1
|
Yang H, Zhang H, Kang C, Ji C, Shi D, Zhao D. Solvent-responsive covalent organic framework membranes for precise and tunable molecular sieving. SCIENCE ADVANCES 2024; 10:eads0260. [PMID: 39693424 DOI: 10.1126/sciadv.ads0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Membrane-based nanofiltration has the potential to revolutionize the large-scale treatment of organic solvents in various applications. However, the widely used commercial membranes suffer from low permeability, narrow structural tunability, and limited chemical resistance. Here, we report a strategy for fabricating covalent organic framework (COF) membranes with solvent-responsive structural flexibility. The interlayer shifting of these COF membranes in polar organic solvents results in sub-nanopores with high selectivity. High rejection rates (>99%), high permeance (>15 kilogram meter-2 hour-1 bar-1), and excellent organic solvent resistance of these smart COF membranes are achieved for a diverse array of nanofiltration applications.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| | - Haoyuan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chunqing Ji
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dongchen Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
2
|
Zheng F, Zhang H, Boo C, Wang M, Tan J, Ye S, Lin S, Wang Y. High-Performance Nanofiltration Membrane with Dual Resistance to Gypsum Scaling and Biofouling for Enhanced Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16656-16668. [PMID: 39223699 DOI: 10.1021/acs.est.4c07334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nanofiltration (NF) technology is pivotal for ensuring a sustainable and reliable supply of clean water. To address the critical need for advanced thin-film composite (TFC) polyamide (PA) membranes with exceptional permselectivity and fouling resistance for emerging contaminant purification, we introduce a novel high-performance NF membrane. This membrane features a selective polypiperazine (PIP) layer functionalized with amino-containing quaternary ammonium compounds (QACs) through an in situ interfacial polycondensation reaction. Our investigation demonstrated that precise QAC functionalization enabled the construction of the selective PA layer with increased surface area, enhanced microporosity, stronger electronegativity, and reduced thickness compared to the control PIP membrane. As a result, the QAC NF membrane exhibited an approximately 51% increase in water permeance compared to the control PIP membrane, while achieving superior retention capabilities for divalent salts (>99%) and emerging organic contaminants (>90%). Furthermore, the incorporation of QACs into the PIP selective layer was proved to be effective in mitigating mineral scaling by allowing selective passage of scale-forming cations, while simultaneously exhibiting strong antimicrobial properties to combat biofouling. The in situ QAC incorporation strategy presented in this study provides valuable guidelines for the fit-for-purpose design of the selective PA layer, which is crucial for the development of high-performance NF membranes for efficient water purification.
Collapse
Affiliation(s)
- Fuxin Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hao Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chanhee Boo
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yunkun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Ni L, Li M, Xie J, Chen K, Yang Y, Zhou Y, Zhu Z, Qi J, Li J. Micelles regulated thin film nanocomposite membrane with enhanced nanofiltration performance. J Colloid Interface Sci 2024; 662:545-554. [PMID: 38364479 DOI: 10.1016/j.jcis.2024.02.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
The desalination performance of thin film nanocomposite (TFN) membranes is significantly influenced by the nature of nanofillers and the structure of the polyamide (PA) layer. Herein, a micelles regulated interfacial polymerization (MRIP) strategy is reported for the preparation of TFN membranes with enhanced nanofiltration (NF) performance. Specially, stable and ultrafine micelles, synthesized from the poly(ethylene oxide)-b-poly(4-vinyl pyridine)-b-polystyrene (PEO-PVP-PS) triblock copolymers, were utilized as regulators in the aqueous phase during the interfacial polymerization (IP) process. TFN membranes were fabricated with varying concentrations of micelles to improve their properties and performances. The structure of the PA layer was further regulated by modulating the content of trimesoyl chloride (TMC), which significantly enhances the performance of the TFN membrane with micelles. Attributable to the homogeneously dispersed micelles and the modified PA layer, the optimized membrane denoted as TFN-2-0.3 exhibits an improved separation performance of 20.7 L m-2h-1 bar-1 and 99.3 % Na2SO4 rejection, demonstrating nearly twice the permeance and 2.7 % higher rejection than that of the original control membrane, respectively. The mechanism of this MRIP strategy was investigated through the diffusion experiments of piperazine (PIP) and interfacial tension tests. The incorporated micelles effectively lower the interfacial tension, promote the diffusion of PIP and accelerate the IP reaction, resulting in a denser and thinner PA layer. Collectively, these findings demonstrate that TFN membranes with micelles exhibit increased roughness, enhanced hydrophilicity, superior rejection to divalent salts, and better acid-base resistance, highlighting their potential applications in the design of TFN membranes.
Collapse
Affiliation(s)
- Linhan Ni
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Min Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Xie
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ke Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yue Yang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuqun Zhou
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Wang T, Hou Z, Yang H, Hu J. A PEGylated PVDF Antifouling Membrane Prepared by Grafting of Methoxypolyethylene Glycol Acrylate in Gama-Irradiated Homogeneous Solution. MATERIALS (BASEL, SWITZERLAND) 2024; 17:873. [PMID: 38399124 PMCID: PMC10890161 DOI: 10.3390/ma17040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
In this study, methoxypolyethylene glycol acrylate (mPEGA) served as a PEGylated monomer and was grafted onto polyvinylidene fluoride (PVDF) through homogeneous solution gamma irradiation. The grafting process was confirmed using several techniques, including infrared spectroscopy (FTIR), thermodynamic stability assessments, and rotational viscosity measurements. The degree of grafting (DG) was determined via the gravimetric method. By varying the monomer concentration, a range of DGs was achieved in the PVDF-g-mPEGA copolymers. Investigations into water contact angles and scanning electron microscopy (SEM) images indicated a direct correlation between increased hydrophilicity, membrane porosity, and higher DG levels in the PVDF-g-mPEGA membrane. Filtration tests demonstrated that enhanced DGs resulted in more permeable PVDF-g-mPEGA membranes, eliminating the need for pore-forming agents. Antifouling tests revealed that membranes with a lower DG maintained a high flux recovery rate, indicating that the innate properties of PVDF could be largely preserved.
Collapse
Affiliation(s)
- Ting Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (T.W.); (J.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengchi Hou
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Haijun Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (T.W.); (J.H.)
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| |
Collapse
|
5
|
Martínez-Izquierdo L, García-Comas C, Dai S, Navarro M, Tissot A, Serre C, Téllez C, Coronas J. Ultrasmall Functionalized UiO-66 Nanoparticle/Polymer Pebax 1657 Thin-Film Nanocomposite Membranes for Optimal CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4024-4034. [PMID: 38214452 PMCID: PMC10811625 DOI: 10.1021/acsami.3c16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Ultrasmall 4 to 6 nm nanoparticles of the metal-organic framework (MOF) UiO-66 (University of Oslo-66) were successfully prepared and embedded into the polymer Pebax 1657 to fabricate thin-film nanocomposite (TFN) membranes for CO2/N2 and CO2/CH4 separations. Furthermore, it has been demonstrated that ligand functionalization with amino (-NH2) and nitro (-NO2) groups significantly enhances the gas separation performance of the membranes. For CO2/N2 separation, 7.5 wt % UiO-66-NH2 nanoparticles provided a 53% improvement in CO2 permeance over the pristine membrane (from 181 to 277 GPU). Regarding the CO2/N2 selectivity, the membranes prepared with 5 wt % UiO-66-NO2 nanoparticles provided an increment of 17% over the membrane without the MOF (from 43.5 to 51.0). However, the CO2 permeance of this membrane dropped to 155 GPU. The addition of 10 wt % ZIF-94 particles with an average particle size of ∼45 nm into the 5 wt % UiO-66-NO2 membrane allowed to increase the CO2 permeance to 192 GPU while maintaining the CO2/N2 selectivity at ca. 51 due to the synergistic interaction between the MOFs and the polymer matrix provided by the hydrophilic nature of ZIF-94. In the case of CO2/CH4 separation, the 7.5 wt % UiO-66-NH2 membrane exhibited the best performance with an increase of the CO2 permeance from 201 to 245 GPU.
Collapse
Affiliation(s)
- Lidia Martínez-Izquierdo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Cristina García-Comas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Shan Dai
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Marta Navarro
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Laboratorio
de Microscopías Avanzadas, Universidad
de Zaragoza, Zaragoza 50018, Spain
| | - Antoine Tissot
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Christian Serre
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Carlos Téllez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Joaquín Coronas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| |
Collapse
|
6
|
Qiu ZL, Yu WH, Yang WS, Sun T, Zhao ZH, Su QW, Zhu BK. Ionic Hyperbranched Poly(amido-amine)-Incorporated Nanofiltration Membranes for High-Efficiency Dye Desalination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:915-926. [PMID: 38154048 DOI: 10.1021/acs.langmuir.3c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
High-efficiency dye desalination is crucial in the textile industry, considering its importance for human health, safe aquatic ecological systems, and resource recovery. In order to solve the problem of effective separation of univalent salt and ionic dye under the condition of high salt, ionic hyperbranched poly(amido-amine) (HBPs) were synthesized based on a simple and scalable one-step polycondensation method and then incorporated into the polyamide (PA) selective layers to construct charged nanochannels through interfacial polymerization (IP) on the surface of a polyvinyl chloride ultrafiltration (PVC-UF) hollow fiber membrane. Both the internal nanopores of HBPs (internal nanochannels) and the interfacial voids between HBPs and the PA matrix (external nanochannels) can be regarded as a fast water molecule transport pathway, while the terminal ionic groups of ionic HBPs endow the nanochannels with charge characteristics for improving ionic dye/salt selectivities. The permeate fluxes and dye/salt selectivities of HBP-TAC/PIP (57.3 L m-2 h-1 and rhodamine B (RB)/NaCl selectivity of 224.0) and HBP-PS/PIP (63.7 L m-2 h-1 and lemon yellow (LY)/NaCl selectivity of 664.0) membranes under 0.4 MPa operation pressure are much higher than PIP-only and HBP-NH2/PIP membranes. At the same time, this project also studied the membrane desalination process in a simulated high-salinity dye/salt mixture system to provide a theoretical basis and technical support for the actual dye desalination process.
Collapse
Affiliation(s)
- Ze-Lin Qiu
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen-Han Yu
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wu-Shang Yang
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Sun
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zi-Hao Zhao
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qian-Wei Su
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bao-Ku Zhu
- Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Zhang M, Chen Z, Shao W, Tian T, Wang X, Chen Z, Qiao W, Gu C. A confined expansion pore-making strategy to transform Zn-MOF to porous carbon nanofiber for water treatment: Insight into formation and degradation mechanism. J Colloid Interface Sci 2023; 652:69-81. [PMID: 37591085 DOI: 10.1016/j.jcis.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Electrospinning MOFs nanoparticles derived porous carbon nanofibers with rational structure and design are recently as environmentally friendly and highly efficient catalytic materials for wastewater treatment. However, most of the pore-making strategies are based on precursors structural shrinkage during pyrolysis, which is a challenge to create abundant large pores and open channels. Here, a confined expansion pore-making strategy with active MOF is introduced, where energetic Zn-MOF (Zn2+/triazole) and ZIF-67 (Co2+/dimethylimidazole) are utilized as pore forming additive and precursor of active sites, respectively. The high nitrogen content gives triazole the ability to puff up and realizes N-doped during pyrolysis. Moreover, degradation mechanisms and pathways of pollutants were measured by 3D EEM, LC-MS, quenching experiments, and Fukui function. This pore-making strategy via energetic MOF local contraction and expansion provides a novel method to prepare diversiform function porous carbon materials for environmental remediation.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhonglin Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Weizhen Shao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Tian Tian
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Sanei Z, Ghanbari T, Sharif A. Polyethylene glycol-grafted graphene oxide nanosheets in tailoring the structure and reverse osmosis performance of thin film composite membrane. Sci Rep 2023; 13:16940. [PMID: 37805619 PMCID: PMC10560276 DOI: 10.1038/s41598-023-44129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Introducing hydrophilic polymers such as polyethylene glycol (PEG) within the polyamide (PA) layer of thin film composite (TFC) membranes helps achieve high water desalination performance. Here, PEGs of different molecular weights (X: 1500, 6000, 16,000 g/mol) are effectively introduced into the PA layer of TFC membranes utilizing PEG-grafted graphene oxide (GOPX) nanosheets and their effects on the physicochemical properties and reverse osmosis (RO) performance of the thin film nanocomposite (TFN) membranes are investigated. Among the TFNs prepared the GOP16000/TFN exhibits the best performance with 68% improvement in water flux and almost constant salt rejection compared to those of the bare TFC. The influence of PEG molecular weight on the RO performance of the membranes is interpreted by different surface and bulk hydrophilicity as well as thickness and surface roughness of PA layers of GOPX/TFNs. Furthermore, TFNs with thinner and smoother PA layers and thus higher water flux are obtained by dispersing GOPXs in the aqueous phase of the PA interfacial polymerization reaction than by dispersing them in the organic phase of the reaction. Finally, the high antifouling potential of TFNs containing PEG-grafted GOs is demonstrated.
Collapse
Affiliation(s)
- Zahra Sanei
- Polymer Reaction Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-143, Tehran, Iran
| | - Taranom Ghanbari
- Polymer Reaction Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-143, Tehran, Iran
| | - Alireza Sharif
- Polymer Reaction Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-143, Tehran, Iran.
| |
Collapse
|
9
|
Akbar Heidari A, Mahdavi H. Recent Advances in the Support Layer, Interlayer and Active Layer of TFC and TFN Organic Solvent Nanofiltration (OSN) Membranes: A Review. CHEM REC 2023:e202300189. [PMID: 37642266 DOI: 10.1002/tcr.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Although separation of solutes from organic solutions is considered a challenging process, it is inevitable in various chemical, petrochemical and pharmaceutical industries. OSN membranes are the heart of OSN technology that are widely utilized to separate various solutes and contaminants from organic solvents, which is now considered an emerging field. Hence, numerous studies have been attracted to this field to manufacture novel membranes with outstanding properties. Thin-film composite (TFC) and nanocomposite (TFN) membranes are two different classes of membranes that have been recently utilized for this purpose. TFC and TFN membranes are made up of similar layers, and the difference is the use of various nanoparticles in TFN membranes, which are classified into two types of porous and nonporous ones, for enhancing the permeate flux. This study aims to review recent advances in TFC and TFN membranes fabricated for organic solvent nanofiltration (OSN) applications. Here, we will first study the materials used to fabricate the support layer, not only the membranes which are not stable in organic solvents and require to be cross-linked, but also those which are inherently stable in harsh media and do not need any cross-linking step, and all of their advantages and disadvantages. Then, we will study the effects of fabricating different interlayers on the performance of the membranes, and the mechanisms of introducing an interlayer in the regulation of the PA structure. At the final step, we will study the type of monomers utilized for the fabrication of the active layer, the effect of surfactants in reducing the tension between the monomers and the membrane surface, and the type of nanoparticles used in the active layer of TFN membranes and their effects in enhancing the membrane separation performance.
Collapse
Affiliation(s)
- Ali Akbar Heidari
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| |
Collapse
|
10
|
Renard O, Getto D, Auger A, Poncelet OJ. Post-treatments of injected polyamides parts using supercritical fluids. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Tayel A, Abdelaal AB, Esawi AMK, Ramadan AR. Thin-Film Nanocomposite (TFN) Membranes for Water Treatment Applications: Characterization and Performance. MEMBRANES 2023; 13:membranes13050477. [PMID: 37233538 DOI: 10.3390/membranes13050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Thin-film nanocomposite (TFN) membranes have been widely investigated for water treatment applications due to their promising performance in terms of flux, salt rejection, and their antifouling properties. This review article provides an overview of the TFN membrane characterization and performance. It presents different characterization techniques that have been used to analyze these membranes and the nanofillers within them. The techniques comprise structural and elemental analysis, surface and morphology analysis, compositional analysis, and mechanical properties. Additionally, the fundamentals of membrane preparation are also presented, together with a classification of nanofillers that have been used so far. The potential of TFN membranes to address water scarcity and pollution challenges is significant. This review also lists examples of effective TFN membrane applications for water treatment. These include enhanced flux, enhanced salt rejection, antifouling, chlorine resistance, antimicrobial properties, thermal stability, and dye removal. The article concludes with a synopsis of the current status of TFN membranes and future perspectives.
Collapse
Affiliation(s)
- Amr Tayel
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed B Abdelaal
- Department of Chemistry, McGill University, 845 Rue Sherbrooke O, Montreal, QC H3A 0G4, Canada
| | - Amal M K Esawi
- Department of Mechanical Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Adham R Ramadan
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| |
Collapse
|
12
|
Cheng L, Xie Y, Li X, Liu F, Wang Y, Li J. Lecithin decorated thin film composite (TFC) nanofiltration membranes for enhanced sieving performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
13
|
Chen L, Zhou C, Yang T, Zhou W, Chen Y, Wang L, Lu C, Dong L. Imparting Outstanding Dispersibility to Nanoscaled 2D COFs for Constructing Organic Solvent Forward Osmosis Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300456. [PMID: 36932874 DOI: 10.1002/smll.202300456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In the context of thin-film nanocomposite membranes with interlayer (TFNi), nanoparticles are deposited uniformly onto the support prior to the formation of the polyamide (PA) layer. The successful implementation of this approach relies on the ability of nanoparticles to meet strict requirements regarding their sizes, dispersibility, and compatibility. Nevertheless, the synthesis of covalent organic frameworks (COFs) that are well-dispersed, uniformly morphological, and exhibit improved affinity to the PA network, while preventing agglomeration, remains a significant challenge. In this work, a simple and efficient method is presented for the synthesis of well-dispersed, uniformly morphological, and amine-functionalized 2D imine-linked COFs regardless of the ligand composition, group type, or framework pore size, by utilizing a polyethyleneimine (PEI) shielded covalent self-assembly strategy. Subsequently, the as-prepared COFs are incorporated into TFNi for the recycling of pharmaceutical synthetic organic solvents. After optimization, the membrane exhibits a high rejection rate and a favorable solvent flux, making it a reliable method for efficient organic recovery and the concentration of active pharmaceutical ingredient (API) from the mother liquor through an organic solvent forward osmosis (OSFO) process. Notably, this study represents the first investigation of the impact of COF nanoparticles in TFNi on OSFO performance.
Collapse
Affiliation(s)
- Li Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Tianyi Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Wei Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Linghao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
14
|
Cheng Y, Xia C, Garalleh HA, Garaleh M, Lan Chi NT, Brindhadevi K. A review on optimistic development of polymeric nanocomposite membrane on environmental remediation. CHEMOSPHERE 2023; 315:137706. [PMID: 36592836 DOI: 10.1016/j.chemosphere.2022.137706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Current health and environmental concerns about the abundance and drawbacks of municipal wastewater as well as industrial effluent have prompted the development of novel and innovative treatment processes. A global shortage of clean water poses significant challenges to the survival of all life forms. For the removal of both biodegradable and non-biodegradable harmful wastes/pollutants from water, sophisticated wastewater treatment technologies are required. Polymer membrane technology is critical to overcoming this major challenge. Polymer matrix-based nanocomposite membranes are among the most popular in polymer membrane technology in terms of convenience. These membranes and their major components are environmentally friendly, energy efficient, cost effective, operationally versatile, and feasible. This review provides an overview of the drawbacks as well as promising developments in polymer membrane and nanocomposite membranes for environmental remediation, with a focus on wastewater treatment. Additionally, the advantages of nanocomposite membranes such as stability, antimicrobial properties, and adsorption processes have been discussed. The goal of this review was to summarize the remediation of harmful pollutants from water and wastewater/effluent using polymer matrix-based nanocomposite membrane technology, and to highlight its shortcomings and future prospects.
Collapse
Affiliation(s)
- Yueqin Cheng
- Nanjing Station of Quality Protection in Cultivated Land, Nanjing, 210036, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, 66141, Jordan
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
15
|
Zheng H, Mou Z, Lim YJ, Liu B, Wang R, Zhang W, Zhou K. Incorporating ionic carbon dots in polyamide nanofiltration membranes for high perm-selectivity and antifouling performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Wang K, Fu W, Wang XM, Xu C, Gao Y, Liu Y, Zhang X, Huang X. Molecular Design of the Polyamide Layer Structure of Nanofiltration Membranes by Sacrificing Hydrolyzable Groups toward Enhanced Separation Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17955-17964. [PMID: 36446026 DOI: 10.1021/acs.est.2c04232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanofiltration (NF) is an effective technology for removing trace organic contaminants (TrOCs), while the inherent trade-off effect between water permeance and solute rejections hinders its widespread application in water treatment. Herein, we propose a novel scheme of "monomers with sacrificial groups" to regulate the microstructure of the polyamide active layer via introducing a hydrolyzable ester group onto piperazine to control the diffusion and interfacial polymerization process. The achieved benefits include narrowing the pore size, improving the interpore connectivity, enhancing the microporosity, and reducing the active layer thickness, which collectively realized the simultaneous improvement of water permeance and enhancement of TrOCs rejection performance. The resulting membranes were superior to both the control and commercial membranes, especially in water-TrOCs selectivity. The effects of using the new monomers on the membrane physicochemical properties were systematically studied, and underlying mechanisms for the enhanced separation performance were further revealed by simulating the polymerization process through density functional theory calculation and measuring the trans-interface diffusion rate of monomers. This study demonstrates a novel promising NF membrane synthesis strategy by designing the structure of reaction monomers for achieving excellent rejection of TrOCs with a low energy input in water treatment.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Wenjie Fu
- College of Environment and Resources, Guangxi Normal University, Guilin541004, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yawei Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| |
Collapse
|
17
|
Bakhodaye Dehghanpour S, Parvizian F, Vatanpour V, Razavi M. PVA/TS-1 composite embedded thin-film nanocomposite reverse osmosis membrane with enhanced desalination performance and fouling resistance. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2156342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Fahimeh Parvizian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University Maslak, Istanbul, Turkey
| | - Mansour Razavi
- Department of Ceramic, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
18
|
Liu Y, Yuan S, Chi M, Wang Y, Van Eygen G, Zhao R, Zhang X, Li G, Volodine A, Hu S, Zheng J, Van der Bruggen B. Efficient capture of endocrine-disrupting compounds by a high-performance nanofiltration membrane for wastewater treatment. WATER RESEARCH 2022; 227:119322. [PMID: 36371916 DOI: 10.1016/j.watres.2022.119322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Conventional polyamide (PA) nanofiltration (NF) membranes can readily adsorb aromatic compounds, such as endocrine disrupting compounds (EDCs). Therefore, these substances can easily be transported across the membrane by solution-diffusion, resulting in a poor EDC-rejection. In this work, a novel thin film nanocomposite (TFN) membrane was fabricated by incorporating covalent organic frameworks (COFs) into the PA layer via an interfacial polymerization reaction. COFs with functional groups can provide abundant active binding sites for highly efficient EDC-capture. The rejection of the optimal TFN-COF membrane for bisphenol A, bisphenol AF, and sodium 2-biphenylate was 98.3%, 99.1%, and 99.3%, respectively, which was much higher than of the rejection of the pristine NF-membrane (82.4%, 95.5%, and 96.4%, respectively). Additionally, the TFN-COF membrane could be regenerated fast and efficiently by washing with ethanol for some minutes. COF nanofillers with porous structures provide additional water channels, making it possible to overcome the permeability-selectivity trade-off of NF membranes. The water permeance (17.1 L m-2 h-1 bar-1) of the optimal membrane was about two times higher than for the pristine NF-membrane (8.7 L m-2 h-1 bar-1). In addition, the TFN-COF membrane with a COF-loading of 0.05% w/v had an excellent Na2SO4 rejection (95.2%) due to size exclusion and strong Donnan effect. This work combines traditional NF membranes and adsorption materials to achieve efficient capture and rapid release of EDCs without sacrificing salt rejections, which opens the door to develop fit-for-purpose adsorptive NF membranes.
Collapse
Affiliation(s)
- Yanyan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Shushan Yuan
- Huazhong University of Science & Technology School of Environmental Science & Engineering Luoyu Road 1037, Wuhan, Hubei, China
| | - Mingshuo Chi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yue Wang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Gilles Van Eygen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Rui Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Xi Zhang
- Department of Chemical Engineering, Process and Environmental Technology Lab, KU Leuven, J. De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Guichuan Li
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Alexander Volodine
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, Leuven B-3001, Belgium
| | - Songqing Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium.
| |
Collapse
|
19
|
Liao Z, Wu Y, Cao S, Zhao S, Yan X, Yuan S, Dong K, Qin J, Ou C, Zhu J. Facile engineering of PES ultrafiltration membranes using polyoxometalates for enhanced filtration and antifouling performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Pazani F, Shariatifar M, Salehi Maleh M, Alebrahim T, Lin H. Challenge and promise of mixed matrix hollow fiber composite membranes for CO2 separations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Wang J, Wang L, He M, Wang X, Lv Y, Huang D, Wang J, Miao R, Nie L, Hao J, Wang J. Recent advances in thin film nanocomposite membranes containing an interlayer (TFNi): fabrication, applications, characterization and perspectives. RSC Adv 2022; 12:34245-34267. [PMID: 36545600 PMCID: PMC9706687 DOI: 10.1039/d2ra06304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Polyamide (PA) reverse osmosis and nanofiltration membranes have been applied widely for desalination and wastewater reuse in the last 5-10 years. A novel thin-film nanocomposite (TFN) membrane featuring a nanomaterial interlayer (TFNi) has emerged in recent years and attracted the attention of researchers. The novel TFNi membranes are prepared from different nanomaterials and with different loading methods. The choices of intercalated nanomaterials, substrate layers and loading methods are based on the object to be treated. The introduction of nanostructured interlayers improves the formation of the PA separation layer and provides ultrafast water molecule transport channels. In this manner, the TFNi membrane mitigates the trade-off between permeability and selectivity reported for polyamide composite membranes. In addition, TFNi membranes enhance the removal of metal ions and organics and the recovery of organic solvents during nanofiltration and reverse osmosis, which is critical for environmental ecology and industrial applications. This review provides statistics and analyzes the developments in TFNi membranes over the last 5-10 years. The latest research results are reviewed, including the selection of the substrate and interlayer materials, preparation methods, specific application areas and more advanced characterization methods. Mechanistic aspects are analyzed to encourage future research, and potential mechanisms for industrialization are discussed.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Miaolu He
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Xudong Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Yongtao Lv
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Danxi Huang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jin Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Rui Miao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lujie Nie
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jiajin Hao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jianmin Wang
- Zhongfan International Engineering Design Co. Lian Hu Road, No. 6 Courtyard Xi'an 710082 China
| |
Collapse
|
22
|
Saleem H, Goh PS, Saud A, Khan MAW, Munira N, Ismail AF, Zaidi SJ. Graphene Quantum Dot-Added Thin-Film Composite Membrane with Advanced Nanofibrous Support for Forward Osmosis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234154. [PMID: 36500777 PMCID: PMC9735732 DOI: 10.3390/nano12234154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 05/17/2023]
Abstract
Forward osmosis (FO) technology for desalination has been extensively studied due to its immense benefits over conventionally used reverse osmosis. However, there are some challenges in this process such as a high reverse solute flux (RSF), low water flux, and poor chlorine resistance that must be properly addressed. These challenges in the FO process can be resolved through proper membrane design. This study describes the fabrication of thin-film composite (TFC) membranes with polyethersulfone solution blown-spun (SBS) nanofiber support and an incorporated selective layer of graphene quantum dots (GQDs). This is the first study to sustainably develop GQDs from banyan tree leaves for water treatment and to examine the chlorine resistance of a TFC FO membrane with SBS nanofiber support. Successful GQD formation was confirmed with different characterizations. The performance of the GQD-TFC-FO membrane was studied in terms of flux, long-term stability, and chlorine resistance. It was observed that the membrane with 0.05 wt.% of B-GQDs exhibited increased surface smoothness, hydrophilicity, water flux, salt rejection, and chlorine resistance, along with a low RSF and reduced solute flux compared with that of neat TFC membranes. The improvement can be attributed to the presence of GQDs in the polyamide layer and the utilization of SBS nanofibrous support in the TFC membrane. A simulation study was also carried out to validate the experimental data. The developed membrane has great potential in desalination and water treatment applications.
Collapse
Affiliation(s)
- Haleema Saleem
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Asif Saud
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammad Aquib Wakeel Khan
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Nazmin Munira
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Syed Javaid Zaidi
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: ; Tel.: +974-4403-7723
| |
Collapse
|
23
|
Zhang M, Chen Z, Ruan J, Shao W, Wei W, Guo H, Chen Z, Qiao W. Confined catalytic with yolk-shell nanoreactor boosting the efficient removal of antibiotic by low temperature plasma-catalytic degradation: reaction kinetics and mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Long X, Zhao GQ, Zheng Y, Hu J, Zuo Y, Zhang J, Jiao F. Porous and carboxyl functionalized titanium carbide MXene sheets for fast oil-in-water emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Nechifor AC, Goran A, Tanczos SK, Păncescu FM, Oprea OC, Grosu AR, Matei C, Grosu VA, Vasile BȘ, Albu PC. Obtaining and Characterizing the Osmium Nanoparticles/ n-Decanol Bulk Membrane Used for the p-Nitrophenol Reduction and Separation System. MEMBRANES 2022; 12:1024. [PMID: 36295782 PMCID: PMC9609118 DOI: 10.3390/membranes12101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Liquid membranes based on nanoparticles follow a continuous development, both from obtaining methods and characterization of techniques points of view. Lately, osmium nanoparticles have been deposited either on flat membranes, with the aim of initiating some reaction processes, or on hollow fiber membranes, with the aim of increasing the contact surface with the phases of the membrane system. This paper presents the obtainment and characterization of a liquid membrane based on osmium nanoparticles (Os-NP) dispersed in ndecanol (nDol) for the realization of a membrane system with a large contact surface between the phases, but without using a liquid membrane support. The dispersion of osmium nanoparticles in n-decanol is carried out by the method of reducing osmium tetroxide with 1-undecenoic acid (UDA). The resulting membrane was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy analysis (EDAX), thermoanalysis (TG, DSC), Fourier transform infra-red (FTIR) spectroscopy and dynamic light scattering (DLS). In order to increase the mass transfer surface, a design for the membrane system was realized with the dispersion of the membrane through the receiving phase and the dispersion of the source phase through the membrane (DBLM-dispersion bulk liquid membrane). The process performance was tested for the reduction of p-nitrophenol (pNP) from the source phase, using sodium tetra-borohydride (NaBH4), to p-aminophenol (pAP), which was transported and collected in the receiving phase. The obtained results show that membranes based on the dispersion of osmium nanoparticles in n-decanol can be used with an efficiency of over 90% for the reduction of p-nitrophenol and the separation of p-aminophenol.
Collapse
Affiliation(s)
- Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Goran
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania
| | - Florentina Mihaela Păncescu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- National Research Center for Micro and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Paul Constantin Albu
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania
| |
Collapse
|
26
|
Liang X, Zhang Y. Controllable recovery and regeneration of bio-derived ionic liquid choline acetate for biomass processing via bipolar membrane electrodialysis-based methodology. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Pu L, Xia Q, Wang Y, Bu Y, Zhang Q, Gao G. Tailored nanofiltration membranes with enhanced permeability and antifouling performance towards leachate treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Cimbru AM, Rikabi AAKK, Oprea O, Grosu AR, Tanczos SK, Simonescu MC, Pașcu D, Grosu VA, Dumitru F, Nechifor G. pH and pCl Operational Parameters in Some Metallic Ions Separation with Composite Chitosan/Sulfonated Polyether Ether Ketone/Polypropylene Hollow Fibers Membranes. MEMBRANES 2022; 12:833. [PMID: 36135852 PMCID: PMC9502727 DOI: 10.3390/membranes12090833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The development of new composite membranes is required to separate chemical species from aggressive environments without using corrective reagents. One such case is represented by the high hydrochloric acid mixture (very low pH and pCl) that contains mixed metal ions, or that of copper, cadmium, zinc and lead ions in a binary mixture (Cu-Zn and Cd-Pb) or quaternary mixture. This paper presents the obtaining of a composite membrane chitosan (Chi)-sulfonated poly (ether ether ketone) (sPEEK)-polypropylene hollow fiber (Chi/sPEEK/PPHF) and its use in the separation of binary or quaternary mixtures of copper, cadmium, zinc, and lead ions by nanofiltration and pertraction. The obtained membranes were morphologically and structurally characterized using scanning electron microscopy (SEM), high resolution SEM (HR-SEM), energy dispersive spectroscopy analysis (EDAX), Fourier Transform InfraRed (FTIR) spectroscopy, thermogravimetric analysis, and differential scanning calorimetry (TGA-DSC), but also used in preliminary separation tests. Using the ion solutions in hydrochloric acid 3 mol/L, the separation of copper and zinc or cadmium and lead ions from binary mixtures was performed. The pertraction results were superior to those obtained by nanofiltration, both in terms of extraction efficiency and because at pertraction, the separate cation was simultaneously concentrated by an order of magnitude. The mixture of the four cations was separated by nanofiltration (at 5 bars, using a membrane of a 1 m2 active area) by varying two operational parameters: pH and pCl. Cation retention could reach 95% when adequate values of operational parameters were selected. The paper makes some recommendations for the use of composite membranes, chitosan (Chi)-sulfonated poly (ether ether ketone) (sPEEK)-polypropylene hollow fiber (Chi/sPEEK/PPHF), so as to obtain the maximum possible retention of the target cation.
Collapse
Affiliation(s)
- Anca Maria Cimbru
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Abbas Abdul Kadhim Klaif Rikabi
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Technical College of Al-Mussaib (TCM), Al-Furat Al-Awsat University, Babylon-Najaf Street, Najaf 54003, Iraq
| | - Ovidiu Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania
| | - Maria Claudia Simonescu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Dumitru Pașcu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
| | - Florina Dumitru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
29
|
Hu D, Ren X, Fu H, Wang Y, Feng X, Li H. Constructing highly rough skin layer of thin film (nano)composite polyamide membranes to enhance separation performance: A review. J Appl Polym Sci 2022. [DOI: 10.1002/app.52692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dan Hu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Xiaomin Ren
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Hongyan Fu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Yu Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Xudong Feng
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| | - Hehe Li
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry and Key Laboratory of Brewing Molecular Engineering of China Light Industry School of Light Industry, Beijing Technology and Business University Beijing P. R. China
| |
Collapse
|
30
|
Li S, Yin Y, Liu S, Li H, Su B, Han L, Gao X, Gao C. Interlayered thin-film nanocomposite membrane with synergetic effect of COFs interlayer and GQDs incorporation for organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
31
|
Liao Z, Wu Y, Cao S, Yuan S, Fang Y, Qin J, Shi J, Shi C, Ou C, Zhu J. Facile in situ decorating polyacrylonitrile membranes using polyoxometalates for enhanced separation performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Zhang K, Wu HH, Huo HQ, Ji YL, Zhou Y, Gao CJ. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Li D, Zhang Z, Zhou L, Zhang Y, Zhao Z, Shen F, Qin X, Chai K, Ji H. From normal crosslinking to core–shell structure: Improved performance of β-cyclodextrin based adsorbent toward efficient separation of acetophenone and 1-phenylethanol. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Preparation and characterization of novel thin film composite forward osmosis membrane with halloysite nanotube interlayer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
The Design of Ternary Composite Polyurethane Membranes with an Enhanced Photocatalytic Degradation Potential for the Removal of Anionic Dyes. MEMBRANES 2022; 12:membranes12060630. [PMID: 35736337 PMCID: PMC9230618 DOI: 10.3390/membranes12060630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023]
Abstract
Photocatalysis is an efficient and an eco-friendly way to eliminate organic pollutants from wastewater and filtration media. The major dilemma coupled with conventional membrane technology in wastewater remediation is fouling. In this study, the photocatalytic degradation potential of novel thermoplastic polyurethane (TPU) based NiO on aminated graphene oxide (NH2-GO) nanocomposite membranes was explored. The fabrication of TPU-NiO/NH2-GO membranes was achieved by the phase inversion method and analyzed for their performances. The membranes were effectively characterized in terms of surface morphology, functional group, and crystalline phase identification, using scanning electron microscopy, Fourier transformed infrared spectroscopy, and X-ray diffraction analysis, respectively. The prepared materials were investigated in terms of photocatalytic degradation potential against selected pollutants. Approximately 94% dye removal efficiency was observed under optimized conditions (i.e., reaction time = 180 min, pH 3-4, photocatalyst dose = 80 mg/100 mL, and oxidant dose = 10 mM). The optimized membranes possessed effective pure water flux and excellent dye rejection (approximately 94%) under 4 bar pressure. The nickel leaching in the treated wastewater sample was determined using inductively coupled plasma-optical emission spectrometry (ICP-OES). The obtained data was kinetically analyzed using first- and second-order reaction kinetic models. A first-order kinetic study was suited for the present study. Besides, the proposed membranes provided excellent photocatalytic ability up to six reusability cycles. The combination of TPU and NH2-GO provided effective strength to membranes and the immobilization of NiO nanoparticles improved the photocatalytic behavior.
Collapse
|
36
|
Chen M, Luo J, Wan Y, Chen X, Liang X. Probing the influence of shape and loading of CeO2 nanoparticles on the separation performance of thin-film nanocomposite membranes with an interlayer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Zhao Y, Tong X, Kim J, Tong T, Huang CH, Chen Y. Capillary-Assisted Fabrication of Thin-Film Nanocomposite Membranes for Improved Solute-Solute Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5849-5859. [PMID: 35420788 DOI: 10.1021/acs.est.2c01728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient separation of harmful contaminants (e.g., per- and polyfluoroalkyl substances, PFASs) from valuable components (water and nutrients) is essential to the resource recovery from domestic wastewater for agricultural purposes. Such selective recovery requires precise separation at the angstrom scale. Although nanofiltration (NF) has the potential to achieve solute-solute separation, the state-of-the-art polyamide (PA) membranes are typically constrained by limited precision of solute-solute selectivity and their well-documented permeability-selectivity trade-off. Herein, we present a novel capillary-assisted interfacial polymerization (CAIP) approach to generate metal-organic framework (MOF)-PA nanocomposite membranes with reduced surface charges and more uniform pore sizes that favor solute selectivity by enhanced size exclusion. By uniquely regulating the PA-MOF interactions using the capillary force, CAIP results in effective exposure of MOF nanochannels on the membrane surface and a PA matrix with a high cross-linking gradient in the vertical direction, both of which contribute to an exceptional water permeance of ∼18.7 LMH/bar and an unprecedentedly high selectivity between nutrient ions and PFASs. Our CAIP approach breaks new ground for utilizing nanoparticles with nanochannels in fabricating the next-generation, fit-for-purpose NF membranes for improved solute-solute separations.
Collapse
Affiliation(s)
- Yangying Zhao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xin Tong
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juhee Kim
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
38
|
Yan X, Yao Y, Zhang H, Xie J, Xiao C, Zhang S, Qi J, Sun X, Li J. Zeolitic imidazolate framework (ZIF-8)/polyacrylonitrile derived millimeter-sized hierarchical porous carbon beads for peroxymonosulfate catalysis. ENVIRONMENTAL RESEARCH 2022; 206:112618. [PMID: 34954145 DOI: 10.1016/j.envres.2021.112618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Well dispersed nanocatalysts on porous substrate with macroscopic morphology are highly desired for the application of heterogeneous catalysis. Traditional fabrication process suffers from multiple steps for controlling the structure on nanocatalysts and matrix or both. Herein, we report a facile strategy for the synthesis of millimeter-sized hierarchical porous carbon beads (HPCBs) which containing well dispersed hollow-nano carbon boxes for peroxymonosulfate catalysis. Specially, the precursors of HPCBs were prepared by phase inversion method, which involving introduction of zeolitic imidazolate framework (ZIF-8) nanocubes into polyacrylonitrile (PAN) solutions followed by solidification of the mixture. After pyrolysis, nitrogen doped and hierarchical porous HPCBs with diameter of about 1.2 mm were obtained. The merits of our synthesis strategy lie in that synchronizes the hollow microstructure evolution with the shaping of ZIF-8 nanocubes into millimeter scale beads. Attribute to its special structure feature and the appropriate chemical composition, the resultant millimeter-sized HPCBs exhibit enhanced catalytic performance by activation of peroxymonosulfate (PMS) for tetracycline degradation. The degradation efficiency of TC is up to 85.1% within 120 min, which is 18% higher than that of ZIF8-Solid/PAN carbon bead (SPCBs). In addition, the possible decomposition pathways, main reactive oxygen species, and reasonable enhanced mechanism for the HPCBs/PMS system are systematically investigated by quenching experiments, electron paramagnetic resonance (EPR) and liquid chromatography-mass spectrometry (LC-MS). This work addresses the issue of easy aggregation and recycling of carbon materials in industrial productions and extends the prospects of carbon materials in engineering applications.
Collapse
Affiliation(s)
- Xin Yan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Jia Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
39
|
Wang Y, Xu H, Ding M, Zhang L, Chen G, Fu J, Wang A, Chen J, Liu B, Yang W. MXene-regulation polyamide membrane featuring with bubble-like nodule for efficient dye/salt separation and antifouling performance. RSC Adv 2022; 12:10267-10279. [PMID: 35424976 PMCID: PMC8972100 DOI: 10.1039/d2ra00335j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Removing salt from dye/salt mixtures using nanofiltration (NF) membranes needs to be improved to ensure high permeability, high selectivity, and antifouling performance. In this study, we used an interfacial polymerization (IP) technique to create a novel thin-film nanocomposite NF membrane by introducing two-dimensional MXene Ti3C2Tx into the polyamide (PA) layer. Enhanced IP reaction rate facilitated the overflow of residual solvent from the fresh PA layer's edge due to the MXene-mediated IP strategy, resulting considerable bubble-like nodules on the membrane surface. The unique nanostructure of PA effective layer could be tuned by controlling the MXene concentration in aqueous phase solution, which finally promoted the obtained membranes with superb permselectivity. In this way, the water permeability was elevated to a maximum value of 45.12 L m−1 h−1, nearly 1.58-fold compared to the PA-pristine membrane. Moreover, the Ti3C2Tx/NF membrane exhibited a superior dye/monovalent salt separation coefficient of 820, outperforming the pristine PA membrane and other NF membranes in the literature. Additionally, the MXene-assisted IP strategy designed an effective dye anti-fouling hydration layer, which played a crucial role in fouling resistance. This work illustrates a novel use of Ti3C2Tx to successfully regulate high-performance TFN PA membranes for potential application in dye/salt separation. A novel thin-film nanocomposite NF membrane with efficient dye/salt separation and antifouling performance was designed by introducing different amounts of MXene into the PA layer.![]()
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - Mingmei Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - Lei Zhang
- College of Civil and Architecture Engineering, Chuzhou University Chuzhou 239000 China
| | - Gang Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University Nanjing 210098 China
| | - Jiawei Fu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - Ao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - Jiapei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - Bonan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| | - Wen Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University Nanjing 210098 China
| |
Collapse
|
40
|
Ni L, Chen K, Xie J, Li Q, Qi J, Wang C, Sun X, Li J. Synchronizing formation of polyamide with covalent organic frameworks towards thin film nanocomposite membrane with enhanced nanofiltration performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Li J, Xiao P, Xu Y, Dong L, Wang Z, Liu F, Shen J, Van der Bruggen B. Collagen Fibril-Assembled Skin-Simulated Membrane for Continuous Molecular Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7358-7368. [PMID: 35025208 DOI: 10.1021/acsami.1c23811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A skin-simulated thin-film-composite membrane was fabricated using a vacuum-assisted interfacial polymerization method. A negatively charged surface-selective layer on a polyacrylonitrile (PAN) substrate was cross-linked using trimesoyl chloride to form polyamide and polyester with a three-layer structure that was similar to skin. The loading of collagen fibrils assembled on the membrane surface was varied, and a selective layer was obtained, of which the thickness, morphology, and hydrophilicity can be manipulated. The optimal membrane decorated with 0.5 mg of collagen fibril had a selective layer thickness of around 130 nm with pure water permeability up to 84.7 LMH bar-1. Furthermore, the membrane exhibited impressive rejections toward dyes (Congo red with a molecular weight of 696.68 Da: 99.6%, reactive blue 19 with a molecular weight of 626.54 Da: 99.8%, and Coomassie blueG-250 with a molecular weight of 854.02 Da: 98.6%) while high permeations of Na2SO4 and NaCl were achieved. This facile strategy provides a useful guideline for constructing bionic membranes through biomaterials.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Pei Xiao
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yilin Xu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhenyu Wang
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jiangnan Shen
- Chemical Engineering College, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven 3001, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
42
|
Yang C, Li Y, Long M, Yang P, Li Y, Zheng Y, Zhang R, Su Y, Wu H, Jiang Z. Ultrathin nanofiltration membrane assembled by polyethyleneimine-grafted graphene quantum dots. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Nambi Krishnan J, Venkatachalam KR, Ghosh O, Jhaveri K, Palakodeti A, Nair N. Review of Thin Film Nanocomposite Membranes and Their Applications in Desalination. Front Chem 2022; 10:781372. [PMID: 35186879 PMCID: PMC8848102 DOI: 10.3389/fchem.2022.781372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
All over the world, almost one billion people live in regions where water is scarce. It is also estimated that by 2035, almost 3.5 billion people will be experiencing water scarcity. Hence, there is a need for water based technologies. In separation processes, membrane based technologies have been a popular choice due to its advantages over other techniques. In recent decades, sustained research in the field of membrane technology has seen a remarkable surge in the development of membrane technology, particularly because of reduction of energy footprints and cost. One such development is the inclusion of nanoparticles in thin film composite membranes, commonly referred to as Thin Film Nanocomposite Membranes (TFN). This review covers the development, characteristics, advantages, and applications of TFN technology since its introduction in 2007 by Hoek. After a brief overview on the existing membrane technology, this review discusses TFN membranes. This discussion includes TFN membrane synthesis, characterization, and enhanced properties due to the incorporation of nanoparticles. An attempt is made to summarize the various nanoparticles used for preparing TFNs and the effects they have on membrane performance towards desalination. The improvement in membrane performance is generally observed in properties such as permeability, selectivity, chlorine stability, and antifouling. Subsequently, the application of TFNs in Reverse Osmosis (RO) alongside other desalination alternatives like Multiple Effect Flash evaporator and Multi-Stage Flash distillation is covered.
Collapse
Affiliation(s)
- Jegatha Nambi Krishnan
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K.K. Birla Goa Campus, Zuarinagar, India
- *Correspondence: Jegatha Nambi Krishnan,
| | - Kaarthick Raaja Venkatachalam
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K.K. Birla Goa Campus, Zuarinagar, India
| | - Oindrila Ghosh
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K.K. Birla Goa Campus, Zuarinagar, India
| | - Krutarth Jhaveri
- Strategic Engagement and Analysis Group, Rocky Mountain Institute, Boulder, CO, United States
| | - Advait Palakodeti
- Process and Environmental Technology Lab, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Nikhil Nair
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K.K. Birla Goa Campus, Zuarinagar, India
| |
Collapse
|
44
|
Zarshenas K, Dou H, Habibpour S, Yu A, Chen Z. Thin Film Polyamide Nanocomposite Membrane Decorated by Polyphenol-Assisted Ti 3C 2T x MXene Nanosheets for Reverse Osmosis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1838-1849. [PMID: 34936329 DOI: 10.1021/acsami.1c16229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transition-metal carbides (MXenes), multifunctional 2D materials, have caught the interest of researchers in the fabrication of high-performance nanocomposite membranes. However, several issues regarding MXenes still remain unresolved, including low ambient stability; facile restacking and agglomeration; and poor compatibility and processability. To address the aforementioned challenges, we proposed a facile, green, and cost-efficient approach for coating a stable layer of plant-derived polyphenol tannic acid (TA) on the surface of MXene (Ti3C2Tx) nanosheets. Then, high-performance reverse osmosis polyamide thin film nanocomposite (RO-PA-TFN) membranes were fabricated by the incorporation of modified MXene (Ti3C2Tx-TA) nanosheets in the polyamide selective layer through interfacial polymerization. The strong negative charge and hydrophilic multifunctional properties of TA not only boosted the chemical compatibility between Ti3C2Tx MXene nanosheets and the polyamide matrix to overcome the formation of nonselective voids but also generated a tight network with selective interfacial pathways for efficient monovalent salt rejection and water permeation. In comparison to the neat thin film composite membrane, the optimum TFN (Ti3C2Tx-TA) membrane with a loading of 0.008 wt % nanofiller revealed a 1.4-fold enhancement in water permeability, a well-maintained high NaCl rejection rate of 96% in a dead-end process, and enhanced anti-fouling tendency. This research offers a facile way for the development of modified MXene nanosheets to be successfully integrated into the polyamide-selective layer to improve the performance and fouling resistance of TFN membranes.
Collapse
Affiliation(s)
- Kiyoumars Zarshenas
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Saeed Habibpour
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
45
|
Guo BB, Zhu CY, Xu ZK. Surface and Interface Engineering for Advanced Nanofiltration Membranes. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2654-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Albu PC, Ferencz (Dinu) A, Al-Ani HNA, Tanczos SK, Oprea O, Grosu VA, Nechifor G, Bungău SG, Grosu AR, Goran A, Nechifor AC. Osmium Recovery as Membrane Nanomaterials through 10-Undecenoic Acid Reduction Method. MEMBRANES 2021; 12:membranes12010051. [PMID: 35054577 PMCID: PMC8781728 DOI: 10.3390/membranes12010051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022]
Abstract
The recovery of osmium from residual osmium tetroxide (OsO4) is a necessity imposed by its high toxicity, but also by the technical-economic value of metallic osmium. An elegant and extremely useful method is the recovery of osmium as a membrane catalytic material, in the form of nanoparticles obtained on a polymeric support. The subject of the present study is the realization of a composite membrane in which the polymeric matrix is the polypropylene hollow fiber, and the active component consists of the osmium nanoparticles obtained by reducing an alcoholic solution of osmium tetroxides directly on the polymeric support. The method of reducing osmium tetroxide on the polymeric support is based on the use of 10-undecenoic acid (10-undecylenic acid) (UDA) as a reducing agent. The osmium tetroxide was solubilized in t-butanol and the reducing agent, 10-undecenoic acid (UDA), in i-propanol, t-butanol or n-decanol solution. The membranes containing osmium nanoparticles (Os-NP) were characterized morphologically by the following: scanning electron microscopy (SEM), high-resolution SEM (HR-SEM), structurally: energy-dispersive spectroscopy analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy. In terms of process performance, thermal gravimetric analysis was performed by differential scanning calorimetry (TGA, DSC) and in a redox reaction of an organic marker, p-nitrophenol (PNP) to p-aminophenol (PAP). The catalytic reduction reaction with sodium tetraborate solution of PNP to PAP yielded a constant catalytic rate between 2.04 × 10-4 mmol s-1 and 8.05 × 10-4 mmol s-1.
Collapse
Affiliation(s)
- Paul Constantin Albu
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania; (P.C.A.); (A.C.N.)
| | - Andreea Ferencz (Dinu)
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (H.N.A.A.-A.); (G.N.); (A.R.G.); (A.G.)
| | - Hussam Nadum Abdalraheem Al-Ani
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (H.N.A.A.-A.); (G.N.); (A.R.G.); (A.G.)
- Chemical Industries Department, Institute of Technology, Middle Technical University, Al Zafaraniyah, Baghdad 10074, Iraq
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania
- Correspondence: (S.-K.T.); (V.-A.G.)
| | - Ovidiu Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
- Correspondence: (S.-K.T.); (V.-A.G.)
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (H.N.A.A.-A.); (G.N.); (A.R.G.); (A.G.)
| | - Simona Gabriela Bungău
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (H.N.A.A.-A.); (G.N.); (A.R.G.); (A.G.)
| | - Alexandru Goran
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (H.N.A.A.-A.); (G.N.); (A.R.G.); (A.G.)
| | - Aurelia Cristina Nechifor
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania; (P.C.A.); (A.C.N.)
| |
Collapse
|
47
|
Wang X, Tan M, Wang M, Zhou G, Liu F, Zhang Y. Porphyrin thin-film composite cation exchange membranes enable high retention of amino acids in electrodialysis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Chen K, Ni L, Zhang H, Xie J, Yan X, Chen S, Qi J, Wang C, Sun X, Li J. Veiled metal organic frameworks nanofillers for mixed matrix membranes with enhanced CO2/CH4 separation performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Wang M, Huang J, Li S, Ni Y, Dong X, Wang X, Chen Z, Li X, Cai W, Lai Y. A sandwich-like structured superhydrophobic fabric for versatile and highly efficient emulsion separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|