1
|
Brives C, Froissart R, Perez-Sepulveda B, Le Marrec C. Thinking Phage Innovations Through Evolution and Ecology. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:5-13. [PMID: 40114809 PMCID: PMC11920705 DOI: 10.1089/phage.2023.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
In this article, we conduct an interdisciplinary review of the potential of phage-based applications in light of current knowledge about phage evolution and ecology. Gaining an improved understanding of phages' ecology and evolutionary dynamics is crucial for recognizing both the benefits and limits of their usage, as well as potential negative downstream effects across different ecological milieus. As a reference, the history of the industrialization of antibiotics and the rise of antimicrobial resistance act as a reminder of the deep entanglement of both the evolvability capacities of micro-organisms and the history of human societies. Based on evolutionary biological parameters, we show that (1) virulent bacteriophages are best candidates for biocontrol, (2) best cocktails harbor complementary bacteriophages preventing bacterial cross-resistance, and (3) cure can also be considered with steer of bacterial bacteriophage-resistance evolution toward loss of virulence factor and/or increase in antibiotic susceptibility. A detailed review of what is known about the role of phages in vine cultivation and wine production finally serves as an example to show how it is important to consider site-specific rather than one-size-fits-all responses.
Collapse
Affiliation(s)
- Charlotte Brives
- UMR5116, CNRS, Centre Emile Durkheim, University of Bordeaux, Bordeaux, France
| | - Rémy Froissart
- MIVEGEC (Univ. Montpellier, CNRS, IRD) Montpellier, France
| | - Blanca Perez-Sepulveda
- Clinical Infection, Microbiology and Immunology Department, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Claire Le Marrec
- Univ. Bordeaux, INRAE, Bordeaux INP, UMR 1366, OENO, ISVV, F-33140 Villenave d'Ornon, France
| |
Collapse
|
2
|
Alizon S. Multiple infection theory rather than 'socio-virology'? A commentary on Leeks et al. 2023. J Evol Biol 2023; 36:1571-1576. [PMID: 37975504 DOI: 10.1111/jeb.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Samuel Alizon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
3
|
Amirzadeh N, Moghadam A, Niazi A, Afsharifar A. Recombinant anti-HIV MAP30, a ribosome inactivating protein: against plant virus and bacteriophage. Sci Rep 2023; 13:2091. [PMID: 36747030 PMCID: PMC9902390 DOI: 10.1038/s41598-023-29365-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The ribosome inactivating proteins (RIPs) efficiently decrease the microbial infections in plants. Momordica charantia MAP30 is a type I RIP that has not been investigated against plant viruses or bacteriophages. To evaluate of these activities, the recombinant MAP30 (rMAP30) was produced in the hairy roots of Nicotiana tabacum. Inoculation of 3 μg of transgenic total protein or 0.6 μg of rMAP30 against 0.1 μg of TMV reduced the leaf necrotic spots to 78.23% and 82.72%, respectively. The treatment of 0.1 μg of CMV with rMAP30 (0.6 μg) showed the reduction in the leaf necrotic spots to 85.8%. While the infection was increased after rMAP30 dilution. In the time interval assays, the leaves were first inoculated with 1 μg of rMAP30 or 0.1 μg of purified TMV or CMV agent for 6 h, then virus or protein was applied in order. This led the spot reduction to 35.22% and 67% for TMV, and 38.61% and 55.31% for CMV, respectively. In both the pre- and co-treatments of 1:10 or 1:20 diluted bacteriophage with 15 μg of transgenic total protein, the number and diameter of the plaques were reduced. The results showed that the highest inhibitory effect was observed in the pre-treatment assay of bacteriophage with transgenic total protein for 24 h. The decrease in the growth of bacteriophage caused more growth pattern of Escherichia coli. The results confirm that rMAP30 shows antibacterial activity against Streptococcus aureus and E. coli, antifungal activity against Candida albicans, and antiviral activity against CMV and TMV. Moreover, rMAP30 exhibits anti-phage activity for the first time. According to our findings, rMAP30 might be a valuable preservative agent in foods and beverages in the food industry as well as an antiviral and antimicrobial mixture in agriculture.
Collapse
Affiliation(s)
- Nafiseh Amirzadeh
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Ali Niazi
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Alireza Afsharifar
- Center of Plant Virology Research, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Bonotti M, Borghini A, Piras N, Serini B. The Justice and Ontology of Gastrospaces. ETHICAL THEORY AND MORAL PRACTICE : AN INTERNATIONAL FORUM 2023; 26:91-111. [PMID: 36721496 PMCID: PMC9880365 DOI: 10.1007/s10677-022-10357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
In this paper, we establish gastrospaces as a subject of philosophical inquiry and an item for policy agendas. We first explain their political value, as key sites where members of liberal democratic societies can develop the capacity for a sense of justice and the capacity to form, revise, and pursue a conception of the good. Integrating political philosophy with analytic ontology, we then unfold a theoretical framework for gastrospaces: first, we show the limits of the concept of "third place;" second, we lay out the foundations for an ontological model of gastrospaces; third, we introduce five features of gastrospaces that connect their ontology with their political value and with the realization of justice goals. We conclude by briefly illustrating three potential levels of intervention concerning the design, use, and modification of gastrospaces: institutions, keepers, and users.
Collapse
|
5
|
Miller RH, Zimmer A, Moutot G, Mesnard JM, Chazal N. Retroviral Antisense Transcripts and Genes: 33 Years after First Predicted, a Silent Retroviral Revolution? Viruses 2021; 13:2221. [PMID: 34835027 PMCID: PMC8622228 DOI: 10.3390/v13112221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
Paradigm shifts throughout the history of microbiology have typically been ignored, or met with skepticism and resistance, by the scientific community. This has been especially true in the field of virology, where the discovery of a "contagium vivum fluidum", or infectious fluid remaining after excluding bacteria by filtration, was initially ignored because it did not coincide with the established view of microorganisms. Subsequent studies on such infectious agents, eventually termed "viruses", were met with skepticism. However, after an abundance of proof accumulated, viruses were eventually acknowledged as defined microbiological entities. Next, the proposed role of viruses in oncogenesis in animals was disputed, as was the unique mechanism of genome replication by reverse transcription of RNA by the retroviruses. This same pattern of skepticism holds true for the prediction of the existence of retroviral "antisense" transcripts and genes. From the time of their discovery, it was thought that retroviruses encoded proteins on only one strand of proviral DNA. However, in 1988, it was predicted that human immunodeficiency virus type 1 (HIV-1), and other retroviruses, express an antisense protein encoded on the DNA strand opposite that encoding the known viral proteins. Confirmation came quickly with the characterization of the antisense protein, HBZ, of the human T-cell leukemia virus type 1 (HTLV-1), and the finding that both the protein and its antisense mRNA transcript play key roles in viral replication and pathogenesis. However, acceptance of the existence, and potential importance, of a corresponding antisense transcript and protein (ASP) in HIV-1 infection and pathogenesis has lagged, despite gradually accumulating theoretical and experimental evidence. The most striking theoretical evidence is the finding that asp is highly conserved in group M viruses and correlates exclusively with subtypes, or clades, responsible for the AIDS pandemic. This review outlines the history of the major shifts in thought pertaining to the nature and characteristics of viruses, and in particular retroviruses, and details the development of the hypothesis that retroviral antisense transcripts and genes exist. We conclude that there is a need to accelerate studies on ASP, and its transcript(s), with the view that both may be important, and overlooked, targets in anti-HIV therapeutic and vaccine strategies.
Collapse
Affiliation(s)
| | - Alexis Zimmer
- DHVS—Département d’Histoire des Sciences de la Vie et de la Santé, Faculté de Médecine, Université de Strasbourg, 4 Rue Kirschleger, CEDEX, F-67085 Strasbourg, France;
| | - Gilles Moutot
- Centre d’Etudes Politiques et Sociales (CEPEL), Département de Sciences Humaines et Sociales, Université de Montpellier, 34090 Montpellier, France;
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France;
| | - Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France;
| |
Collapse
|
6
|
Claverie JM, Abergel C, Legendre M. [Giant viruses that create their own genes]. Med Sci (Paris) 2019; 34:1087-1091. [PMID: 30623766 DOI: 10.1051/medsci/2018300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since 2003 and the discovery of Mimivirus, the saga of giant viruses continues with the isolation of new amoeba viruses, which are now divided into seven distinct families, the origin (s) of which are still mysterious and controversial. Thanks to the isolation of 3 new members of the Pandoraviridae family, whose micrometric particles and genomes of more than 2 megabases encroach on the cellular world, we carried out a stringent re-analysis of their gene contents, using a combination of transcriptomic, proteomic and bioinformatic approaches. We concluded that the only scenario capable of accounting for the distribution and the huge proportion of orphan genes ("ORFans") that characterize Pandoraviruses is that they were created de novo within the intergenic regions. This process, perhaps shared among other large DNA viruses, challenges the central paradigm of molecular evolution according to which all genes / proteins have an ancestry history.
Collapse
Affiliation(s)
- Jean-Michel Claverie
- Aix-Marseille université et CNRS, Information génomique et structurale (IGS), UMR7256, Institut de microbiologie de la Méditerranée-IMM-FR 3479, parc scientifique de Luminy, 163, avenue de Luminy, case 934, 13288 Marseille Cedex 09, France
| | - Chantal Abergel
- Aix-Marseille université et CNRS, Information génomique et structurale (IGS), UMR7256, Institut de microbiologie de la Méditerranée-IMM-FR 3479, parc scientifique de Luminy, 163, avenue de Luminy, case 934, 13288 Marseille Cedex 09, France
| | - Matthieu Legendre
- Aix-Marseille université et CNRS, Information génomique et structurale (IGS), UMR7256, Institut de microbiologie de la Méditerranée-IMM-FR 3479, parc scientifique de Luminy, 163, avenue de Luminy, case 934, 13288 Marseille Cedex 09, France
| |
Collapse
|
7
|
Forterre P. Viruses in the 21st Century: From the Curiosity-Driven Discovery of Giant Viruses to New Concepts and Definition of Life. Clin Infect Dis 2018; 65:S74-S79. [PMID: 28859344 DOI: 10.1093/cid/cix349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The curiosity-driven discovery of giant DNA viruses infecting amoebas has triggered an intense debate about the origin, nature, and definition of viruses. This discovery was delayed by the current paradigm confusing viruses with small virions. Several new definitions and concepts have been proposed either to reconcile the unique features of giant viruses with previous paradigms or to propose a completely new vision of the living world. I briefly review here how several other lines of research in virology converged during the last 2 decades with the discovery of giant viruses to change our traditional perception of the viral world. This story emphasizes the power of multidisciplinary curiosity-driven research, from the hospital to the field and the laboratory. Notably, some philosophers have now also joined biologists in their quest to make sense of the abundance and diversity of viruses and related capsidless mobile elements in the biosphere.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut Pasteur, Département de Microbiologie, Paris; and Institut Intégré de Biologie Cellulaire, Département de Microbiologie, Centre National de la Recherche Scientifique, Université Paris-Saclay, France
| |
Collapse
|
8
|
Meunier R, Nickelsen K. New perspectives in the history of twentieth-century life sciences: historical, historiographical and epistemological themes. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2018; 40:19. [PMID: 29349516 DOI: 10.1007/s40656-018-0184-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
The history of twentieth-century life sciences is not exactly a new topic. However, in view of the increasingly rapid development of the life sciences themselves over the past decades, some of the well-established narratives are worth revisiting. Taking stock of where we stand on these issues was the aim of a conference in 2015, entitled "Perspectives for the History of Life Sciences" (Munich, Oct 30-Nov 1, 2015). The papers in this topical collection are based on work presented and discussed at and around this meeting. Just as the conference, the collection aims at exploring fields in the history of life sciences that appear understudied, sources that have been overlooked, and novel ways of engaging with this material. The papers convened in this collection may not be representative of the field as a whole; but we feel that they do indicate some elements that have received emphasis in recent years, and may become more central in the years to come, such as the history of previously neglected contexts and domains of the life sciences, the question of continuity and change on the level of practices, the history of complexity and diversity in twentieth-century life sciences and the reconsideration of the relationship between history and philosophy of life sciences.
Collapse
Affiliation(s)
- Robert Meunier
- Institute of Philosophy, University of Kassel, Kassel, Germany.
| | | |
Collapse
|