1
|
Jiang Y, Li J, Guo X, Chen Y, Sun W, Peng C. Electrocatalytic reforming of polyethylene terephthalate waste plastics into high-value-added chemicals with green hydrogen generation. J Colloid Interface Sci 2025; 685:29-37. [PMID: 39827758 DOI: 10.1016/j.jcis.2025.01.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Electrochemical reforming offers a sustainable strategy for converting plastic waste into high-value-added chemicals and hydrogen fuel. Herein, a cost-effective NiFe-filmed electrode with a Tremella-like nanostructure was developed using an ultrasonic immersion etching method. This electrode enabled the electro-reforming of ethylene glycol (EG, a monomer of polyethylene terephthalate (PET)) into valuable commodity chemicals, with coproduction of hydrogen fuel. This system demonstrated notable electrocatalytic performance, achieving a current density of 100 mA/cm2 at a low overpotential of 1.52 V vs. reversible hydrogen electrode (RHE). It also exhibits notable selectivity (94.4 %) and Faradaic efficiency (94.3 %) for formate production. Furthermore, in a proof-of-concept demonstration, real-world PET plastic waste was successfully utilized to produce potassium diformate and terephthalic acid with properties comparable to those of commercial products. This study provides a comprehensive strategy for designing cost-effective catalysts for plastic electro-upcycling and lays a foundation for advancing the circular economy of plastic waste.
Collapse
Affiliation(s)
- Yijie Jiang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jianan Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Zhejiang Zheneng Technology and Environmental Protection Group Co., Ltd., Hangzhou 311121, China
| | - Xiaoxuan Guo
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yongning Chen
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, China
| | - Wenbo Sun
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Pournemati K, Habibi-Yangjeh A, Khataee A. Incorporation of Cu 5FeS 4 QDs with Abundant Oxygen Vacancy TiO 2 QDs/TiO 2 OVs: Double S-Scheme Photocatalysts for Effectual N 2 Conversion to NH 3 under Simulated Solar Light. Inorg Chem 2024; 63:6957-6971. [PMID: 38576059 DOI: 10.1021/acs.inorgchem.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Photocatalytic N2 conversion to NH3 is a green, sustainable pathway with renewable energy sources and carbon neutrality. In this research, ternary TiO2 QDs/TiO2 OVs/Cu5FeS4 nanocomposites were prepared by an easy and affordable procedure and utilized to produce clean ammonia energy without a sacrificial agent. The amount of produced green ammonia by the optimum nanocomposite achieved was 17,274 μmol L-1 g-1, which was approximately 20.9, 6.48, 4.45, 2.26, and 1.45 times higher than those of commercial TiO2, TiO2 QDs, TiO2 OVs, Cu5FeS4, and TiO2 QDs/TiO2 OVs photocatalysts, respectively. Lattice compatibility through the developed homojunction within TiO2 QDs/TiO2 OVs and the integration of Cu5FeS4 nanoparticles led to the establishment of a double S-scheme homo/heterojunction system, which improved the photocatalytic activity by maintaining electrons and holes with high oxidation and reduction power and greatly reduced the recombination of charges, which led to the acceleration of charge transfer and migration. Besides, the promoted surface area compared to the pure components, introducing oxygen vacancies, and reducing the particle size boosted the photocatalytic N2 conversion to NH3. The results of this research are a basis for the rational design of homojunction/heterojunction visible-light-responsive systems for photocatalytic nitrogen fixation reactions.
Collapse
Affiliation(s)
- Khadijeh Pournemati
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, 56199-13131 Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, 56199-13131 Ardabil, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Chemical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
3
|
Genoux A, Pauly M, Rooney CL, Choi C, Shang B, McGuigan S, Fataftah MS, Kayser Y, Suhr SCB, DeBeer S, Wang H, Maggard PA, Holland PL. Well-Defined Iron Sites in Crystalline Carbon Nitride. J Am Chem Soc 2023; 145:20739-20744. [PMID: 37703184 DOI: 10.1021/jacs.3c05417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Carbon nitride materials can be hosts for transition metal sites, but Mössbauer studies on iron complexes in carbon nitrides have always shown a mixture of environments and oxidation states. Here we describe the synthesis and characterization of a crystalline carbon nitride with stoichiometric iron sites that all have the same environment. The material (formula C6N9H2Fe0.4Li1.2Cl, abbreviated PTI/FeCl2) is derived from reacting poly(triazine imide)·LiCl (PTI/LiCl) with a low-melting FeCl2/KCl flux, followed by anaerobic rinsing with methanol. X-ray diffraction, X-ray absorption and Mössbauer spectroscopies, and SQUID magnetometry indicate that there are tetrahedral high-spin iron(II) sites throughout the material, all having the same geometry. The material is active for electrocatalytic nitrate reduction to ammonia, with a production rate of ca. 0.1 mmol cm-2 h-1 and Faradaic efficiency of ca. 80% at -0.80 V vs RHE.
Collapse
Affiliation(s)
- Alexandre Genoux
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Magnus Pauly
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Conor L Rooney
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Chungseok Choi
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Bo Shang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott McGuigan
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Majed S Fataftah
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yves Kayser
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Simon C B Suhr
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Paul A Maggard
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
4
|
Effect of Morphology Especially Leaf-like Morphology on Surface Fe2+ Content of α-Fe2O3 in Photo-assisted Fenton-like Degradation of Organic Contaminants. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Chen X, Li S, Yang P, Chen Y, Xue C, Long Y, Han J, Su J, Huang W, Liu D. N-doped carbon intercalated Fe-doped MoS2 nanosheets with widened interlayer spacing: an efficient peroxymonosulfate activator for high-salinity organic wastewater treatment. J Colloid Interface Sci 2022; 628:318-330. [DOI: 10.1016/j.jcis.2022.07.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 01/17/2023]
|