1
|
Wang Y, Paul Chen J, Yang Y, Zhang P. Salt ions affect the remediation of Cr(VI)-contaminated groundwater using a simulated permeable reactive barrier filled with sulfidated nano-scale zerovalent iron (S-nZVI). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125825. [PMID: 40414125 DOI: 10.1016/j.jenvman.2025.125825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/22/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025]
Abstract
Hexavalent chromium (Cr(VI)) posts a great risk to humans and living organisms. In recent years, sulfidated nano-scale zerovalent iron (S-nZVI) has gained increasing attention for its potential in Cr(VI) removal due to its exceptional physical and chemical properties. However, limited studies have explored the application of S-nZVI in remediating groundwater polluted by Cr(VI), particularly the effects of salt ions on S-nZVI-based permeable reactive barrier (S-nZVI/PRB) reactors. To address this gap, both experimental and computational approaches were employed in this study to investigate the performance of S-nZVI/PRB reactors for Cr(VI) treatment under background solutions with various salt ions. The results demonstrated 1.2-2.0 times higher Cr(VI) removal efficiencies with the existence of Ca2+ and Mg2+ (introduced as CaCl2 and MgCl2) compared to pure water and NaCl solutions. In contrast, CO32- (introduced as Na2CO3) exhibited a strong inhibitory effect with a Cr(VI) removal capacity of only 34 mg g-1, lower than the 104 mg g-1 observed in NaCl solution. Density functional theory calculations revealed that different ionic species influenced the interaction between Cr(VI) and S-nZVI by occupying active adsorption sites and altering the free energy of intermediate reduction products. These findings deepen our understanding on how various ionic species in groundwater influence the Cr(VI) removal by S-nZVI. This study provides essential scientific insights to support the application of S-nZVI/PRB reactors for in-situ remediation of groundwater polluted by heavy metal and also provides reference for environmental management strategy.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau
| | - J Paul Chen
- School of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China; Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore
| | - Yuesuo Yang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau.
| |
Collapse
|
2
|
Wei Y, Zhu Y, Nian L, Yang L, Yue M, Mao Z, Li L. Response of rhizosphere microbial community characteristics and ecosystem multifunctionality to the addition of crude oil in Achnatherum splendens and Pennisetum alopecuroides. Front Microbiol 2025; 16:1553070. [PMID: 40303472 PMCID: PMC12037595 DOI: 10.3389/fmicb.2025.1553070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
This study aimed to reveal the effects of crude oil addition on the characteristics of soil microbial communities and ecosystem multifunctionality in Achnatherum splendens and Pennisetum alopecuroides. Specifically, it explored how crude oil addition influences the relationship between soil nutrient regulation, microbial community characteristics, and ecosystem multifunctionality. The results indicated that as crude oil addition increased, the Shannon index and Chao1 index for soil bacteria and fungi in both Achnatherum splendens and Pennisetum alopecuroides increased. Conversely, while the Shannon index for soil archaea in both species increased, the Chao1 index decreased. The ecological network analysis indicated that a strong collaborative relationship existed between species in the soil bacterial communities of Achnatherum splendens and Pennisetum alopecuroides exposed to 10 g/kg crude oil, as well as between species in the soil fungal and archaeal communities of Achnatherum splendens exposed to 40 g/kg crude oil. A strong collaborative relationship was also observed between species in the soil fungal and archaeal communities of Pennisetum alopecuroides exposed to 10 g/kg crude oil. The bacterial and fungal communities exerted a significant direct negative regulatory effect on the soil ecosystem multifunctionality of Achnatherum splendens and Pennisetum alopecuroides, while the archaeal communities had a significant direct positive regulatory effect. Additionally, the multifunctionality index of the soil ecosystem in Achnatherum splendens and Pennisetum showed a significant decline with increasing crude oil addition. This is likely due to the higher toxicity of high-concentration crude oil, which negatively impacts the soil biological community, leading to reduced biodiversity and disruptions in nutrient cycles. This study explores the characteristics of bacterial, fungal, and archaeal communities and ecosystem multifunctionality under different levels of crude oil, which can provide theoretical support for evaluating the restoration of Achnatherum splendens and Pennisetum alopecuroides from crude oil pollution.
Collapse
Affiliation(s)
- Ying Wei
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi'an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
| | - Yukun Zhu
- Shaanxi Provincial Dongzhuang Water Conservancy Engineering Co., Ltd., Xi'an, China
| | - Lili Nian
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Liqun Yang
- Shaanxi Provincial Water Resources Information Education and Promotion Center, Xi'an, China
| | - Ming Yue
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi'an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
| | - Zhuxin Mao
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi'an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
| | - Lijuan Li
- Xi'an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi'an, China
| |
Collapse
|
3
|
Tao J, Yang Y. Innovative strategy for the treatment of oily wastewater by in-situ synthesis of nitrogen-doped biochar supported FeS for activation of peroxymonosulfate. ENVIRONMENTAL TECHNOLOGY 2025; 46:1981-1995. [PMID: 39432466 DOI: 10.1080/09593330.2024.2415723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Disposing of oily wastewater poses a significant challenge in treating oilfield-produced wastewater treatment. This study developed a FeSNC-9/PMS system for the effective degradation of total petroleum hydrocarbons (TPHs) in oily wastewater, while increasing the value of excess sludge, thus achieving the dual purpose of waste treatment. This work involved the in-situ preparation of a porous nitrogen-doped biochar-supported iron sulphide catalyst material using surplus sludge from SBR. Compared to undoped FeS (NC-9), FeSNC-9 exhibited excellent pore structure and abundant functional groups. Fe-Nx served as an effective connecting site between FeS species and the graphite network of biochar. The FeSNC-9/PMS system significantly degraded 74.21% of TPHs within 300 min. The FeSNC-9/PMS system demonstrated remarkable TPHs degradation efficiency across a wide temperature range and under both weak acidity and near-neutral conditions The dominant reactive oxygen species were identified as SO4•- and •OH, with O2•- and 1O2 also confirmed as active species. Gas chromatography semi-quantitative analysis showed that the long-chain alkanes of C20-C30 in total petroleum hydrocarbons were significantly degraded into short-chain alkanes or completely mineralized. This work provides new insights for the low-cost and high-efficiency treatment of TPHs in oilfield-produced water, and delves into the activation mechanism of PMS and the degradation pathways of TPHs.
Collapse
Affiliation(s)
- Jianqiang Tao
- Sinopec Xinjiang Xinchun Petroleum Development Co., Ltd, Urumqi, People's Republic of China
| | - Yuanliang Yang
- Sinopec Xinjiang Xinchun Petroleum Development Co., Ltd, Urumqi, People's Republic of China
| |
Collapse
|
4
|
Wang MZ, Liu R, Yang JY, Nikitin A. Efficient simultaneous degradation of multiple sulfonamide antibiotics in soil using biocarbon-based nanomaterials as catalysts for persulfate activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178469. [PMID: 39824103 DOI: 10.1016/j.scitotenv.2025.178469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
There is an urgent need to develop effective and sustainable methods to decrease sulfonamide (SA) contamination of soil. Herein, a non-homogeneous system of zero-valent metal-biochar-based composites was proposed and tested for persulfate (PS) activation. This system employed zero-valent iron (Fe0) as an electron donor to catalyze the cleavage of the OO bond in PS, thereby generating reactive oxygen species (ROS) that degrade SAs. Notably, the incorporation of elemental sulfur (S) significantly mitigated the passivation of Fe0, leading to an enhanced degradation capability of the system. The system decomposes 84-97 % of SAs at their concentration in soil suspension 10 mg/kg in 3 h. Among the coexistence of several SAs, the system showed the fastest degradation rate of sulfisoxazole with a kobs of 0.0305 min-1, nearing complete removal within 3 h. The system is resistant to the impact of organic matter in soil. It allows to decrease concentration of sulfadiazine in actual contaminated soil on 73 % in 2 h. The system remains effective with decreasing concentrations of PS from 20 mM to 2.5 mM, which lowered the operating cost. T.E.S.T software evaluation showed a significant reduction in the bioaccumulation toxicity and developmental toxicity of the degradation products, suggesting that the system is environmentally friendly. The high efficiency of the catalytic system, the simplicity and economy of the manufacturing process, the resistance to interference in real soil, and the environmental friendliness make this technology promising for mitigating the problem of the environment contamination by SAs.
Collapse
Affiliation(s)
- Meng-Zhou Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Rui Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Aleksander Nikitin
- Institute of Microbiology of the National Academy of Sciences of Belarus, Acad. Kuprevich str., 2, 220084 Minsk, Belarus
| |
Collapse
|
5
|
Liu C, Xia W, Cao Z, Dai J, Zhou R, Li H, Xu J. Bibliometric analysis and research progress on hydrogen peroxide and persulfate oxidation processes in the remediation of actual oil-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4403-4430. [PMID: 39890764 DOI: 10.1007/s11356-025-35950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
Oil pollution poses significant harm to both the ecological environment and human health. The primary sources of oil pollutants in soil are leaks that occur during the extraction, transportation, and production phases. In the face of the severe situation of global soil pollution, chemical oxidation technology has shown potential in the remediation of oil-contaminated soil. However, most current research on chemical oxidation technology remains in the laboratory stage, with limited discussion on its characteristics and application conditions in the actual treatment of oil-contaminated sites. To address this gap, this paper applies bibliometric methods to analyze the development trends of chemical oxidation technology and provides a comprehensive review from the perspective of its real-world applications in remediating oil-contaminated soil. It explores commonly used activators, enhancement measures, and key influencing factors of advanced oxidation processes, focusing particularly on those based on hydrogen peroxide and persulfate. The study highlights significant advantages, such as improving remediation efficiency, reducing treatment time, and compatibility with other remediation methods. Nevertheless, challenges remain, including soil acidification, limited pollutant targeting, and high operational costs. To address these issues, this paper proposes innovative directions such as the development of green and efficient activators, optimization of oxidant application strategies, and integration of chemical oxidation with other remediation technologies. These findings aim to establish a robust theoretical foundation and provide strong technical support for future chemical oxidation treatments of such soils. Through this research, we aspire to develop more scientific and effective strategies and methods for the remediation of oil-contaminated soil.
Collapse
Affiliation(s)
- Chuanyu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an, 710055, China
| | - Wenzhu Xia
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Zezhuang Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an, 710055, China
| | - Jianan Dai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an, 710055, China
| | - Rankang Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an, 710055, China
| | - Huan Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an, 710055, China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Xi'an, 710055, China.
| |
Collapse
|
6
|
Xia P, Jing S, Zhao Z, Dou T, Gao J, Guo Z, Xu L, Guo H, Zhang M, Qiao W. Enhancement of dewatering performance and effective degradation of petroleum hydrocarbons in biological oily sludge using atmospheric pressure plasma jet. BIORESOURCE TECHNOLOGY 2025; 418:131974. [PMID: 39674351 DOI: 10.1016/j.biortech.2024.131974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/19/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
The presence of petroleum hydrocarbon components (PHCs) in biological oily sludge increases the toxicity of the sludge and makes dewatering even more difficult. In this study, an atmospheric pressure plasma jet (APPJ) technology was used for treating biological oily sludge. The results showed that under specific conditions-a sludge/water ratio of 1:100, a discharge power of 440 W, and a 60-min treatment-the degradation rate of PHCs reached 36.3 %. APPJ can convert larger molecule PHCs and extracellular polymeric substances, thereby reducing the particle size and viscosity of the sludge. Meanwhile, the sludge volume was reduced and the sludge dewatering efficiency was improved. The hydroxyl radical and superoxide radical generated by APPJ were the main active species involved in the degradation process. This work provides a novel strategy for the reduction of biological oily sludge and the synergistic removal of PHCs along with the sludge.
Collapse
Affiliation(s)
- Pengcheng Xia
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Siyi Jing
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenqing Zhao
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Tongtong Dou
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Gao
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ziyi Guo
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lijie Xu
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - He Guo
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Wang B, Wang Z. Insight into the degradation of carbamazepine by electrochemical-pressure UV-activated peroxodisulphate process: kinetics, radicals, and degradation pathway. ENVIRONMENTAL TECHNOLOGY 2024; 45:3105-3117. [PMID: 37125413 DOI: 10.1080/09593330.2023.2208275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
In this work, to improve the performance of peroxodisulphate-advanced oxidation, an electrochemical oxidation-assisted UV light-activated peroxodisulphate system (E/UV/PDS) was used to degrade carbamazepine. The degradation of carbamazepine by PDS, E/PDS, UV/PDS and E/UV/PDS systems was compared, and their synergistic effects were analysed. The influence of single factors, such as PDS addition, initial pH, DS voltage, target initial concentration, etc., on the degradation of the E/UV/PDS system was discussed, and the optimal degradation process parameters were given. The active substances were determined by free radical inhibition experiments, such as 1O2, SO 4 - ⋅ and ⋅ OH . It was proved that 1O2 contributes much more to the degradation of carbamazepine than SO 4 - ⋅ and ⋅ OH . The degradation pathway of carbamazepine was proposed. Finally, the degradation mechanism of carbamazepine in the E/UV/PDS system was speculated. The results indicate that the electrochemical combined with the E/UV/PDS system is of great potential application value in the removal of antibiotic drug pollution and environmental purification.
Collapse
Affiliation(s)
- Bin Wang
- College of Mechatronics Engineering, Binzhou University, Binzhou, People's Republic of China
| | - Zhenjun Wang
- College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Wang Z, Meng L, Luo T. Electrochemical-enhanced nanoscale oxygen-vacancy CuFe 2O 4 to activate persulfate (E/oxygen-vacancy CuFe 2O 4/PS) for separation of Ebselen from wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:2144-2155. [PMID: 36599035 DOI: 10.1080/09593330.2023.2165456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
To enhance the catalytic activity of CuFe2O4 on PS, a nanoscale oxygen-vacancy CuFe2O4 was prepared by hydrogenation reduction technique to construct an advanced oxidation system of electrochemical-enhanced nanoscale oxygen-vacancy CuFe2O4-activated persulfate. Using Ebselen (EBS) as a model pollutant, the degradation efficiency, activation mechanism and degradation pathway were studied. The oxygen-vacancy CuFe2O4 was characterized and analysed by FESEM, EDS and XPS. The results show that under the optimal reaction conditions (PS = 0.8 g/L, oxygen-vacancy CuFe2O4 = 0.3 g/L, initial pH = 6.5), the removal rate of 20 mg/L EBS can reach 92% after reaction for 60 min, which proves that the formation of oxygen-vacancy changed the catalytic inertness of CuFe2O4 on PS. It is speculated that in the E/oxygen-vacancy CuFe2O4/PS system, the existence of oxygen holes enhances the electron transfer ability and reducibility of the catalyst, so the oxygen-vacancy CuFe2O4 can efficiently activate PS to degrade EBS. The quenching experiments show that both SO 4 ⋅ - and ⋅ OH are involved in the oxidation reaction as reactive radicals in the system, with SO 4 ⋅ - being the main reactive radical. In addition, both dissolved oxygen (DO) and anions in the solution inhibit the oxidative degradation of EBS by oxygen-vacancy CuFe2O4/PS system. Through GC-MS detection, a possible degradation pathway is proposed.
Collapse
Affiliation(s)
- Zhenjun Wang
- College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, People's Republic of China
- Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai, People's Republic of China
| | - Tianlie Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, People's Republic of China
| |
Collapse
|
9
|
Xu J, Li F, Luo S, Shi Q, Cao Z, Liu L, Xue S. Study on the mechanism promoting oxidation of long-chain alkanes by self-produced surfactant-like substance at the solid-liquid interface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117676-117687. [PMID: 37872338 DOI: 10.1007/s11356-023-29991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/16/2023] [Indexed: 10/25/2023]
Abstract
The Fenton method to remediate oil-contaminated soils has long suffered from low utilization of ·OH, resulting in waste of costs during practical application. This study investigated the efficient utilization of ·OH in oxidation using three different soils contaminated with oil (S1, S2, and S3). The mechanisms of promoting oxidation of long-chain alkanes by self-produced surfactant-like substance at the solid-liquid interface were studied. These results (take S1 as an example) showed that the average ·OH utilization rate of oxidized long-chain alkanes (Ka) at the solid-liquid interface reached 88.34 (mg/kg∙(a.u.)), which was higher than the non-solid-liquid interface stage (I: 54.02 (mg/kg∙(a.u.)), II: 67.36 (mg/kg∙(a.u.))). Meanwhile, the average oxidation of long-chain alkanes could increase unit ·OH intensity added (Kb) in the solid-liquid interface (990.00 mg/kg), which was much higher than Kb of the non-solid-liquid interface stage (I: 228.34 mg/kg, II: -1.48 mg/kg). Furthermore, there was a significant correlation between the proportion of humic acid-like in soil organic matter and the oxidation of long-chain alkanes at the solid-liquid interface. Thus, the surfactant-like substance generated during oxidation promoted the oxidation of long-chain alkanes at the solid-liquid interface. Moreover, when the surfactant-like substance had a matching degree (φ) with the long-chain alkanes (S1 0.18, S2 0.15, and S3 0.25), the efficiency of the ·OH utilization reached the peak, and the direct oxidation of long-chain alkanes at the solid-liquid interface was finally achieved (S1: 1373.00 mg/kg, S2: 1473.18 mg/kg, and S3: 1034.37 mg/kg). The appropriate surfactant-like substance agents in the construction can reduce the dosing of H2O2 and the construction costs by improving the efficient utilization of ·OH. Study on the mechanism promoting oxidation of long-chain alkanes by self-produced surfactant-like substance at the solid-liquid interface.
Collapse
Affiliation(s)
- Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China.
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China.
| | - Fengsen Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Shengyang Luo
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Qihang Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Zezhuang Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Lu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| | - Shujun Xue
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an, China
- Key Laboratory of Environmental Engineering, Xi'an, Shaanxi Province, China
| |
Collapse
|
10
|
Zhu M, Wang H, Li C, Liu Q, Wang L, Tang J. Electrodeposited copper enhanced removal of 2,4-dichlorophenol in batch and flow reaction in Cu@CC-PS-MFC system. CHEMOSPHERE 2023; 340:139801. [PMID: 37574086 DOI: 10.1016/j.chemosphere.2023.139801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Combination of microbial fuel cell (MFC) and advanced oxidation process (AOP) is promising for pollutant removal. In this paper, Cu0-loaded carbon cloth cathode by electrodeposition (Cu@CC-PS-MFC) was applied to enhance 2,4-dichlorophenol (2,4-DCP) degradation based on persulfate (PS) activation in microbial fuel cell. Cu0 exhibited a typical structure of face-centered cubic metal polyhedron on carbon cloth. The removal of 2,4-DCP by Cu@CC-PS-MFC (75.6%) was enhanced by more than 50% compared to CC-PS-MFC (49.2%) after 1 h of reaction. 30 mg/L 2,4-DCP in Cu@CC-PS-MFC was completely removed and achieved a high mineralization (80.6%) after 9 h of reaction under optimized condition with low dissolved copper ion concentration (0.615 mg/L). Meanwhile, more than 90% removal of 2,4-DCP was stably achieved with flow operation condition (hydraulic residence time of 7.2 h). The change of copper valent state Cu0/Cu2O/CuO was the main mechanism of PS activation with main reactive species of O•H and O21. The bioanode of MFC enhanced the in-situ regeneration of ≡Cu+ and ≡Cu0 on the catalyst surface by transporting electrons, which was believed to contribute to good catalyst lifetime and excellent 2,4-DCP removal. Electrodeposited copper contributes to the enhanced degradation of 2,4-DCP with energy recovery at the same time which can further broaden the application MFC.
Collapse
Affiliation(s)
- Minjie Zhu
- National Engineering Laboratory for Site Remediation Technologies/MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongyuan Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Chunji Li
- National Engineering Laboratory for Site Remediation Technologies/MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qinglong Liu
- National Engineering Laboratory for Site Remediation Technologies/MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Lan Wang
- National Engineering Laboratory for Site Remediation Technologies/MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- National Engineering Laboratory for Site Remediation Technologies/MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
11
|
Zainab R, Hasnain M, Ali F, Dias DA, El-Keblawy A, Abideen Z. Exploring the bioremediation capability of petroleum-contaminated soils for enhanced environmental sustainability and minimization of ecotoxicological concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104933-104957. [PMID: 37718363 DOI: 10.1007/s11356-023-29801-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Daniel Anthony Dias
- CASS Food Research Centre, School of Exercise and Nutrition Sciences Deakin University, Melbourne, VIC, 3125, Australia
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE
| | - Zainul Abideen
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE.
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
12
|
Zoghi P, Mafigholami R. Optimisation of soil washing method for removal of petroleum hydrocarbons from contaminated soil around oil storage tanks using response surface methodology. Sci Rep 2023; 13:15457. [PMID: 37726362 PMCID: PMC10509228 DOI: 10.1038/s41598-023-42777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023] Open
Abstract
Total petroleum hydrocarbons (TPHs), which are often found in soil, water, sediments, and air. These compounds are a type of pollutant that can have a serious negative impact on living things and human health. Soil washing method is a remediation technique used to remove contaminants from the soil. This process involves the use of water or other solvents to extract contaminants from the soil, followed by separation and disposal of the contaminated solution. This research engineered the effectiveness of soil washing method to remove TPHs from a genuine, sullied soil sample. After analyzing the physical and chemical properties of the soil, the Box-Benken Design (BBD) technique was used to optimize the variables that influence the process's effectiveness. A quadratic model was suggested based on the BBD design, correlation coefficients, and other factors. The minimum, maximum and mean removal of TPHs during the stages of the study were 63.5, 94.5 and 76.7%, respectively. The correlation between the variables was strong, as shown by the analysis of variance (ANOVA), F-value (1064.5) and P-value (0.0001), and the proposed model was highly significant. The most effective soil washing method (SWM) was obtained with pH 7.8, liquid to solid ratio 50:1, reaction time 52 min, surfactant concentration 7.9 mg kg-1, and three washings. A removal rate of 98.8% was accomplished for TPHs from the soil in this context. The kinetic results indicate that the kinetic of TPHs removal follows the first-order kinetics (R2 = 0.96). There was not a major difference in the process's efficiency based on temperature. The removal efficiency heightened from 0 to 150 rpm and then remained steady. Introducing air flow increased the rate of removal, and the combination of ultrasonic waves with the reaction environment increased the process efficiency and decreased the time for the process and the amount of times it needed to be washed. An analysis of the washed soil both physically and chemically revealed a substantial decrease in the concentration of other elements.
Collapse
Affiliation(s)
- Pouyan Zoghi
- Department of Environment, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Roya Mafigholami
- Department of Environment, West Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Chen X, Mu S, Luo Y. Degradation of petroleum pollutants in oil-based drilling cuttings using an Fe 2+-based Fenton-like advanced oxidation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37669-37678. [PMID: 36574125 DOI: 10.1007/s11356-022-24925-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Oil-based drilling cuttings (OBDC) contain a large amount of total petroleum hydrocarbon (TPH) pollutants, which are hazardous to the environment. In this study, Fe2+-activating hydrogen peroxide (Fe2+/H2O2), peroxymonosulfate (Fe2+/PMS), and peroxydisulfate (Fe2+/PDS) advanced oxidation processes (AOPs) were used to treat OBDC due to the difference in the degradation capacity of TPH caused by the type of free radical generated and effective activation conditions observed for the different oxidants studied. The results showed that the oxidant concentration, Fe2+ dosage, and reaction time in the three AOPs were greatly positively correlated with the TPH removal rate in a certain range. The initial pH value had a significant effect on the Fe2+/H2O2 process, and its TPH removal rate was negatively correlated in the pH range from 3 to 11. However, the Fe2+/PMS and Fe2+/PDS processes only displayed lower TPH removal rates under neutral conditions and tolerated a wider range of pH conditions. The optimal TPH removal rates observed for the Fe2+/H2O2, Fe2+/PMS, and Fe2+/PDS processes were 45.04%, 42.75%, and 44.95%, respectively. Fourier transform infrared spectrometer and gas chromatography-mass spectrometer analysis showed that the alkanes in OBDC could be effectively removed using the three processes studied, and their degradation ability toward straight-chain alkanes was in the order of Fe2+/PMS > Fe2+/PDS > Fe2+/H2O2, among which Fe2+/PMS exhibited the optimal removal effect for aromatic hydrocarbons. Scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction results showed no significant changes in the elemental and mineral composition of OBDC before and after treatment. Therefore, this study provided a theoretical reference for the effective degradation of TPH pollutants in OBDC.
Collapse
Affiliation(s)
- Xinglong Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yuanfeng Luo
- Department of Ecology and Environment of Sichuan Province, Sichuan Academy of Environmental Policy and Planning, Chengdu, 610093, China.
| |
Collapse
|
14
|
Li X, Xu J, Yang Z. Insight on efficiently oriented oxidation of petroleum hydrocarbons by redistribution of oxidant through inactivation of soil organic matter coupled with passivation of manganese minerals. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130192. [PMID: 36270191 DOI: 10.1016/j.jhazmat.2022.130192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
While extensive works focused on the enhancement of the activity of heterogeneous Fenton catalysts, little was paid attention to the inhibition of soil organic matter (SOM) and Mn minerals in soil remediation. Here, the oxidation of petroleum hydrocarbons in soils (S1: 4.28 % SOM, S2: 6.04 % SOM, S3: 10.33 % SOM) with inactivated SOM and passivated Mn oxides regulating by calcium superphosphate (Ca(H2PO4)2) was carried out. Oily sludge pyrolysis residue was used as precursors to prepare an oleophilic iron-supported solid catalyst (Fe-N @ PR). For regulated systems, under the optimal conditions of 1.8 mmol/g H2O2 and 0.05 g/g Fe-N @ PR, 72 ∼ 91 % of total petroleum hydrocarbons (TPHs: 15,616.58 mg/kg) were oxidized, which was 38 ∼ 45 % higher than that of control systems. The mechanism of efficient oxidation was proposed that the passivated Mn minerals stabilized H2O2 redistributing more H2O2 to sustainably produce •OH, and the inactivated SOM improved the relative reactivity of •OH to TPHs. Additionally, the passivation of Mn oxides was mainly related to the binding of H2PO4-, and the inactivation of SOM was realized by Ca2+ combing with -OH and C-O-C to form stable complexes. This study brought us a new perspective on soil remediation through passivating Mn minerals and inactivating SOM.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Zhilin Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| |
Collapse
|
15
|
Zhao QM, Jiang H, Wang Z. Electrochemical-enhanced MoS 2/Fe 3O 4 peroxymonosulfate (E/ MoS 2/Fe 3O 4/PMS) for degradation of sulfamerazine. CHEMOSPHERE 2022; 307:136198. [PMID: 36030935 DOI: 10.1016/j.chemosphere.2022.136198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Seeking effective methods to degrade organic pollutants has always been a hot research field. In this work, MoS2/Fe3O4 catalyst was synthesized by hydrothermal method with MoS2 as carrier to construct an advanced oxidation system of electrochemical enhanced MoS2/Fe3O4-activated peroxymonosulfate (E/MoS2/Fe3O4/PMS). The materials were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The degradation efficiency of sulfamerazine (SM1) by E/MoS2/Fe3O4/PMS system was investigated and reaction mechanism was explored. The results showed that the removal rates of SM1 within 30 min were 31%, 20% and 89% with Fe3O4, MoS2 and MoS2/Fe3O4 as catalysts, respectively. The characterization results revealed that Fe(III) on the surface of Fe3O4 was reduced to Fe(II) and Mo(IV) was oxidized to Mo(VI) in the presence of MoS2. The synergistic effect between Fe3O4 and MoS2 enhanced the PMS decomposition and improved the SM1 removal efficiency. Free radical quenching experiments showed that SO4-⋅, ·OH, O2· and 1O2 were all involved in the degradation of SM1, and the effect of 1O2 was more significant than other active substances. Low concentrations of Cl- and humic acid (HA) had no significant inhibitory effect on the degradation of SM1, while HCO3- had a significant inhibitory effect on the E/MoS2/Fe3O4/PMS system. In addition, catalyst cycling experiments showed that MoS2/Fe3O4 maintained good stability before and after the catalytic reaction process.
Collapse
Affiliation(s)
- Quan-Ming Zhao
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China
| | - Haotian Jiang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenjun Wang
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
16
|
|
17
|
Chen Y, Gao Y, Liu T, Zhang Z, Li W. Activated persulfate by iron-carbon micro electrolysis used for refractory organics degradation in wastewater: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:690-713. [PMID: 36038972 DOI: 10.2166/wst.2022.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid economic development, the discharge of industrial wastewater and municipal wastewater containing many refractory organic pollutants is increasing, so there is an urgent need for processes that can treat refractory organics in wastewater. Iron-carbon micro electrolysis and advanced oxidation based on persulfate radicals (SO4-·) have received much attention in the field of organic wastewater treatment. Iron-carbon micro electrolysis activated persulfate (Fe-C/PS) treatment of wastewater is characterized by high oxidation efficiency and no secondary pollution. This paper reviews the mechanism and process of Fe-C/PS, degradation of organics in different wastewater, and the influencing factors. In addition, the degradation efficiency and optimal reaction conditions (oxidant concentration, catalyst concentration, iron-carbon material, and pH) of Fe-C/PS in the treatment of refractory organics in wastewater are summarized. Moreover, the important factors affecting the degradation of organics by Fe-C/PS are presented. Finally, we analyzed the challenges and the prospects for the future of Fe-C/PS in application, and concluded that the main future directions are to improve the degradation efficiency and cost by synthesizing stable and efficient catalysts, optimizing process parameters, and expanding the application scope.
Collapse
Affiliation(s)
- Yu Chen
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail: ; Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Tingting Liu
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhao Zhang
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Weishi Li
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|