1
|
Mohamed SMM, Aljohani AKB, El-Morsy A, Al Haidari RA, Alamri MAA, Maqnas YA, Alsibaee AM, Mostafa MAH, Keshek DE, Mohamed MG, Bayoumi SAL, Salama SA, El-Adl K. Synthesis and characterization of sodium alginate/poly(N-vinylpyrrolidone) nano-carrier loaded with rebaudioside A and/or stevioside for anticancer drug delivery. Int J Biol Macromol 2025; 316:144778. [PMID: 40449772 DOI: 10.1016/j.ijbiomac.2025.144778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/20/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
Stevioside and rebaudioside A revealed anticancer effects against diversity of cancers, such as colon, breast and liver cancers. Rebaudioside A can trigger apoptosis in cancer cells via activation of caspase-dependent pathway. In this study sodium alginate/poly(N-vinylpyrrolidone) as nano-carriers loaded with natural products rebaudioside A (R) and/or stevioside (S) were assessed for anticancer activities. The nanogel of structure R improved cytotoxicity against MCF-7, HepG2, HCT116 and A549 cancers by 60.29 %, 53.45 %, 72.86 % and 62.13 %, correspondingly. Additionally, the nanogel of structure S improved cytotoxicity against MCF-7, HepG2, HCT116 and A549 cancers by 63.96 %, 53.41 %, 70.59 % and 52.88 %, respectively. Furthermore, the nanogel for mixture of R/S improved cytotoxicity against MCF-7, HepG2, HCT116 and A549 cancers by 78.86 %, 54.75 %, 74.10 % and 56.53 % correspondingly. Also, cytotoxic activities of structures R, S and R/S and their nanogels exhibited low toxicity on VERO cells with IC50 = 30.90-46.50 μM and high selectivity against cancer cells. Moreover, R/S (nanogel), R (nanogel) and S (nanogel) demonstrated the uppermost binding affinities with DNA at reduced IC50 values of 31.50, 32.60, and 33.90 μM, respectively. In addition, they inhibited Topo-II activity with remarkably low IC50 value of 0.95, 1.00, and 1.10 μM, respectively.
Collapse
Affiliation(s)
- Shaymaa M M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Ahmad K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Ahmed El-Morsy
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Rwaida A Al Haidari
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | | | - Yahya A Maqnas
- College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Aishah M Alsibaee
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Mahmoud A H Mostafa
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Doaa E Keshek
- Department of Biology, Al-Jumum College University, Umm Al-Qura University, P.O Box7388, Makkah 21955, Saudi Arabia; Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Giza, Egypt
| | - May G Mohamed
- Department of Pharmacy Practice, College of Pharmacy, Gulf Medical University, United Arab Emirates
| | - Soad A L Bayoumi
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt; Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11884, Cairo, Egypt.
| |
Collapse
|
2
|
Zhang R, Danshiitsoodol N, Noda M, Yonezawa S, Kanno K, Sugiyama M. Stevia Leaf Extract Fermented with Plant-Derived Lactobacillus plantarum SN13T Displays Anticancer Activity to Pancreatic Cancer PANC-1 Cell Line. Int J Mol Sci 2025; 26:4186. [PMID: 40362423 PMCID: PMC12071683 DOI: 10.3390/ijms26094186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Pancreatic cancer is a highly malignant tumor that remains a significant global health burden. In this study, we demonstrated the anticancer potential of stevia leaf extract fermented with plant-derived Lactobacillus (L.) plantarum SN13T strain. Evaluation of antioxidant capacity (including DPPH and ABTS radical scavenging activities and H2O2-induced oxidative damage repair in HEK-293 cells), as well as cytotoxicity against pancreatic cancer cells (PANC-1) and non-cancerous human embryonic kidney (HEK-293), revealed that the fermented extract exhibited significantly enhanced antioxidant activity and cytotoxicity against PANC-1 cells while showing minimal toxicity to HEK-293 cells compared to the unfermented extract. Further, validation through clonogenic, migration, and wound-healing assays demonstrated that the fermented extract effectively inhibited the proliferation and migration of PANC-1 cells. The active compound in the fermented extract has been identified as chlorogenic acid methyl ester (CAME), with a concentration of 374.4 μg/mL. Flow cytometry analysis indicated that CAME significantly arrested PANC-1 cells in the G0/G1 phase and induced apoptosis. Furthermore, CAME upregulated the expression of pro-apoptotic genes Bax, Bad, Caspase-3/9, Cytochrome c, and E-cadherin, while downregulating the anti-apoptotic gene Bcl-2. These findings suggest that CAME exerts potent cytotoxic effects on PANC-1 cells by inhibiting cell proliferation and migration, arresting the cell cycle, and regulating apoptosis-related gene expression. In conclusion, stevia leaf extract fermented with L. plantarum SN13T, which contains CAME, may serve as a promising candidate for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Rentao Zhang
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (R.Z.); (N.D.); (M.N.)
| | - Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (R.Z.); (N.D.); (M.N.)
| | - Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (R.Z.); (N.D.); (M.N.)
| | - Sayaka Yonezawa
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima University, Hiroshima 734-8551, Japan; (S.Y.); (K.K.)
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima University, Hiroshima 734-8551, Japan; (S.Y.); (K.K.)
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (R.Z.); (N.D.); (M.N.)
| |
Collapse
|
3
|
Zhao Y, Zheng R, Luo K, Zhao H, Xiang W. Association between erythritol and lung cancer: a two-sample Mendelian randomization study. Nutr Metab (Lond) 2025; 22:28. [PMID: 40197329 PMCID: PMC11978034 DOI: 10.1186/s12986-025-00916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Sweeteners have been widely added to food and beverages due to their low-calorie and sweetening properties. However, the role of sweeteners in cancer risk has been a subject of extensive debate over the past few decades. OBJECTIVE We aimed to elucidate the causation between the commonly used natural sweetener erythritol and the risk of lung cancer (LC) using Mendelian randomization (MR). METHODS Data on erythritol and its metabolites were obtained from publicly available genome-wide association studies data. Summary data on LC and its subtypes were obtained from a large-scale genetic study conducted by the Transdisciplinary Research of Cancer in Lung of the International Lung Cancer Consortium and the Lung Cancer Cohort Consortium. We conducted independent two-sample MR analyses to assess the causation between erythritol and LC and its subtypes. RESULTS The inverse variance weighted method of MR analysis showed no evidence supporting causation between erythritol and LC or its histological subtypes. Sensitivity analysis further supported the results. CONCLUSION Our study findings do not support genetic association between erythritol and LC or its subtypes.
Collapse
Affiliation(s)
- Yongsheng Zhao
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1, South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan Province, China.
| | - Renyan Zheng
- Department of Integrated Western and Chinese Colorectal and Anal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Kexin Luo
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1, South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan Province, China
| | - Haiyang Zhao
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1, South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan Province, China
| | - Wanping Xiang
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, No. 1, South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan Province, China
| |
Collapse
|
4
|
da Silva TFO, Ferrarezi AA, da Silva Santos É, Ribeiro STC, de Oliveira AJB, Gonçalves RAC. Bioactivities and biotechnological tools for obtaining bioactive metabolites from Stevia rebaudiana. Food Sci Biotechnol 2025; 34:1679-1697. [PMID: 40151612 PMCID: PMC11936867 DOI: 10.1007/s10068-024-01776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 03/29/2025] Open
Abstract
Several natural compounds have already been isolated from the leaves of the Stevia rebaudiana, the main ones are stevioside and rebaudiosides, which are used commercially in the food and pharmaceutical industries because they are considered a low-calorie alternative for sweetening. Thus, the development of different strategies to increase the production of steviol glycosides, as well as the health benefits of these compounds with a sweet characteristic, are well-documented in the literature. However, there is a limited number of published works on the other bioactive metabolites present in S. rebaudiana. The objective of this review is to report the main basal and specialized metabolites present in the plant, their biological activities, and the different biotechnological tools used to obtain these metabolites from S. rebaudiana. The use of new natural sources of bioactive compounds with functional properties, such as S. rebaudiana, is highly relevant to the food and pharmaceutical industries. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01776-w.
Collapse
Affiliation(s)
- Thaila Fernanda Oliveira da Silva
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Arthur Antunes Ferrarezi
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Éverton da Silva Santos
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Susana Tavares Cotrim Ribeiro
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Arildo José Braz de Oliveira
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Regina Aparecida Correia Gonçalves
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| |
Collapse
|
5
|
Wang A, Hu H, Yuan Y, Mei S, Zhu G, Yue Q, Zhang Y, Jiang S. Structure, Properties, and Biomedical Activity of Natural Sweeteners Steviosides: An Update. Food Sci Nutr 2025; 13:e70002. [PMID: 39898123 PMCID: PMC11787980 DOI: 10.1002/fsn3.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Stevioside is a natural sweetener with the characteristics of low calorie and high sweetness. It comprises a diverse range of monomers that play crucial roles in numerous biological processes. Due to these attributes, it has gained widespread application in agriculture, food, and pharmaceutical industries. As a substitute for sugar, stevioside also shows good pharmacological activities on glucose metabolism, bodyweight keeping, blood pressure maintenance, and shows anti-inflammatory, anti-oxidation, anti-tumor, antibacterial, and immune regulation activities. This review summarized the update on the food safety, sweet structure-activity relationship, pharmacological activity of stevia glycosides recently, and discussed the limitations of its application in food and medicine.
Collapse
Affiliation(s)
- Aoyi Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Huiqin Hu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Yadan Yuan
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Shiran Mei
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Qiaoyan Yue
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western MedicineNanjingChina
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western MedicineNanjingChina
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western MedicineNanjingChina
| |
Collapse
|
6
|
Huang C, Wang Y, Zhou C, Fan X, Sun Q, Han J, Hua C, Li Y, Niu Y, Emeka Okonkwo C, Yao D, Song L, Otu P. Properties, extraction and purification technologies of Stevia rebaudiana steviol glycosides: A review. Food Chem 2024; 453:139622. [PMID: 38761729 DOI: 10.1016/j.foodchem.2024.139622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
For health and safety reasons, the search for green, healthy, and low-calorie sweeteners with good taste has become the demand of many consumers. Furthermore, the need for sugar substitutes of natural origin has increased dramatically. In this review, we briefly discussed the safety and health benefits of stevia sweeteners and enumerated some examples of physiological functions of steviol glycosides (SGs), such as anti-inflammatory, anti-obesity, antihypertensive, anti-diabetes, and anticaries, citing various evidence related to their application in the food industry. The latest advances in emerging technologies for extracting and purifying SGs and the process variables and operational strategies were discussed. The impact of the extraction methods and their comparison against the conventional techniques have also been demonstrated. These technologies use minimal energy solvents and simplify subsequent purification stages, making viable alternatives suitable for a possible industrial application. Furthermore, we also elucidated the potential for advancing and applying the natural sweeteners SGs.
Collapse
Affiliation(s)
- Chengxia Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xingyu Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiaolan Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jingyi Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chenhui Hua
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Deyang Yao
- Jiangsu Teweinong Food Co., Ltd., Xinghua 225700, PR China
| | - Linglin Song
- Jiangsu Teweinong Food Co., Ltd., Xinghua 225700, PR China
| | - Phyllis Otu
- Accra Technical University, P. O. Box GP 561, Barnes Road, Accra, Ghana
| |
Collapse
|
7
|
Prithiksha N, Priyadharshini R. In vitro Molecular Mechanisms of Anticancer Activity of Stevioside in Human Osteosarcoma Cell Lines (Sarcoma Osteogenic). Contemp Clin Dent 2024; 15:198-201. [PMID: 39512298 PMCID: PMC11540208 DOI: 10.4103/ccd.ccd_429_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Osteosarcoma (OS) is a rare and aggressive form of bone cancer that primarily affects the long bones of the body, such as the arms and legs. It is characterized by the uncontrolled growth of malignant cells in the bone tissue, leading to the formation of abnormal and painful bone masses. Steviol glycosides have been widely used as natural noncalorie sweeteners and are the collective name of the sweet substances found naturally in the plant Stevia rebaudiana, which is commonly called Stevia. Our study aimed to analyze the anticancer activity of Stevioside in OS. Materials and Methods Stevioside was applied to OS cells, and the levels of Bcl xL, Bcl-2, and Bax were then estimated. The results of three separate studies, each carried out in triplicate, were expressed as the mean ± standard errors of the mean (SEM). One-way ANOVA was used for statistical analysis. Results The findings showed that the effect of Stevioside on sarcoma osteogenic cells with mean ± SEM as 0.74 ± 0.05, 0.69 ± 0.09, 0.46 ± 0.09 for Bcl-xL gene, 0.98 ± 0.06, 0.58 ± 0.07, 0.5 ± 0.07 for Bcl-2 gene, and 1.2 ± 0.08, 1.45 ± 0.11, 1.67 ± 0.12 for Bax gene, respectively, when treated with untreated control cells. Conclusion The study concludes its action against bone OS cells was significant with apoptotic induction. Stevia has a wide range of health benefits as well as being a plant-based diet it has less of side effects and promoting features even by intaking it daily along with other medicines.
Collapse
Affiliation(s)
- N. Prithiksha
- Department of Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - R. Priyadharshini
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Khan MM, Yalamarty SSK, Rajmalani BA, Filipczak N, Torchilin VP. Recent strategies to overcome breast cancer resistance. Crit Rev Oncol Hematol 2024; 197:104351. [PMID: 38615873 DOI: 10.1016/j.critrevonc.2024.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Breast cancer is potentially a lethal disease and a leading cause of death in women. Chemotherapy and radiotherapy are the most frequently used treatment options. Drug resistance in advanced breast cancer limits the therapeutic output of treatment. The leading cause of resistance in breast cancer is endocrine and hormonal imbalance, particularly in triple negative and HER2 positive breast cancers. The efflux of drugs due to p-gp's activity is another leading cause of resistance. Breast cancer resistant protein also contributes significantly. Strategies used to combat resistance include the use of nanoparticles to target drug delivery by co-delivery of chemotherapeutic drugs and genes (siRNA and miRNA) that help to down-regulate genes causing resistance. The siRNA is specific and effectively silences p-gp and other proteins causing resistance. The use of chemosensitizers is also effective in overcoming resistance. Chemo-sensitizers sensitize cancer cells to the effects of chemotherapeutic drugs. Novel anti-neoplastic agents such as antibody-drug conjugates and mesenchymal stem cells are also effective tools used to improve the therapeutic response in breast cancer. Similarly, combination of photo/thermal ablation with chemotherapy can act to overcome breast cancer resistance. In this review, we focus on the mechanism of breast cancer resistance and the nanoparticle-based strategies used to combat resistance in breast cancer.
Collapse
Affiliation(s)
- Muhammad Muzamil Khan
- Center of Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Yang Y, Zhao L, Wang T, Zheng X, Wu Y. Biological activity and structural modification of isosteviol over the past 15 years. Bioorg Chem 2024; 143:107074. [PMID: 38176378 DOI: 10.1016/j.bioorg.2023.107074] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Isosteviol is a tetracyclic diterpenoid obtained by hydrolysis of stevioside. Due to its unique molecular skeleton and extensive pharmacological activities, isosteviol has attracted more and more attention from researchers. This review summarized the structural modification, pharmacological activity and microbial transformation of isosteviol from 04/2008 to 10/2023. In addition, the research history, structural characterization, and pharmacokinetics of isosteviol were also briefly reviewed. This review aims to provide useful literature resources and inspirations for the exploration of diterpenoid drugs.
Collapse
Affiliation(s)
- Youfu Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Lijun Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Tongsheng Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| | - Ya Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| |
Collapse
|
10
|
Wu X, Qiao T, Huang J, Li J, Wei S, Yang J, Zhang Y, Li Y. Rebaudioside B Attenuates Lung Ischemia-reperfusion Injury Associated Apoptosis and Inflammation. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:156-166. [PMID: 38584527 PMCID: PMC11475240 DOI: 10.2174/0127722708295154240327035857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVE At present, no proven effective treatment is available for Lung Ischemiareperfusion Injury (LIRI). Natural compounds offer promising prospects for developing new drugs to address various diseases. This study sought to explore the potential of Rebaudioside B (Reb B) as a treatment compound for LIRI, both in vivo and in vitro. METHODS This study involved utilizing the human pulmonary alveolar cell line A549, consisting of epithelial type II cells, subjected to Oxygen-glucose Deprivation/recovery (OGD/R) for highthroughput in vitro cell viability screening. The aim was to identify the most promising candidate compounds. Additionally, an in vivo rat model of lung ischemia-reperfusion was employed to evaluate the potential protective effects of Reb B. RESULTS Through high-throughput screening, Reb B emerged as the most promising natural compound among those tested. In the A549 OGD/R models, Reb B exhibited a capacity to enhance cell viability by mitigating apoptosis. In the in vivo LIRI model, pre-treatment with Reb B notably decreased apoptotic cells, perivascular edema, and neutrophil infiltration within lung tissues. Furthermore, Reb B demonstrated its ability to attenuate lung inflammation associated with LIRI primarily by elevating IL-10 levels while reducing levels of IL-6, IL-8, and TNF-α. CONCLUSION The comprehensive outcomes strongly suggest Reb B's potential as a protective agent against LIRI. This effect is attributed to its inhibition of the mitochondrial apoptotic pathway and its ability to mitigate the inflammatory response.
Collapse
Affiliation(s)
- Xiangyang Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Tao Qiao
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jian Huang
- Department of Thoracic Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC,University of Science and Technology of China, Hefei, China
| | - Jian Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Shilin Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jianbao Yang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanchun Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Velesiotis C, Kanellakis M, Vynios DH. Steviol glycosides affect functional properties and macromolecular expression of breast cancer cells. IUBMB Life 2022; 74:1012-1028. [PMID: 36054915 DOI: 10.1002/iub.2669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Steviol glycosides, the active sweet components of stevia plant, have been recently found to possess a number of therapeutic properties, including some recorded anticancer ones against various cancer cell types (breast, ovarian, cervical, pancreatic, and colon cancer). Our aim was to investigate this anticancer potential on the two most commonly used breast cancer cell lines which differ in the phenotype and estrogen receptor (ER) status: the low metastatic, ERα+ MCF-7 and the highly metastatic, ERα-/ERβ+ MDA-MB-231. Specifically, glycosides' effect was studied on cancer cells': (a) viability, (b) functionality (proliferation, migration, and adhesion), and (c) gene expression (mRNA level) of crucial molecules implicated in cancer's pathophysiology. Results showed that steviol glycosides induced cell death in both cell lines, in the first 24 hr, which was in line with the antiapoptotic BCL2 decrease. However, cells that managed to survive showcased diametrically opposite behavior. The low metastatic ERα+ MCF-7 cells acquired an aggressive phenotype, depicted by the upregulation of all receptors and co-receptors (ESR, PGR, AR, GPER1, EGFR, IGF1R, CD44, SDC2, and SDC4), as well as VIM and MMP14. On the contrary, the highly metastatic ERα-/ERβ+ MDA-MB-231 cells became less aggressive as pointed out by the respective downregulation of EGFR, IGF1R, CD44, and SDC2. Changes observed in gene expression were compatible with altered cell functions. Glycosides increased MCF-7 cells migration and adhesion, but reduced MDA-MB-231 cells migratory and metastatic potential. In conclusion, the above data clearly demonstrate that steviol glycosides have different effects on breast cancer cells according to their ER status, suggesting that steviol glycosides might be examined for their potential anticancer activity against breast cancer, especially triple negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Christos Velesiotis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| | - Marinos Kanellakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
12
|
High-throughput screening identifies stevioside as a potent agent to induce apoptosis in bladder cancer cells. Biochem Pharmacol 2022; 203:115166. [PMID: 35820501 DOI: 10.1016/j.bcp.2022.115166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Bladder cancer (BC) is a global health issue that lacks effective treatment strategies. Growing evidence suggests that various natural products possess anti-tumour effects. This study aims to identify a novel agent that can be used in the treatment of BC. METHODS High-throughput screening was conducted to search for potential anti-BC natural agents. Cell viabilities were measured by the CCK-8 assay. Cell death, cellular reactive oxygen species (ROS), and mitochondrial outer membrane potential (MOMP) were measured by flow cytometry. RNA sequencing was conducted to identify the affected signalling pathways. Western blots were used to measure the change of proteins. Xenografts models were used to assess the anti-tumour effects in vivo. RESULTS Through high-throughput screening, we identified stevioside, a diterpenoid glycoside isolated from Stevia rebaudiana, which selectively inhibited the viability of BC cells and induced their intrinsic apoptosis sparing normal cells. Stevioside also induced mitochondrial stress in BC cells, and activated Bax by downregulating Mcl-1 and upregulating Noxa. RNA sequencing revealed that stevioside treatment caused activation of GSK-3β and endoplasmic reticulum (ER) stress signalling pathways. Activation of GSK-3β induced upregulation of FBXW7, which effectuated the downregulation of Mcl-1. In addition, activation of GSK-3β triggered ER stress, leading to the upregulation of Noxa. Further investigations revealed that the accumulation of ROS was responsible for the activation of the GSK-3β signalling pathway in BC cells. Moreover, we also found that stevioside inhibited the growth of BC cells in vivo. CONCLUSIONS Collectively, our data suggest that stevioside can be a potential agent for the treatment of BC.
Collapse
|
13
|
Kasti AN, Nikolaki MD, Synodinou KD, Katsas KN, Petsis K, Lambrinou S, Pyrousis IA, Triantafyllou K. The Effects of Stevia Consumption on Gut Bacteria: Friend or Foe? Microorganisms 2022; 10:744. [PMID: 35456796 PMCID: PMC9028423 DOI: 10.3390/microorganisms10040744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
Stevia, a zero-calorie sugar substitute, is recognized as safe by the Food and Drug Administration (FDA) and the European Food Safety Authority (EFSA). In vitro and in vivo studies showed that stevia has antiglycemic action and antioxidant effects in adipose tissue and the vascular wall, reduces blood pressure levels and hepatic steatosis, stabilizes the atherosclerotic plaque, and ameliorates liver and kidney damage. The metabolism of steviol glycosides is dependent upon gut microbiota, which breaks down glycosides into steviol that can be absorbed by the host. In this review, we elucidated the effects of stevia's consumption on the host's gut microbiota. Due to the lack of randomized clinical trials in humans, we included in vitro using certain microbial strains and in vivo in laboratory animal studies. Results indicated that stevia consumption has a potential benefit on the microbiome's alpha diversity. Alterations in the colonic microenvironment may depend on the amount and frequency of stevia intake, as well as on the simultaneous consumption of other dietary components. The anti-inflammatory properties of stevioside were confirmed in vitro by decreasing TNF-α, IL-1β, IL-6 synthesis and inhibiting of NF-κB transcription factor, and in vivo by inhibiting NF-κB and MAPK in laboratory animals.
Collapse
Affiliation(s)
- Arezina N. Kasti
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
| | - Maroulla D. Nikolaki
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
| | - Kalliopi D. Synodinou
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
| | - Konstantinos N. Katsas
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
- Institute of Preventive Medicine Environmental and Occupational Health Prolepsis, 15125 Athens, Greece
| | - Konstantinos Petsis
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
| | - Sophia Lambrinou
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
| | - Ioannis A. Pyrousis
- Department of Nutrition and Dietetics, Attikon University General Hospital, 12462 Athens, Greece; (A.N.K.); (M.D.N.); (K.D.S.); (K.N.K.); (K.P.); (S.L.); (I.A.P.)
- Medical School, University of Patras, 26504 Patras, Greece
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, 2nd Department of Propaedeutic Internal Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
14
|
Iatridis N, Kougioumtzi A, Vlataki K, Papadaki S, Magklara A. Anti-Cancer Properties of Stevia rebaudiana; More than a Sweetener. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041362. [PMID: 35209150 PMCID: PMC8874712 DOI: 10.3390/molecules27041362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 01/03/2023]
Abstract
Stevia rebaudiana Bertoni is a perennial shrub from Paraguay that is nowadays widely cultivated, since it is increasingly being utilized as a sugar substitute in various foodstuffs due to its sweetness and minimal caloric content. These properties of the plant’s derivatives have spurred research on their biological activities revealing a multitude of benefits to human health, including antidiabetic, anticariogenic, antioxidant, hypotensive, antihypertensive, antimicrobial, anti-inflammatory and antitumor actions. To our knowledge, no recent reviews have surveyed and reported published work solely on the latter. Consequently, our main objective was to present a concise, literature-based review of the biological actions of stevia derivatives in various tumor types, as studied in in vitro and in vivo models of the disease. With global cancer estimates suggesting a 47% increase in cancer cases by 2040 compared to 2020, the data reviewed in this article should provide a better insight into Stevia rebaudiana and its products as a means of cancer prevention and therapy within the context of a healthy diet.
Collapse
Affiliation(s)
- Nikos Iatridis
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
| | - Anastasia Kougioumtzi
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
- Biomedical Research Insitute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Katerina Vlataki
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
| | - Styliani Papadaki
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
| | - Angeliki Magklara
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
- Biomedical Research Insitute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
- Correspondence:
| |
Collapse
|
15
|
Yang Y, Xu M, Wan Z, Yang X. Novel functional properties and applications of steviol glycosides in foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Ilias N, Hamzah H, Ismail IS, Mohidin TBM, Idris MF, Ajat M. An insight on the future therapeutic application potential of Stevia rebaudiana Bertoni for atherosclerosis and cardiovascular diseases. Biomed Pharmacother 2021; 143:112207. [PMID: 34563950 DOI: 10.1016/j.biopha.2021.112207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Stevia rebaudiana Bertoni is a native plant to Paraguay. The extracts have been used as a famous sweetening agent, and the bioactive components derived from stevia possess a broad spectrum of therapeutical potential for various illnesses. Among its medicinal benefits are anti-hypertensive, anti-tumorigenic, anti-diabetic, and anti-hyperlipidemia. Statins (3-hydro-3-methylglutaryl-coenzyme A reductase inhibitor) are a class of drugs used to treat atherosclerosis. Statins are explicitly targeting the HMG-CoA reductase, an enzyme in the rate-limiting step of cholesterol biosynthesis. Despite being widely used in regulating plasma cholesterol levels, the adverse effects of the drug are a significant concern among clinicians and patients. Hence, steviol glycosides derived from stevia have been proposed as an alternative in replacing statins. Diterpene glycosides from stevia, such as stevioside and rebaudioside A have been evaluated for their efficacy in alleviating cholesterol levels. These glycosides are a potential candidate in treating and preventing atherosclerosis provoked by circulating lipid retention in the sub-endothelial lining of the artery. The present review is an effort to integrate the pathogenesis of atherosclerosis, involvement of lipid droplets biogenesis and its associated proteins in atherogenesis, current approaches to treat atherosclerosis, and pharmacological potential of stevia in treating the disease.
Collapse
Affiliation(s)
- Nazhan Ilias
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Malaysia.
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Malaysia.
| | - Intan Safinar Ismail
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Malaysia; Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Malaysia.
| | - Taznim Begam Mohd Mohidin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mohd Faiz Idris
- Pusat Bahasa dan Pengajian Umum, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Malaysia; Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Malaysia.
| |
Collapse
|
17
|
Mahajan M, Suryavanshi S, Bhowmick S, Alasmary FA, Almutairi TM, Islam MA, Kaul-Ghanekar R. Matairesinol, an active constituent of HC9 polyherbal formulation, exhibits HDAC8 inhibitory and anticancer activity. Biophys Chem 2021; 273:106588. [PMID: 33848944 DOI: 10.1016/j.bpc.2021.106588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Histone deacetylase 8 (HDAC8) has emerged as a promising drug target for cancer therapeutics development. HDAC8 has been reported to regulate cancer cell proliferation, invasion and promote metastasis through modulation of cell cycle associated proteins. Of late, phytocompounds have been demonstrated to exhibit anticancer and anti-HDAC8 activity. Here, we have shown the HDAC8 inhibitory potential of an active phytocompound from HC9 (herbal composition-9), a polyherbal anticancer formulation based on the traditional Ayurvedic drug, Stanya Shodhan Kashaya. HC9 was recently reported to exhibit anticancer activity against breast cancer cells through induction of cell cycle arrest, decrease in migration and invasion as well as regulation of inflammation and chromatin modulators. In silico studies such as molecular docking, molecular dynamics (MD) simulation and binding free energy analyses showed greater binding energy values and interaction stability of MA with HDAC8 compared to other phytocompounds of HC9. Interestingly, in vitro validation confirmed the anti-HDAC8 activity of MA. Further, in vitro studies showed that MA significantly decreased the viability of breast and prostate cancer cell lines, thereby confirming its anticancer potential.
Collapse
Affiliation(s)
- Minal Mahajan
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India
| | - Snehal Suryavanshi
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 91 APC Road, Kolkata 700 009, India
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tahani Mazyad Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India.
| |
Collapse
|
18
|
Wang J, Zhao H, Wang Y, Lau H, Zhou W, Chen C, Tan S. A review of stevia as a potential healthcare product: Up-to-date functional characteristics, administrative standards and engineering techniques. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Stevia rebaudiana Bertoni.: an updated review of its health benefits, industrial applications and safety. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Stevia eupatoria and Stevia pilosa Extracts Inhibit the Proliferation and Migration of Prostate Cancer Cells. ACTA ACUST UNITED AC 2020; 56:medicina56020090. [PMID: 32102219 PMCID: PMC7074313 DOI: 10.3390/medicina56020090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Background and Objectives: Prostate cancer is the second most harmful disease in men worldwide and the number of cases is increasing. Therefore, new natural agents with anticancer potential should be examined and the response of existing therapeutic drugs must be enhanced. Stevia pilosa and Stevia eupatoria are two species that have been widely used in traditional medicine, but their effectiveness on cancer cells and their interaction with antineoplastic drugs have not been studied. The aim of this study was to evaluate the anticancer activity of Stevia pilosa methanolic root extract (SPME) and Stevia eupatoria methanolic root extract (SEME) and their effect, combined with enzalutamide, on prostate cancer cells. Materials and Methods: The study was conducted on a human fibroblast cell line, and on androgen-dependent (LNCaP) and androgen-independent (PC-3) prostate cancer cell lines. The cell viability was evaluated using a Trypan Blue exclusion test for 48 h, and the migration by a wound-healing assay for 24, 48, and 72 h. Results: The results indicate that SPME and SEME were not cytotoxic at concentrations less than 1000 μg/mL in the human fibroblasts. SPME and SEME significantly reduced the viability and migration of prostate cancer cells in all concentrations evaluated. The antiproliferative effect of the Stevia extracts was higher in cancer cells than in normal cells. The enzalutamide decreased the cell viability in all concentrations tested (10–50 µM). The combination of the Stevia extracts and enzalutamide produced a greater effect on the inhibition of the proliferation and migration of cancer cells than the Stevia extracts alone, but not of the enzalutamide alone. Conclusion: The results indicate that SPME and SEME have an inhibitory effect on the viability and migration of prostate cancer cells and do not interfere with the enzalutamide anticancer effect. The data suggest that Stevia extracts may be a potential source of molecules for cancer treatment.
Collapse
|