) from environmental water for the first time. Through filtration, the proposed GDYO-3M membrane (4 cm diameter size) fulfilled an exceeding 97% removal efficiency in > 10 L water containing 0.1 mg/L Hg(II) within 1 h. Due to the presence of -SH groups, the GDYO-3M membrane demonstrates an excellent selectivity for Hg(II) vs. 14 co-existing metal ions. In the meantime, the GDYO-3M membrane represents a favorable reproducibility (above 95% Hg(II) removal) after 9 successive adsorption-desorption cycles. For the mechanism, it is believed that the active sites in the adsorption process mainly include -SH groups, oxygen-containing functional groups, and alkyne bonds. Further, the GDYO-3M membrane can be utilized as an enrichment approach for sensitive analysis of Hg(II) in water based on energy dispersion X-ray fluorescence spectrometry (ED-XRF), whose detection limit (LOD) reaches 0.2 μg/L within 15 min. This work not only provides a green and efficient method for removing Hg(II), but also renders an approach for rapid, sensitive and portable Hg(II) detection in water.
Collapse
Affiliation(s)
- Qianli He
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Weiwei Chai
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lin Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
2
|
Jiao H, Bi R, Li F, Chao J, Zhang G, Zhai L, Hu L, Wang Z, Dai C, Li B. Rapid, easy and catalyst-free preparation of magnetic thiourea-based covalent organic frameworks at room temperature for enrichment and speciation of mercury with HPLC-ICP-MS. J Chromatogr A 2024; 1717:464683. [PMID: 38295741 DOI: 10.1016/j.chroma.2024.464683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
The complex and cumbersome preparation of magnetic covalent organic frameworks (COFs) nanocomposites on a small scale limits their application. Herein, a rapid and easy route was employed for the preparation of magnetic thiourea-based COFs nanocomposites. COFs were coated on Fe3O4 nanoparticles at room temperature without a catalyst within approximately 30 min. This method is suitable for the large-scale preparation of magnetic adsorbent. Using the as-prepared magnetic adsorbent (Fe3O4@COF-TpTU), we developed a simple, efficient, and sensitive magnetic solid-phase extraction-high performance liquid chromatography-inductively coupled plasma-mass spectrometry (MSPE-HPLC-ICP-MS) for the enrichment and determination of mercury species, including Hg2+, methylmercury (MeHg), and ethylmercury (EtHg). The effects of the experimental parameters on the extraction efficiency, including solution pH, adsorption and desorption time, composition and volume of the elution solvent, salinity, coexisting ions, and dissolved organic matter, were comprehensively investigated. Under optimised conditions, the limits of detection in the developed method were 0.56, 0.34, and 0.47 ng L-1 with enrichment factors of 190, 195, and 180-fold for Hg2+, MeHg, and EtHg, respectively. The satisfactory spiked recoveries (97.0-103%) in real water samples and high consistency between the certified and determined values in a certified reference material demonstrate the high accuracy and reproducibility of the developed method. The as-proposed method with simple operation, high sensitivity, and excellent anti-matrix interference performance was successfully applied to the enrichment and determination of trace levels of mercury species in the natural samples with complicated matrices, such as underground water, surface water, seawater and biological samples.
Collapse
Affiliation(s)
- Heping Jiao
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Ruixiang Bi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Fangli Li
- Shandong Public Health Clinic Center, Jinan 266075, China
| | - Jingbo Chao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Guimin Zhang
- National Engineering and Technology Research Centre of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi 276005, China
| | - Lihai Zhai
- National Engineering and Technology Research Centre of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi 276005, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenhua Wang
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Caifeng Dai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Bing Li
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Shandong Key Laboratory for Adhesive Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
3
|
Wu K, Wang B, Liu T, Wang J, Xu W, Zhang B, Niu Y. Synthesis of salicylaldehyde tailored PAMAM dendrimers/chitosan for adsorption of aqueous Hg(II): Performance and mechanism. Int J Biol Macromol 2023; 253:126590. [PMID: 37652340 DOI: 10.1016/j.ijbiomac.2023.126590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Water pollution caused by Hg(II) exerts hazardous effect to environmental safety and human health. Herein, a family of salicylaldehyde tailored poly(amidoamine) (PAMAM) dendrimers/chitosan composites (G0-S/CTS, G1-S/CTS, and G2-S/CTS) were prepared and used for the removal of Hg(II) from water solution. The adsorption performance of the as-prepared composites for Hg(II) was thoroughly demonstrated by determining various influencing factors. G0-S/CTS, G1-S/CTS and G2-S/CTS exhibited competitive adsorption capacity and good adsorption selective property for Hg(II). The maximum adsorption capacity of G0-S/CTS, G1-S/CTS and G2-S/CTS for Hg(II) were 1.86, 2.18 and 4.47 mmol‧g-1, respectively. The adsorption for Hg(II) could be enhanced by raising initial Hg(II) concentration and temperature. The adsorption process was dominated by film diffusion processes with monolayer adsorption behavior. The functional groups of NH2, CONH, CN, OH, CO and CN were mainly responsible for the adsorption of Hg(II). G0-S/CTS, G1-S/CTS and G2-S/CTS displayed good regeneration property and the regenerate rate maintained 95.00 % after five adsorption-desorption cycles. The as-prepared adsorbents could be potentially used for the efficient removal of Hg(II) from aqueous solution.
Collapse
Affiliation(s)
- Kaiyan Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Bingxiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Tonghe Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Jiaxuan Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
4
|
Selim AA, Abdallah AB, Awad FS, Khalifa ME, Salem Molouk AF. Electrochemical sensor based on amine- and thiol-modified multi-walled carbon nanotubes for sensitive and selective determination of uranyl ions in real water samples. RSC Adv 2023; 13:31141-31150. [PMID: 37881759 PMCID: PMC10594082 DOI: 10.1039/d3ra05374a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Novel selective and sensitive electrochemical sensors based on the modification of a carbon paste electrode (CPE) with novel amine- and thiol-functionalized multi-walled carbon nanotubes (MWCNT) have been developed for the detection and monitoring of uranyl ions in different real water samples. Multiwalled carbon nanotubes were grafted with 2-aminothiazole (AT/MWCNT) and melamine thiourea (MT/MWCNT) via an amidation reaction in the presence of dicyclohexyl carbodiimide (DCC) as a coupling agent. This modification for multiwalled carbon nanotubes has never been reported before. The amine and thiol groups were considered to be promising functional groups due to their high affinity toward coordination with uranyl ions. The modified multi-walled carbon nanotubes were characterized using different analytical techniques including FTIR, SEM, XPS, and elemental analysis. Subsequently, 10 wt% MT/MWCNT was mixed with 60 wt% graphite powder in the presence of 30 wt% paraffin oil to obtain a modified carbon paste electrode (MT/MWCNT/CPE). The electrochemical behavior and applications of the prepared sensors were examined using cyclic voltammetry, differential pulse anodic stripping voltammetry, and electrochemical impedance spectroscopy. The MT/MWCNT/CPE sensor exhibited a good linearity for UO22+ in the concentration range of 5.0 × 10-3 to 1.0 × 10-10 mol L-1 with low limits of detection (LOD = 2.1 × 10-11 mol L-1) and quantification (LOQ = 7 × 10-11 mol L-1). In addition, high precision (RSD = 2.7%), good reproducibility (RSD = 2.1%), and high stability (six weeks) were displayed. Finally, MT-MWCNT@CPE was successfully utilized to measure the uranyl ions in an actual water sample with excellent recoveries (97.8-99.3%). These results demonstrate that MT-MWCNT@CPE possesses appropriate accuracy and is appropriate for environmental applications.
Collapse
Affiliation(s)
- Amina A Selim
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
| | - A B Abdallah
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
- Chemistry Department, Faculty of Science, New Mansoura University New Mansoura City Egypt
| | - Fathi S Awad
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
- Chemistry Department, Faculty of Science, New Mansoura University New Mansoura City Egypt
| | - Magdi E Khalifa
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
| | - Ahmed Fathi Salem Molouk
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374 +201090433272
- Chemistry Department, Faculty of Science, New Mansoura University New Mansoura City Egypt
| |
Collapse
|
5
|
Li M, Tuo Y, Wu Q, Lin H, Feng Q, Duan Y, Wei J, Chen Z, Lv J, Li L. One-step synthesis of thiol-functionalized metal coordination polymers: effective and superfast removal of Hg (II) in the different matrices to ppb level. CHEMOSPHERE 2023; 338:139618. [PMID: 37487976 DOI: 10.1016/j.chemosphere.2023.139618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The mercury in water bodies has posed a great threat to the environment and humans, and removing mercury and purifying wastewater has become a global environmental issue. Adopting Zn(II) coordination polymers (Zn-CPs) emerged as a new approach, however, the kind of Zn-CPs, which solely consisted of amino groups, exhibited unsatisfactory performance in capturing Hg(II) at a low level and causing the subsequent leaching of Zn(II) after adsorption. In this study, we fabricated the thiol-modified Zn-based coordination polymers (Zn-CPs-SH) through a one-step solvothermal reaction to efficiently capture Hg(II) from wastewater. Its preeminent adsorption performance could be maintained across a broad range of pH (2-7), ion strength (Cl-, SO42-, and NO3- at 0-10,000 mg/L), and dissolved organic matter (0-100 mg/L). The impressive properties, including fast kinetics (k2∼1.01 × 10-4 L/min), outstanding adsorption capacity (1278.72 mg/g, 298 K), superior selectivity (Kd∼2.3 × 104 mL/g), and excellent regeneration capability (Re = 93.54% after 5 cycles), were attributed to the ultra-abundance of adsorption sites donating from thiol groups, which was revealed by XPS analysis, DFT calculations, and molecular orbital theory. Noteworthy, the high practical application potential of Zn-CPs-SH was demonstrated by its outstanding Hg(II) removal efficiency (Re ≥ 99.10%) in various Hg(II)-spiked water matrices, e.g., tap water, river water, and industrial wastewater. Importantly, the residual Hg(II) in the treated water declined to the ppb level without any Zn(II) leaching. Overall, it is highly anticipated that the incorporation of Zn-CPs-SH would facilitate the practical implementation of highly efficient Hg(II) removal in wastewater treatment owing to its exhibiting high selective affinity, superior adsorption capacity, and enhanced efficiency.
Collapse
Affiliation(s)
- Mingzhi Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yongjie Tuo
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Qiuxia Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Haiying Lin
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, China.
| | - Qingge Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, China
| | - Yu Duan
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Junqi Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Zixuan Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Jiatong Lv
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Lianghong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Indurkar PD, Raj SK, Kulshrestha V. Multivariate modeling and process optimization of Hg(II) remediation using solvothermal synthesized 2D MX/Fe 3O 4 by response surface methodology: characteristics and mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27687-7. [PMID: 37233927 DOI: 10.1007/s11356-023-27687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Two-dimensional MXene with layered structure has recently emerged as a nanomaterial with fascinating characteristics and applicability. Herein, we prepared the newly modified magnetic MXene (MX/Fe3O4) nanocomposite using solvothermal approach and investigated its adsorption behavior to study the removal efficiency of Hg(II) ions from aqueous solution. The effect of adsorption parameters such as adsorbent dose, time, concentration, and pH were optimized using response surface methodology (RSM). The experimental data fitted well with quadratic model to predict the optimum conditions for maximum Hg(II) ion removal efficiency which were found to be at adsorbent dose 0.871 g/L, time 103.6 min, concentration 40.17 mg/L, and 6.5 pH respectively. To determine the adequacy of the developed model, a statistical analysis of variance (ANOVA) was used, which demonstrated high agreement between the experimental data and the suggested model. According to isotherm result, the experimental data were following the best agreement with the Redlich-Peterson isotherm model. The results of the experiments revealed that the maximum Langmuir adsorption capacity of 699.3 mg/g was obtained at optimum conditions, which was closed to the experimental adsorption capacity of 703.57 mg/g. The adsorption phenomena was well represented by the pseudo-second-order model (R2 = 0.9983). On the whole, it was clear that MX/Fe3O4 has lot of potential as a Hg(II) ion impurity removal agent in aqueous solutions.
Collapse
Affiliation(s)
- Pankaj D Indurkar
- Membrane Science & Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Savan K Raj
- Membrane Science & Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002, India
- Department of Physics, The MK Bhavnagar University, Bhavnagar, 364 002, India
| | - Vaibhav Kulshrestha
- Membrane Science & Separation Technology Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Wu K, Wang B, Dou R, Zhang Y, Xue Z, Liu Y, Niu Y. Synthesis of functional poly(amidoamine) dendrimer decorated apple residue cellulose for efficient removal of aqueous Hg(II). Int J Biol Macromol 2023; 231:123327. [PMID: 36681224 DOI: 10.1016/j.ijbiomac.2023.123327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Water pollution caused by Hg(II) exerts hazardous effect to the environment and public health. The design and fabrication of eco-friendly bioadsorbents for efficient removal of Hg(II) from aqueous solution is a promising strategy. Herein, a series of bioadsorbents were synthesized by the decoration of apple residue cellulose with different generation (G) Schiff base functionalized poly(amidoamine) (PAMAM) dendrimers (SA-G0/CE, SA-G1.0/CE and SA-G2.0/CE). The structures of SA-G0/CE, SA-G1.0/CE and SA-G2.0/CE were characterized and their adsorption performances were determined comprehensively by considering various factors. The maximum adsorption capacity of SA-G0/CE, SA-G1.0/CE and SA-G2.0/CE for Hg(II) are 1.18, 1.73 and 1.88 mmol·g-1, respectively. The as-prepared bioadsorbents exhibit competitive adsorption capacity as compared with other reported adsorbents. Moreover, they exhibit remarkable adsorption selectivity toward Hg(II) with the coexistence of Ni(II), Cd(II), Mn(II), or Pb(II). The bioadsorbents display satisfactory adsorption performance in real water sample and can be reused with good regeneration property. Adsorption mechanism reveals that the functional groups of OH, -CONH-, CN and NC take part in the adsorption for Hg(II). The work not only opens a pathway to realize the reuse of apple residue, but also provides a promising strategy to construct efficient bioadsorbents for the decontamination of Hg(II) from aqueous solution.
Collapse
Affiliation(s)
- Kaiyan Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Bingxiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Ruyue Dou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yiqun Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Zhongxin Xue
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yongfeng Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
8
|
Das J, Rawat S, Maiti A, Singh L, Pradhan D, Mohanty P. Adsorption of Hg2+ on Cyclophosphazene and Triazine Moieties based Inorganic-organic Hybrid Nanoporous Materials Synthesized by Microwave Assisted Method. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Musielak M, Serda M, Sitko R. Ultrasensitive and selective determination of mercury in water, beverages and food samples by EDXRF and TXRF using graphene oxide modified with thiosemicarbazide. Food Chem 2022; 390:133136. [DOI: 10.1016/j.foodchem.2022.133136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
|
10
|
Raj S, Sinha U, Singh H, Bhattacharya J. Novel GO/Fe-Mn hybrid for the adsorptive removal of Pb(II) ions from aqueous solution and the spent adsorbent disposability in cement mix: compressive properties and leachability study for circular economy benefits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63898-63916. [PMID: 35467183 DOI: 10.1007/s11356-022-20303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
GO/Fe-Mn hybrids were prepared by a single-pot chemical precipitation method and were characterized using FTIR, XRD, Raman, zeta potential, and FESEM, which confirmed the impregnation of Fe/Mn onto GO sheets. The synthesized hybrids were successively applied in removing the Pb(II) ions from aqueous solution and later utilizing the spent adsorbent to increase the properties of cement. The adsorption capability of the synthesized hybrid was seen in a set of batch studies to find out that about 15 min of contact time was required to remove 99% of the contaminant at a pH of 5 ± 0.2 and a dose of 0.83 g/L. The mechanism of the adsorption process for the synthesized hybrid was well described by Elovich kinetic model with an R2 of 0.99 and Langmuir isotherm model, also with an R2 of 0.99. The desorption studies conducted using 0.1 M HCl solution showed significant stability of the hybrid with a drop of 12% in the removal efficiency of Pb after up to five adsorption-desorption cycles. This points to an efficient adsorbent having potential for economical use. Later, the spent adsorbent was mixed with cement at ratios of 0.05%, 0.1%, and 0.5%, and compressive strength tests were performed, which showed an increase in the strength by 7.62%, 16.11%, and 26.82% at 28 days of curing time. The TCLP and SPLP tests performed on the hybrid and cement-spent adsorbent mix showed all the leaching parameters were well within the permissible limits. This development shows the potential for the use of spent adsorbent in a circular economy model.
Collapse
Affiliation(s)
- Sankalp Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Uday Sinha
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Hemant Singh
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jayanta Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
- Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
- Zelence Industries Pvt. Ltd, Kharagpur, India.
| |
Collapse
|
11
|
Rani L, Srivastav AL, Kaushal J, Nguyen XC. Recent advances in nanomaterial developments for efficient removal of Hg(II) from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62851-62869. [PMID: 35831652 DOI: 10.1007/s11356-022-21869-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
"Water" contamination by mercury Hg(II) has become the biggest concern due to its severe toxicities on public health. There are different conventional techniques like ion exchange, reverse osmosis, and filtration that have been used for the elimination of Hg(II) from the aqueous solutions. Although, these techniques have some drawbacks during the remediation of Hg(II) present in water. Adsorption could be a better option for the elimination of Hg(II) from the aqueous solutions. "Conventional adsorbents" like zeolite, clay, and activated carbons are inefficient for this purpose. Recently, nanomaterials have attracted attention for the elimination of Hg(II) from the aqueous solutions due to high porosity, better surface properties, and high efficiency. In this review, a thorough discussion has been carried out on the synthesis and characterization of nanomaterials along with mechanisms involved in the elimination of Hg(II) from aqueous solutions.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
- Chitkara University School of Pharmacy, Chitkara University, Himachal-Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal-Pradesh, India.
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Xuan Cuong Nguyen
- Laboratory of energy and environmental science, Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
| |
Collapse
|
12
|
Tene T, Bellucci S, Guevara M, Arias Arias F, Sáez Paguay MÁ, Quispillo Moyota JM, Arias Polanco M, Scarcello A, Vacacela Gomez C, Straface S, Caputi LS, Torres FJ. Adsorption of Mercury on Oxidized Graphenes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173025. [PMID: 36080061 PMCID: PMC9457566 DOI: 10.3390/nano12173025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 06/01/2023]
Abstract
Graphene oxide (GO) and its reduced form, reduced graphene oxide (rGO), are among the most predominant graphene derivatives because their unique properties make them efficient adsorbent nanomaterials for water treatment. Although extra-functionalized GO and rGO are customarily employed for the removal of pollutants from aqueous solutions, the adsorption of heavy metals on non-extra-functionalized oxidized graphenes has not been thoroughly studied. Herein, the adsorption of mercury(II) (Hg(II)) on eco-friendly-prepared oxidized graphenes is reported. The work covers the preparation of GO and rGO as well as their characterization. In a further stage, the description of the adsorption mechanism is developed in terms of the kinetics, the associated isotherms, and the thermodynamics of the process. The interaction between Hg(II) and different positions of the oxidized graphene surface is explored by DFT calculations. The study outcomes particularly demonstrate that pristine rGO has better adsorbent properties compared to pristine GO and even other extra-functionalized ones.
Collapse
Affiliation(s)
- Talia Tene
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 110160, Ecuador
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, I-00044 Frascati, RM, Italy
| | - Marco Guevara
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, CS, Italy
| | - Fabian Arias Arias
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, CS, Italy
| | - Miguel Ángel Sáez Paguay
- Facultad de Recursos Naturales, Escuela Superior Politécnica de Chimborazo (ESPOCH), Coca 220201, Ecuador
| | | | - Melvin Arias Polanco
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, CS, Italy
- Instituto Tecnológico de Santo Domingo, Área de Ciencias Básicas y Ambientales, Av. Los Próceres, Santo Domingo 10602, Dominican Republic
| | - Andrea Scarcello
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, CS, Italy
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, I-87036 Rende, CS, Italy
| | | | - Salvatore Straface
- Department of Environmental Engineering (DIAm) University of Calabria, Via P. Bucci, Cubo 42B, I-87036 Rende, CS, Italy
| | - Lorenzo S. Caputi
- UNICARIBE Research Center, University of Calabria, I-87036 Rende, CS, Italy
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, I-87036 Rende, CS, Italy
| | - F. Javier Torres
- Grupo de Química Computacional y Teórica (QCT-UR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111711, Colombia
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador
| |
Collapse
|
13
|
Dayana Priyadharshini S, Manikandan S, Kiruthiga R, Rednam U, Babu PS, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119377. [PMID: 35490997 DOI: 10.1016/j.envpol.2022.119377] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide can be used to store energy, as electrodes and purify industrial and domestic wastewater as photocatalysts and adsorbents because of its remarkable thermal, electrical, and chemical capabilities. Toward understanding graphene oxide (GO) based nanomaterials considering the background factors, the present review study investigated their characteristics, preparation methods, and characterization processes. The removal of contaminants from wastewater has recently been a focus of attention for materials based on GO. Progress in GO synthesis and surface modification has shown that they can be used to immobilize enzymes. It is possible to immobilize enzymes with varying characteristics on graphene-oxide-based substrates without sacrificing their functioning, thus developing a new environmental remediation platform utilizing nano biocatalysts. GO doping and co-doping with a variety of heterogeneous semiconductor-based metal oxides were included in a brief strategy for boosting GO efficiency. A high band-gap material was also explored as a possibility for immobilization, which shifts the absorption threshold to the visible range and increases photoactivity. For water treatment applications, graphene-based nanomaterials were used in Fenton reactions, photocatalysis, ozonation, photo electrocatalysis, photo-Fenton, and a combination of photon-Fenton and photocatalysis. Nanoparticles made from GO improved the efficiency of composite materials when used for their intended applications. As a result of the analysis, prospects and improvements are clear, especially when it comes to scaling up GO-based wastewater treatment technologies.
Collapse
Affiliation(s)
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - R Kiruthiga
- Instituto de Investigaciónes Científicas y Tecnológicas (IDICTEC), Universidad de Atacama, Copayapu 485, Copiapo, Chile
| | - Udayabhaskar Rednam
- Instituto de Investigaciónes Científicas y Tecnológicas (IDICTEC), Universidad de Atacama, Copayapu 485, Copiapo, Chile
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
14
|
Synthesis, Attributes and Defect Control of Defect-Engineered Materials as Superior Adsorbents for Aqueous Species: A Review. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
|
16
|
Zhang Y, Fan B, Jia L, Qiao X, Li Z. Study on adsorption mechanism of mercury on Ce-Cu modified iron-based biochar. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Removal of mercury(II) from aqueous solution by partially reduced graphene oxide. Sci Rep 2022; 12:6326. [PMID: 35440687 PMCID: PMC9018808 DOI: 10.1038/s41598-022-10259-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Mercury (Hg(II)) has been classified as a pollutant and its removal from aqueous sources is considered a priority for public health as well as ecosystem protection policies. Oxidized graphenes have attracted vast interest in water purification and wastewater treatment. In this report, a partially reduced graphene oxide is proposed as a pristine adsorbent material for Hg(II) removal. The proposed material exhibits a high saturation Hg(II) uptake capacity of 110.21 mg g−1, and can effectively reduce the Hg(II) concentration from 150 mg L−1 to concentrations smaller than 40 mg L−1, with an efficiency of about 75% within 20 min. The adsorption of Hg(II) on reduced graphene oxide shows a mixed physisorption–chemisorption process. Density functional theory calculations confirm that Hg atom adsorbs preferentially on clean zones rather than locations containing oxygen functional groups. The present work, therefore, presents new findings for Hg(II) adsorbent materials based on partially reduced graphene oxide, providing a new perspective for removing Hg(II).
Collapse
|
18
|
El-Wakil A, Waly SM, Abou El-Maaty WM, Waly MM, Yılmaz M, Awad FS. Triazine-Based Functionalized Activated Carbon Prepared from Water Hyacinth for the Removal of Hg 2+, Pb 2+, and Cd 2+ Ions from Water. ACS OMEGA 2022; 7:6058-6069. [PMID: 35224367 PMCID: PMC8867800 DOI: 10.1021/acsomega.1c06441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
A novel chelating adsorbent, based on the functionalization of activated carbon (AC) derived from water hyacinth (WH) with melamine thiourea (MT) to form melamine thiourea-modified activated carbon (MT-MAC), is used for the effective removal of Hg2+, Pb2+, and Cd2+ from aqueous solution. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) theory confirm the successful functionalization of AC with the melamine thiourea chelating ligand through the amidation reaction between the carboxyl groups of oxidized activated carbon (OAC) and the amino groups of melamine thiourea (MT) in the presence of dicyclohexylcarbodiimide (DCC) as a coupling agent. The prepared MT-MAC exhibited extensive potential for the adsorption of the toxic metal ions Hg2+, Pb2+, and Cd2+ from wastewater. The MT-MAC showed high capacities for the adsorption of Hg2+ (292.6 mg·g-1), Pb2+ (237.4 mg·g-1), and Cd2+ (97.9 mg·g-1) from aqueous solution. Additionally, 100% removal efficiency of Hg2+ at pH 5.5 was observed at very low initial concentrations (25-1000 ppb).The experimental sorption data could be fitted well with the Langmuir isotherm model, suggesting a monolayer adsorption behavior. The kinetic data of the chemisorption mechanism realized by the melamine thiourea groups grafted onto the activated carbon surface have a perfect match with the pseudo-second-order (PSO) kinetic model. In a mixed solution of metal ions containing 50 ppm of each ion, MT-MAC showed a removal of 97.0% Hg2+, 68% Pb2+, 45.0% Cd2+, 17.0% Cu2+, 7.0% Ni2+, and 5.0% Zn2+. Consequently, MT-MAC has exceptional selectivity for Hg2+ ions from the mixed metal ion solutions. The MT-MAC adsorbent showed high stability even after three adsorption-desorption cycles. According to the results obtained, the use of the MT-MAC adsorbent for the adsorption of Pb2+, Hg2+, and Cd2+ metal ions from polluted water is promising.
Collapse
Affiliation(s)
- Ahmad
M. El-Wakil
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Saadia M. Waly
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Weam M. Abou El-Maaty
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Mohamed M. Waly
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| | - Murat Yılmaz
- Department
of Chemical Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey
| | - Fathi S. Awad
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
19
|
Bao S, Wang Y, Wei Z, Yang W, Yu Y. Highly efficient recovery of heavy rare earth elements by using an amino-functionalized magnetic graphene oxide with acid and base resistance. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127370. [PMID: 34879566 DOI: 10.1016/j.jhazmat.2021.127370] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 05/26/2023]
Abstract
In the application of various magnetic materials for water treatment, control of surface resistance to acid and alkali corrosion remains largely overlooked, which could greatly extend their service life. We herein prepare amino grafted magnetic graphene oxide composites using a simple one-step cross-link reaction between the graphene oxide and magnetic Fe3O4/C nanoparticles. The as-prepared magnetic graphene oxide composites have long-term stability under acid and alkali solutions and shows an excellent performance in removing Ho(III), a representative rare earth element (REE) from water. The observed adsorption capacity of 72.1 mg Ho(III)/g exceeded that of most magnetic materials previously reported. Regeneration of the magnetic composites was realized in acid and alkali solutions but their structural integrity and physicochemical properties retained even after 18 adsorption-desorption cycles. The current adsorbent also shows excellent adsorption performance for other heavy REEs, such as Er(III), Eu(III), Lu(III), Tm(III), Y(III) and Yb(III). This work can provide a new strategy for constructing an acid and base resistance magnetic graphene oxide for the high-efficient recovery of heavy REEs from aqueous solution.
Collapse
Affiliation(s)
- Shuangyou Bao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - Yingjun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
20
|
Tene T, Bellucci S, Guevara M, Viteri E, Arias Polanco M, Salguero O, Vera-Guzmán E, Valladares S, Scarcello A, Alessandro F, Caputi LS, Vacacela Gomez C. Cationic Pollutant Removal from Aqueous Solution Using Reduced Graphene Oxide. NANOMATERIALS 2022; 12:nano12030309. [PMID: 35159653 PMCID: PMC8838539 DOI: 10.3390/nano12030309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
Reduced graphene oxide (rGO) is one of the most well-known graphene derivatives, which, due to its outstanding physical and chemical properties as well as its oxygen content, has been used for wastewater treatment technologies. Particularly, extra functionalized rGO is widely preferred for treating wastewater containing dyes or heavy metals. Nevertheless, the use of non-extra functionalized (pristine) rGO for the removal of cationic pollutants is not explored in detail or is ambiguous. Herein, pristine rGO—prepared by an eco-friendly protocol—is used for the removal of cationic pollutants from water, i.e., methylene blue (MB) and mercury-(II) (Hg-(II)). This work includes the eco-friendly synthesis process and related spectroscopical and morphological characterization. Most importantly, the investigated rGO shows an adsorption capacity of 121.95 mg g−1 for MB and 109.49 mg g−1 for Hg (II) at 298 K. A record adsorption time of 30 min was found for MB and 20 min for Hg (II) with an efficiency of about 89% and 73%, respectively. The capture of tested cationic pollutants on rGO exhibits a mixed physisorption–chemisorption process. The present work, therefore, presents new findings for cationic pollutant adsorbent materials based on oxidized graphenes, providing a new perspective for removing MB molecules and Hg(II) ions.
Collapse
Affiliation(s)
- Talia Tene
- Grupo de Investigación Ciencia y Tecnología de Materiales, Universidad Técnica Particular de Loja, Loja 110160, Ecuador;
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, I-00044 Frascati, Italy;
| | - Marco Guevara
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador;
- ITECA—Instituto de Tecnologías y Ciencias Avanzadas, Villarroel y Larrea, Riobamba 060104, Ecuador
| | - Edwin Viteri
- Faculty of Mechanical Engineering, Escuela Superior Politécnica de Chimborazo, Riobamba 060155, Ecuador;
| | - Malvin Arias Polanco
- Instituto Tecnológico de Santo Domingo, Área de Ciencias Básicas y Ambientales, Av. Los Próceres, Santo Domingo 10602, Dominican Republic;
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
| | - Orlando Salguero
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
| | - Eder Vera-Guzmán
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
| | - Sebastián Valladares
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
| | - Andrea Scarcello
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, I-87036 Rende, Italy
- INFN, Sezione LNF, Gruppo Collegato di Cosenza, Via P. Bucci, I-87036 Rende, Cosenza, Italy
| | - Francesca Alessandro
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, I-87036 Rende, Italy
| | - Lorenzo S. Caputi
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, I-87036 Rende, Italy
| | - Cristian Vacacela Gomez
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador;
- UNICARIBE Research Center, University of Calabria, I-87036 Rende (CS), Italy; (O.S.); (E.V.-G.); (S.V.); (A.S.); (F.A.); (L.S.C.)
- Correspondence:
| |
Collapse
|
21
|
Khraisheh M, Elhenawy S, AlMomani F, Al-Ghouti M, Hassan MK, Hameed BH. Recent Progress on Nanomaterial-Based Membranes for Water Treatment. MEMBRANES 2021; 11:995. [PMID: 34940495 PMCID: PMC8709222 DOI: 10.3390/membranes11120995] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Nanomaterials have emerged as the new future generation materials for high-performance water treatment membranes with potential for solving the worldwide water pollution issue. The incorporation of nanomaterials in membranes increases water permeability, mechanical strength, separation efficiency, and reduces fouling of the membrane. Thus, the nanomaterials pave a new pathway for ultra-fast and extremely selective water purification membranes. Membrane enhancements after the inclusion of many nanomaterials, including nanoparticles (NPs), two-dimensional (2-D) layer materials, nanofibers, nanosheets, and other nanocomposite structural materials, are discussed in this review. Furthermore, the applications of these membranes with nanomaterials in water treatment applications, that are vast in number, are highlighted. The goal is to demonstrate the significance of nanomaterials in the membrane industry for water treatment applications. It was found that nanomaterials and nanotechnology offer great potential for the advancement of sustainable water and wastewater treatment.
Collapse
Affiliation(s)
- Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Salma Elhenawy
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Fares AlMomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Mohammad Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
| | | | - Bassim H. Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| |
Collapse
|
22
|
Wang H, He T, Quan D, Wang T, Li C, Shen Y. Thiosemicarbazide‐Linked Covalent Organic Framework: Preparation, Properties and Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Heping Wang
- Research Centre of New Materials Ankang Research Centre of Zn Based Materials Science and Technology School of Chemistry and Chemical Engineering Ankang University Ankang Shaanxi 725000 China
| | - Tengteng He
- Research Centre of New Materials Ankang Research Centre of Zn Based Materials Science and Technology School of Chemistry and Chemical Engineering Ankang University Ankang Shaanxi 725000 China
| | - Dandan Quan
- Research Centre of New Materials Ankang Research Centre of Zn Based Materials Science and Technology School of Chemistry and Chemical Engineering Ankang University Ankang Shaanxi 725000 China
| | - Tong Wang
- Research Centre of New Materials Ankang Research Centre of Zn Based Materials Science and Technology School of Chemistry and Chemical Engineering Ankang University Ankang Shaanxi 725000 China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710069 China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710069 China
| |
Collapse
|
23
|
Wang Q, Dang Q, Liu C, Wang X, Li B, Xu Q, Liu H, Ji X, Zhang B, Cha D. Novel amidinothiourea-modified chitosan microparticles for selective removal of Hg(II) in solution. Carbohydr Polym 2021; 269:118273. [PMID: 34294305 DOI: 10.1016/j.carbpol.2021.118273] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Glutaraldehyde-crosslinked chitosan microparticles (CGP) prepared via the inversed-phase emulsification were successively modified by epichlorohydrin (ECH) and amidinothiourea (AT) as novel adsorbent (CGPET) for selective removal of Hg(II) in solution. FTIR, EA, XPS, SEM-EDX, TG, DTG, and XRD results indicated that CGPET had ample -NH2 and CS, relative rough surface, mean diameter of ~40 μm, great thermal stability, and crystalline degree of 2.4%, beneficial to the uptake of Hg(II). The optimum parameters (pH 5, dosage 1 g/L, contact time 4 h, and initial concentration 150 mg/L) were acquired via batches of adsorption experiments. Adsorption behavior was well described by the Liu isothermal and pseudo-second-order kinetics models, and the maximum adsorption capacity was 322.51 mg/g, surpassing many reported adsorbents. Regeneration and coexisting-ion tests demonstrated that CGPET had outstanding reusability (Rr > 86.89% at the fifth cycle) and selectivity (Rs > 93%). Besides, its potential adsorption sites and mechanisms were proposed.
Collapse
Affiliation(s)
- Qiongqiong Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| | - Xiaoyu Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Boyuan Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qing Xu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Hao Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Xuzhou Ji
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Bonian Zhang
- Qingdao Aorun Biotechnology Co., Ltd., Room 602, Century Mansion, 39 Donghaixi Road, Qingdao 266071, PR China
| | - Dongsu Cha
- The Graduate School of Biotechnology, Korea University, Seoul 136-701, South Korea
| |
Collapse
|
24
|
|
25
|
Bao S, Wang Y, Wei Z, Yang W, Yu Y, Sun Y. Amino-assisted AHMT anchored on graphene oxide as high performance adsorbent for efficient removal of Cr(VI) and Hg(II) from aqueous solutions under wide pH range. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125825. [PMID: 34492787 DOI: 10.1016/j.jhazmat.2021.125825] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 06/13/2023]
Abstract
The adsorbents with high adsorption capacity for simultaneously removing Cr(VI) and Hg(II) from aqueous solutions under broad working pH range are highly desirable but still extremely scarce. Here, a novel adsorbent with multidentate ligands was facilely fabricated by covalently bonding 4-amino-3-hydrazino-5-mercapto- 1,2,4-triazole on graphene oxide via the Schiff's base reaction. The maximum adsorption capacities of Cr(VI) and Hg(II) on the current adsorbent were 734.2 and 1091.1 mg/g, which were 14.36 and 5.61 times higher than that of the pure graphene oxide, respectively, exceeding those of most adsorbents previously reported. More interestingly, Cr(VI) and Hg(II) concentrations were decreased from 2 mg/L to 0.0001 mg/L for Hg(II) and 0.004 mg/L for Cr(VI), far below the WHO recommended threshold for drinking water. Moreover, the adsorbent shows an excellent performance for simultaneous removal of Cr(VI) and Hg(II) with more than 99.9% and 98.6% removal efficiencies in aqueous solutions. Finally, the adsorbent was successfully applied in dealing with the real industrial effluent, implying huge potential in industrial application. This work offers a new possibility for the removal of the metallic contaminants by rational designing target groups and ligands.
Collapse
Affiliation(s)
- Shuangyou Bao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yingjun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Yinyong Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
26
|
Waly SM, El-Wakil AM, El-Maaty WMA, Awad FS. Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|