1
|
Husseiny EM, Abulkhair HS, El-Sebaey SA, Sayed MM, Anwer KE. In vivo evaluation of novel synthetic pyrazolones as CDK9 inhibitors with enhanced pharmacokinetic properties. Future Med Chem 2024; 16:2487-2505. [PMID: 39530543 PMCID: PMC11622796 DOI: 10.1080/17568919.2024.2419363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: The structural optimization of our recently reported CDK9 inhibitor to furnish novel aminopyrazolones and methylpyrazolones with improved pharmacokinetics.Materials & methods: The synthesis of the targeted compounds was accomplished via conventional, grinding and microwave-assisted processes. The cytotoxicity of them was assayed against three carcinomas.Results: Analogs 2, 4 and 6 showed significant cytotoxicity and selectivity toward all tested cells. They also displayed potent CDK9 inhibition. Compound 6 arrested MCF-7 cycle at G2/M phase by stimulating the apoptotic pathway. The in vivo biodistribution of radiolabeled compound 6 displayed a potent targeting capability of 131I in solid tumors.Conclusion: Entity 6 is a potent CDK9 inhibitor where 131I-compound 6 can be used as a significant radiopharmaceutical imaging tool for tumors.
Collapse
Affiliation(s)
- Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Samiha A El-Sebaey
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Manal M Sayed
- Labeled Compound Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), P. O. Box 13759, Cairo, Egypt
| | - Kurls E Anwer
- Heterocyclic Synthesis Laboratory, Department of Chemistry, Faculty of Science, Ain Shams University 11566, Abbassia, Cairo, Egypt
| |
Collapse
|
2
|
Insilico exploration of the potential inhibitory activity of DrugBank compounds against CDK7 kinase using structure-based virtual screening, molecular docking, and dynamics simulation approach. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
3
|
Cheng SS, Qu YQ, Wu J, Yang GJ, Liu H, Wang W, Huang Q, Chen F, Li G, Wong CY, Wong VKW, Ma DL, Leung CH. Inhibition of the CDK9-cyclin T1 protein-protein interaction as a new approach against triple-negative breast cancer. Acta Pharm Sin B 2022; 12:1390-1405. [PMID: 35530158 PMCID: PMC9069406 DOI: 10.1016/j.apsb.2021.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) activity is correlated with worse outcomes of triple-negative breast cancer (TNBC) patients. The heterodimer between CDK9 with cyclin T1 is essential for maintaining the active state of the kinase and targeting this protein-protein interaction (PPI) may offer promising avenues for selective CDK9 inhibition. Herein, we designed and generated a library of metal complexes bearing the 7-chloro-2-phenylquinoline CˆN ligand and tested their activity against the CDK9-cyclin T1 PPI. Complex 1 bound to CDK9 via an enthalpically-driven binding mode, leading to disruption of the CDK9-cyclin T1 interaction in vitro and in cellulo. Importantly, complex 1 showed promising anti-metastatic activity against TNBC allografts in mice and was comparably active compared to cisplatin. To our knowledge, 1 is the first CDK9-cyclin T1 PPI inhibitor with anti-metastatic activity against TNBC. Complex 1 could serve as a new platform for the future design of more efficacious kinase inhibitors against cancer, including TNBC.
Collapse
Affiliation(s)
- Sha-Sha Cheng
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| | - Yuan-Qing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Jia Wu
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| | - Guan-Jun Yang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qi Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Feng Chen
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| | - Guodong Li
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Chung-Hang Leung
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
4
|
Oskouie AA, Ahmadi MS, Taherkhani A. Identification of Prognostic Biomarkers in Papillary Thyroid Cancer and Developing Non-Invasive Diagnostic Models Through Integrated Bioinformatics Analysis. Microrna 2022; 11:73-87. [PMID: 35068400 DOI: 10.2174/2211536611666220124115445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most frequent subtype of thyroid carcinoma, mainly detected in patients with benign thyroid nodules (BTN). Due to the invasiveness of accurate diagnostic tests, there is a need to discover applicable biomarkers for PTC. So, in this study, we aimed to identify the genes associated with prognosis in PTC. Besides, we performed a machine learning tool to develop a non-invasive diagnostic approach for PTC. METHODS For the study purposes, the miRNA dataset GSE130512 was downloaded from the GEO database and then analyzed to identify the common differentially expressed miRNAs in patients with non-metastatic PTC (nm-PTC)/metastatic PTC (m-PTC) compared with BTNs. The SVM was also applied to differentiate patients with PTC from those patients with BTN using the common DEMs. A protein-protein interaction network was also constructed based on the targets of the common DEMs. Next, functional analysis was performed, the hub genes were determined, and survival analysis was then executed. RESULTS A total of three common miRNAs were found to be differentially expressed among patients with nm-PTC/m-PTC compared with BTNs. In addition, it was established that the autophagosome maturation, ciliary basal body-plasma membrane docking, antigen processing as ubiquitination & proteasome degradation, and class I MHC mediated antigen processing & presentation are associated with the pathogenesis of PTC. Furthermore, it was illustrated that RPS6KB1, CCNT1, SP1, and CHD4 might serve as new potential biomarkers for PTC prognosis. CONCLUSION RPS6KB1, CCNT1, SP1, and CHD4 may be considered new potential biomarkers used for prognostic aims in PTC. However, performing validation tests is inevitable in the future.
Collapse
Affiliation(s)
- Afsaneh Arefi Oskouie
- Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeed Ahmadi
- Department of Otorhinolaryngology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Bhurta D, Bharate SB. Analyzing the scaffold diversity of cyclin-dependent kinase inhibitors and revisiting the clinical and preclinical pipeline. Med Res Rev 2021; 42:654-709. [PMID: 34605036 DOI: 10.1002/med.21856] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 07/04/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Kinases have gained an important place in the list of vital therapeutic targets because of their overwhelming clinical success in the last two decades. Among various clinically validated kinases, the cyclin-dependent kinases (CDK) are one of the extensively studied drug targets for clinical development. Food and Drug Administration has approved three CDK inhibitors for therapeutic use, and at least 27 inhibitors are under active clinical development. In the last decade, research and development in this area took a rapid pace, and thus the analysis of scaffold diversity is essential for future drug design. Available reviews lack the systematic study and discussion on the scaffold diversity of CDK inhibitors. Herein we have reviewed and critically analyzed the chemical diversity present in the preclinical and clinical pipeline of CDK inhibitors. Our analysis has shown that although several scaffolds represent CDK inhibitors, only the amino-pyrimidine is a well-represented scaffold. The three-nitrogen framework of amino-pyrimidine is a fundamental hinge-binding unit. Further, we have discussed the selectivity aspects among CDKs, the clinical trial dose-limiting toxicities, and highlighted the most advanced clinical candidates. We also discuss the changing paradigm towards selective inhibitors and an overview of ATP-binding pockets of all druggable CDKs. We carefully analyzed the clinical pipeline to unravel the candidates that are currently under active clinical development. In addition to the plenty of dual CDK4/6 inhibitors, there are many selective CDK7, CDK9, and CDK8/19 inhibitors in the clinical pipeline.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Cheng S, Yang GJ, Wang W, Ma DL, Leung CH. Discovery of a tetrahydroisoquinoline-based CDK9-cyclin T1 protein–protein interaction inhibitor as an anti-proliferative and anti-migration agent against triple-negative breast cancer cells. Genes Dis 2021; 9:1674-1688. [PMID: 36157485 PMCID: PMC9485199 DOI: 10.1016/j.gendis.2021.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Shasha Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, PR China
| | - Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, PR China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China
- Corresponding author.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, PR China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, PR China
- Corresponding author.
| |
Collapse
|
7
|
Computational Drug Repurposing Resources and Approaches for Discovering Novel Antifungal Drugs against Candida albicans N-Myristoyl Transferase. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a yeast that is an opportunistic fungal pathogen and also identified as ubiquitous polymorphic species that is mainly linked with major fungal infections in humans, particularly in the immunocompromised patients including transplant recipients, chemotherapy patients, HIV-infected patients as well as in low-birth-weight infants. Systemic Candida infections have a high mortality rate of around 29 to 76%. For reducing its infection, limited drugs are existing such as caspofungin, fluconazole, terbinafine, and amphotericin B, etc. which contain unlikable side effects and also toxic. This review intends to utilize advanced bioinformatics technologies such as Molecular docking, Scaffold hopping, Virtual screening, Pharmacophore modeling, Molecular dynamics (MD) simulation for the development of potentially new drug candidates with a drug-repurpose approach against Candida albicans within a limited time frame and also cost reductive.
Collapse
|