1
|
Kuzminova A, Dmitrenko M, Stepanova A, Karyakina A, Selyutin A, Su R, Penkova A. Novel Mixed-Matrix Pervaporation Membrane Based on Polyether Block Amide Modified with Ho-Based Metal-Organic Framework. Polymers (Basel) 2024; 16:3245. [PMID: 39683990 DOI: 10.3390/polym16233245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Segmented polymers, such as polyether block amide (PEBA), exhibit unique properties due to the combination of different segments. PEBA consists of soft polyester and rigid polyamide blocks, enabling its use in various industrial applications, including membrane technologies. In this study, PEBA membranes modified with a holmium-based metal-organic framework (Ho-1,3,5-H3btc) were developed for enhanced pervaporation separation of water/isopropanol and water/phenol mixtures. The effect of 1-7 wt.% Ho-1,3,5-H3btc content variation and the selection of a porous substrate (commercial from fluoroplast F42L (MFFC) and developed membranes from polyvinylidene fluoride without (PVDF) and with a non-woven polyester support (PVDF-s)) on dense and/or supported membrane properties, respectively, was investigated. The dense and supported PEBA/Ho-1,3,5-H3btc membranes were studied by use of Fourier transform infrared spectroscopy, scanning electron and atomic force microscopies, swelling measurements, and pervaporation experiments. The supported membrane from PEBA with 5 wt.% Ho-1,3,5-H3btc applied onto the PVDF-s substrate exhibited optimal pervaporation performance: a 1040 g/(m2h) permeation flux and a 5.2 separation factor in water/phenol (1 wt.%) mixture separation at 50 °C due to optimal values of roughness, swelling degree, and selective layer thickness. This finding highlights the potential of incorporating Ho-1,3,5-H3btc into PEBA for developing high-performance pervaporation membranes.
Collapse
Affiliation(s)
- Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Anastasia Stepanova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Anna Karyakina
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Artem Selyutin
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
| |
Collapse
|
2
|
Al-Mashhadani MHI, Szijjártó GP, Sebestyén Z, Károly Z, Mihály J, Tompos A. Novel, Fluorine-Free Membranes Based on Sulfonated Polyvinyl Alcohol and Poly(ether-block-amide) with Sulfonated Montmorillonite Nanofiller for PEMFC Applications. MEMBRANES 2024; 14:211. [PMID: 39452823 PMCID: PMC11509672 DOI: 10.3390/membranes14100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Novel blend membranes containing S-PVA and PEBAX 1657 with a blend ratio of 8:2 (referred to as SPP) were prepared using a solution-casting technique. In the manufacturing process, sulfonated montmorillonite (S-MMT) in ratios of 0%, 3%, 5%, and 7% was used as a filler. The crystallinity of composite membranes has been investigated by X-ray diffraction (XRD), while the interaction between the components was evaluated using Fourier-transform infrared spectroscopy (FT-IR). With increasing filler content, good compatibility between the components due to hydrogen bonds was established, which ultimately resulted in improved tensile strength and chemical stability. In addition, due to the sulfonated moieties of S-MMT, the highest ion exchange capacity (0.46 meq/g) and water uptake (51.61%) can be achieved at the highest filler content with an acceptable swelling degree of 22.65%. The composite membrane with 7% S-MMT appears to be suitable for application in proton exchange membrane fuel cells (PEMFCs). Amongst the membranes studied, this membrane achieved the highest current density and power density in fuel cell tests, which were 149.5 mA/cm2 and 49.51 mW/cm2. Our fluorine-free composite membranes can become a promising new membrane family in PEMFC applications, offering an alternative to Nafion membranes.
Collapse
Affiliation(s)
- Manhal H. Ibrahim Al-Mashhadani
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (G.P.S.); (Z.S.); (Z.K.); (J.M.)
- Hevesy György Doctoral School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad 10070, Iraq
| | - Gábor Pál Szijjártó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (G.P.S.); (Z.S.); (Z.K.); (J.M.)
| | - Zoltán Sebestyén
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (G.P.S.); (Z.S.); (Z.K.); (J.M.)
| | - Zoltán Károly
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (G.P.S.); (Z.S.); (Z.K.); (J.M.)
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (G.P.S.); (Z.S.); (Z.K.); (J.M.)
| | - András Tompos
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (G.P.S.); (Z.S.); (Z.K.); (J.M.)
| |
Collapse
|
3
|
Al-Mashhadani MHI, Salmanzade K, Tompos A, Selim A. Promising Fluorine-Free Ion Exchange Membranes Based on a Poly(ether-block-amide) Copolymer and Sulfonated Montmorillonite: Influence of Different Copolymer Segment Ratios. MEMBRANES 2024; 14:17. [PMID: 38248707 PMCID: PMC10820341 DOI: 10.3390/membranes14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Novel composite membranes employing a poly(ether-block-amide) (PEBAX) copolymer and sulfonated montmorillonite (S-MMT) as a filler were developed. The ratio of polyether to polyamide blocks was investigated using PEBAX 2533 and PEBAX 4533 based on the membrane properties and performance. Additionally, the effect of the changing filler ratio was monitored. The interaction between the S-MMT as nanofiller and the polymer matrix of PEBAX2533 and PEBAX4533 as well as the crystalline nature and thermal and mechanical stability of the composite membranes were evaluated using Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and tensile test. The composite membrane with 7 wt.% S-MMT showed the highest water uptake of 21% and 16% and an acceptable swelling degree of 16% and 9% for PEBAX 2533 and PEBAX 4533 composite membranes, respectively. In terms of water uptake and ion exchange capacity at room temperature, the new un-protonated membranes are superior to un-protonated Nafion. Meanwhile, with the same S-MMT content, the ion conductivity of PEBAX 2533 and PEBAX 4533 composite membranes is 2 and 1.6 mS/cm, and their ion exchange capacity is 0.9 and 1.10 meq/g.
Collapse
Affiliation(s)
- Manhal H. Ibrahim Al-Mashhadani
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (K.S.); (A.S.)
- Hevesy György Doctoral School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Institute of Laser for Postgraduate Studies, University of Baghdad, 10070 Baghdad, Iraq
| | - Khirdakhanim Salmanzade
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (K.S.); (A.S.)
| | - András Tompos
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (K.S.); (A.S.)
| | - Asmaa Selim
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (K.S.); (A.S.)
- Chemical Engineering and Pilot Plat Department, Engineering and Renewable Energy Research Institute, National Research Centre, 33 El Bohouth Street, Giza 12622, Egypt
| |
Collapse
|
4
|
Liu C, Si Z, Wu H, Zhuang Y, Zhang C, Zhang G, Zhang X, Qin P. High-/Low-Molecular-Weight PDMS Photo-Copolymerized Membranes for Ethanol Recovery. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chang Liu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Hanzhu Wu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yan Zhuang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Ganggang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Xinmiao Zhang
- Environmental Protection Research Institute, Beijing Research Institute of Chemical Industry, Beijing100000, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
5
|
Rohani R, Pakizeh M, Chenar MP. A new route for ZIF-8 synthesis and its application in MMM preparation for toluene removal from water using PV process. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Liquid-liquid interface induced high-flux PEBA pervaporation membrane for ethanol recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
7
|
Clarizia G, Bernardo P. Polyether Block Amide as Host Matrix for Nanocomposite Membranes Applied to Different Sensitive Fields. MEMBRANES 2022; 12:1096. [PMID: 36363651 PMCID: PMC9693152 DOI: 10.3390/membranes12111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/31/2023]
Abstract
The cornerstones of sustainable development require the treatment of wastes or contaminated streams allowing the separation and recycling of useful substances by a more rational use of energy sources. Separation technologies play a prominent role, especially when conducted by inherently environmentally friendly systems such as membrane operations. However, high-performance materials are more and more needed to improve the separative performance of polymeric materials nanocomposites are ideally suited to develop advanced membranes by combining organic polymers with suitable fillers having superior properties. In this area, polyether block amide copolymers (Pebax) are increasingly adopted as host matrices due to their distinctive properties in terms of being lightweight and easy to process, having good resistance to most chemicals, flexibility and high strength. In this light, the present review seeks to provide a comprehensive examination of the progress in the development of Pebax-based nanocomposite films for their application in several sensitive fields, that are challenging and at the same time attractive, including olefin/paraffin separation, pervaporation, water treatment, flexible films for electronics, electromagnetic shielding, antimicrobial surfaces, wound dressing and self-venting packaging. It covers a wide range of materials used as fillers and analyzes the properties of the derived nanocomposites and their performance. The general principles from the choice of the material to the approaches for the heterogeneous phase compatibilization as well as for the performance improvement were also surveyed. From a detailed analysis of the current studies, the most effective strategies to overcome some intrinsic limitations of these nanocomposites are highlighted, providing guidelines for the correlated research.
Collapse
Affiliation(s)
| | - Paola Bernardo
- Institute on Membrane Technology (ITM-CNR), via P. Bucci 17/C, 87036 Rende, CS, Italy
| |
Collapse
|
8
|
Burts KS, Plisko TV, Prozorovich VG, Melnikova GB, Ivanets AI, Bildyukevich AV. Modification of Thin Film Composite PVA/PAN Membranes for Pervaporation Using Aluminosilicate Nanoparticles. Int J Mol Sci 2022; 23:ijms23137215. [PMID: 35806220 PMCID: PMC9266310 DOI: 10.3390/ijms23137215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
The effect of the modification of the polyvinyl alcohol (PVA) selective layer of thin film composite (TFC) membranes by aluminosilicate (Al2O3·SiO2) nanoparticles on the structure and pervaporation performance was studied. For the first time, PVA-Al2O3·SiO2/polyacrylonitrile (PAN) thin film nanocomposite (TFN) membranes for pervaporation separation of ethanol/water mixture were developed via the formation of the selective layer in dynamic mode. Selective layers of PVA/PAN and PVA-Al2O3·SiO2/PAN membranes were formed via filtration of PVA aqueous solutions or PVA-Al2O3·SiO2 aqueous dispersions through the ultrafiltration PAN membrane for 10 min at 0.3 MPa in dead-end mode. Average particle size and zeta potential of aluminosilicate nanoparticles in PVA aqueous solution were analyzed using the dynamic light scattering technique. Structure and surface properties of membranes were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurements. Membrane performance was investigated in pervaporation dehydration of ethanol/water mixtures in the broad concentration range. It was found that flux of TFN membranes decreased with addition of Al2O3·SiO2 nanoparticles into the selective layer due to the increase in selective layer thickness. However, ethanol/water separation factor of TFN membranes was found to be significantly higher compared to the reference TFC membrane in the whole range of studied ethanol/water feed mixtures with different concentrations, which is attributed to the increase in membrane hydrophilicity. It was found that developed PVA-Al2O3·SiO2/PAN TFN membranes were more stable in the dehydration of ethanol in the whole range of investigated concentrations as well as at different temperatures of the feed mixtures (25 °C, 35 °C, 50 °C) compared to the reference membrane which is due to the additional cross-linking of the selective layer by formation hydrogen and donor-acceptor bonds between aluminosilicate nanoparticles and PVA macromolecules.
Collapse
Affiliation(s)
- Katsiaryna S. Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| | - Tatiana V. Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
- Correspondence:
| | - Vladimir G. Prozorovich
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (V.G.P.); (A.I.I.)
| | - Galina B. Melnikova
- A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Andrei I. Ivanets
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (V.G.P.); (A.I.I.)
| | - Alexandr V. Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (K.S.B.); (A.V.B.)
| |
Collapse
|
9
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Hydroxyl-functionalized ultra-thin graphitic-carbon-nitrite nanosheets-accommodated polyvinyl alcohol membrane for pervaporation of isopropanol/water mixture. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Arregoitia-Sarabia C, González-Revuelta D, Fallanza M, Ortiz A, Gorri D. Polyether-block-amide thin-film composite hollow fiber membranes for the recovery of butanol from ABE process by pervaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Bakhshandeh Rostami S, Saljoughi E, Mousavi SM, Kiani S. Preparation of polyphenylsulfone/graphene nanocomposite membrane for the pervaporation separation of cumene from water. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Ehsan Saljoughi
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Seyed Mahmoud Mousavi
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Shirin Kiani
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|