1
|
Ramdhony K, Puchooa D, Faraj TK, Alrefaei AF, Li J, Jeewon R. A polyphasic approach in the identification and biochemical characterization of Dunaliella tertiolecta with biodiesel potential from a saltern in Mauritius. PeerJ 2024; 12:e18325. [PMID: 39677951 PMCID: PMC11646422 DOI: 10.7717/peerj.18325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/25/2024] [Indexed: 12/17/2024] Open
Abstract
Bioprospecting robust and oleaginous strain is crucial for the commercialization of microalgae-based biodiesel. In this study, a microalgal strain SCH18 was isolated from a solar saltern located in Mauritius. This isolate was identified as Dunaliella tertiolecta based on a polyphasic approach that combined molecular, physiological, and morphological analyses. Furthermore, the effect of different salinities on the biochemical composition and fatty acid profile of this microalga was investigated to explore its potential in producing biodiesel. Results from the growth studies showed that salinity of 1.0 M NaCl was optimal for achieving a high growth rate. Under this salt concentration, the growth rate and the doubling time were calculated as 0.39 ± 0.003 day-1 and 1.79 ± 0.01 days, respectively. In terms of biochemical composition, a substantial amount of carbohydrate (42.02 ± 5.20%), moderate amount of protein (30.35 ± 0.18%) and a low lipid content (17.81 ± 2.4%) were obtained under optimal NaCl concentration. The fatty acid analysis indicated the presence of palmitic acid, stearic acid, palmitoleic acid, oleic acid, linoleic acid, gamma, and alpha-linolenic acids, which are suitable for biodiesel synthesis. The predicted biodiesel properties were in accordance with the standard of ASTM 6751, indicating that the microalgal isolate D. tertiolecta SCH18 is a potential candidate for use in biodiesel production.
Collapse
Affiliation(s)
- Kamlesh Ramdhony
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit, Mauritius
| | - Daneshwar Puchooa
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit, Mauritius
| | - Turki Kh. Faraj
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - JunFu Li
- Kunming Institute of Botany, Chinese Science Academy, Kunming, Yunnan, China
| | - Rajesh Jeewon
- Kunming Institute of Botany, Chinese Science Academy, Kunming, Yunnan, China
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
2
|
Araj‐Shirvani M, Honarvar M, Jahadi M, Mizani M. Biochemical profile of Dunaliella isolates from different regions of Iran with a focus on pharmaceutical and nutraceutical potential applications. Food Sci Nutr 2024; 12:4914-4926. [PMID: 39055206 PMCID: PMC11266925 DOI: 10.1002/fsn3.4137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 07/27/2024] Open
Abstract
This study was conducted to evaluate three species of Dunaliella microalgae (Dunaliella salina, Dunaliella viridis, and Dunaliella sp.) indigenous to Iran as new sources of natural chemical and bioactive compounds for exploring pharmaceutical and nutraceutical potential applications. The results showed that the fat, carbohydrate (mono- and di-saccharide), dietary fiber, and protein content of Dunaliella were in the range of 13.19-25.02, 7.59-12.37, 42.10-48.82, and 17.68-22.50 (%), respectively. Dunaliella salina contained a pigment fraction of 11.50%, which was largely composed of carotenoid (7.41%) and chlorophyll (4.09%). Antioxidant capacity and inhibition of 2,2-diphenyl-1-1-picrylhydrazyl (DPPH) of Dunaliella salina were 34.54 mg/1000 g and 55.63%, respectively. The lipid profile also revealed that three isolated Dunaliella are remarkable sources of polyunsaturated fatty acids (25.42%-40.13%). Further, the ratios of ∑n-3/∑n-6 (2.79%), docosahexaenoic acid (6.15%), and eicosapentaenoic acid (11.26%) were the highest in Dunaliella salina. The results, thus, proved that Dunaliella spp., especially Dunaliella salina (IBRC-M 50030), which originates from a lake in Semnan province, Iran, has potential applications in the food and pharmaceutical industries due to its appropriate biopigment, protein, lipid, antioxidant activity, long-chain polyunsaturated fatty acids, docosahexaenoic acid, and eicosapentaenoic acid.
Collapse
Affiliation(s)
- Maryam Araj‐Shirvani
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Masoud Honarvar
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Mahshid Jahadi
- Department of Food Science and Technology, Faculty of AgricultureIsfahan (Khorasgan) Branch, Islamic Azad UniversityIsfahanIran
| | - Maryam Mizani
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
3
|
de Souza Celente G, de Cassia de Souza Schneider R, Medianeira Rizzetti T, Lobo EA, Sui Y. Using wastewater as a cultivation alternative for microalga Dunaliella salina: Potentials and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168812. [PMID: 38000734 DOI: 10.1016/j.scitotenv.2023.168812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Untreated or poorly treated wastewater still represents environmental issues world-widely. Wastewater, especially saline wastewater treatment, is still primarily associated with high costs from physical and chemical processes, as high salinity hinders biological treatment. One favourable way is to find the suitable biological pathways and organisms to improve the biological treatment efficiency. In this context, halophilic microorganisms could be strong candidates to address the economics and effectiveness of the saline wastewater treatment process. Dunaliella salina is a photoautotrophic microalga that grows in saline environments. It is known for producing marketable bio-compounds such as carotenoids, lipids, and proteins. A biological treatment based on D. salina cultivation offers the opportunity to treat saline wastewater, reducing the threat of possible eutrophication from inappropriate discharge. At the same time, D. salina cultivation could yield compounds of industrial relevance to turn saline wastewater treatment into a profitable and sustainable process. Most research on D. salina has primarily focused on bioproduct generation, leaving thorough reviews of its application in wastewater treatment inadequate. This paper discusses the future challenges and opportunities of using D. salina to treat wastewater from different sources. The main conclusions are (1) D. salina effectively recovers some heavy metals (driven by metal binding capacity and exposure time) and nutrients (driven by pH, their bioavailability, and functional groups in the cell); (2) salinity plays a significant role in bioproducts generation, and (3) wastewater can be combined with the generation of bioproducts.
Collapse
Affiliation(s)
- Gleison de Souza Celente
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; Centre of Excellence in Oleochemical and Biotechnological Products and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Rosana de Cassia de Souza Schneider
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; Centre of Excellence in Oleochemical and Biotechnological Products and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Tiele Medianeira Rizzetti
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil; Centre of Excellence in Oleochemical and Biotechnological Products and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Eduardo Alcayaga Lobo
- Environmental Technology Post-graduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Yixing Sui
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
4
|
Guermazi W, Annabi-Trabelsi N, Belmonte G, Guermazi K, Ayadi H, Leignel V. Solar Salterns and Pollution: Valorization of Some Endemic Species as Sentinels in Ecotoxicology. TOXICS 2023; 11:524. [PMID: 37368624 PMCID: PMC10303847 DOI: 10.3390/toxics11060524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Solar salterns and salt marshes are unique ecosystems with special physicochemical features and characteristic biota. Currently, there are very few studies focused on the impacts of pollution on these economic and ecological systems. Unfortunately, diversified pollution (metals, Polycyclic Aromatic Hydrocarbons, etc.) has been detected in these complex ecosystems. These hypersaline environments are under increasing threat due to anthropogenic pressures. Despite this, they represent a valuable source of microbial diversity, with taxa displaying special features in terms of environmental remediation capacities as well as economical species such as Artemia spp. (Branchiopoda) and Dunaliella salina (Chlorophyta). In this review, we discuss the impacts of pollution on these semi-artificial systems. Therefore, we have indicated the sentinel species identified in plankton communities, which can be used in ecotoxicological investigations in solar salterns. In future, researchers should increase their interest in pollution assessment in solar salterns and salt marshes.
Collapse
Affiliation(s)
- Wassim Guermazi
- Laboratoire Biodiversité Marine et Environnement (LR18ES30), Université de Sfax, Sfax CP 3000, Tunisia; (W.G.); (N.A.-T.); (K.G.); (H.A.)
| | - Neila Annabi-Trabelsi
- Laboratoire Biodiversité Marine et Environnement (LR18ES30), Université de Sfax, Sfax CP 3000, Tunisia; (W.G.); (N.A.-T.); (K.G.); (H.A.)
| | - Genuario Belmonte
- Laboratory of Zoogeography and Fauna, University of the Salento, 73100 Lecce, Italy;
| | - Kais Guermazi
- Laboratoire Biodiversité Marine et Environnement (LR18ES30), Université de Sfax, Sfax CP 3000, Tunisia; (W.G.); (N.A.-T.); (K.G.); (H.A.)
| | - Habib Ayadi
- Laboratoire Biodiversité Marine et Environnement (LR18ES30), Université de Sfax, Sfax CP 3000, Tunisia; (W.G.); (N.A.-T.); (K.G.); (H.A.)
| | - Vincent Leignel
- Laboratoire BIOSSE, Le Mans Université, Avenue Olivier Messiaen, 72000 Le Mans, France
| |
Collapse
|
5
|
Siziya IN, Hwang CY, Seo MJ. Antioxidant Potential and Capacity of Microorganism-Sourced C 30 Carotenoids-A Review. Antioxidants (Basel) 2022; 11:antiox11101963. [PMID: 36290686 PMCID: PMC9598406 DOI: 10.3390/antiox11101963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Carotenoids are lipophilic tetraterpenoid pigments produced by plants, algae, arthropods, and certain bacteria and fungi. These biologically active compounds are used in the food, feed, and nutraceutical industries for their coloring and the physiological benefits imparted by their antioxidant properties. The current global carotenoid market is dominated by synthetic carotenoids; however, the rising consumer demand for natural products has led to increasing research and development in the mass production of carotenoids from alternative natural sources, including microbial synthesis and plant extraction, which holds a significant market share. To date, microbial research has focused on C40 carotenoids, but studies have shown that C30 carotenoids contain similar—and in some microbial strains, greater—antioxidant activity in both the physical and chemical quenching of reactive oxygen species. The discovery of carotenoid biosynthetic pathways in different microorganisms and advances in metabolic engineering are driving the discovery of novel C30 carotenoid compounds. This review highlights the C30 carotenoids from microbial sources, showcasing their antioxidant properties and the technologies emerging for their enhanced production. Industrial applications and tactics, as well as biotechnological strategies for their optimized synthesis, are also discussed.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea
- Research Center for Bio Material & Process Development, Incheon National University, Incheon 22012, Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea
- Research Center for Bio Material & Process Development, Incheon National University, Incheon 22012, Korea
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Korea
- Correspondence: ; Tel.: +82-32-835-8267
| |
Collapse
|
6
|
Maswanna T, Maneeruttanarungroj C. Identification of major carotenoids from green alga Tetraspora sp. CU2551: partial purification and characterization of lutein, canthaxanthin, neochrome, and β-carotene. World J Microbiol Biotechnol 2022; 38:129. [PMID: 35689122 DOI: 10.1007/s11274-022-03320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
The green algae Tetraspora sp. CU2551 was previously identified as a strain with high potential for biohydrogen production; however, its algal biomass characteristics changed from green to reddish orange within 43 days of biohydrogen production. The crude pigments were extracted, partially purified, and characterized by chemical determination. The present study focused on elucidating the carotenoid composition of the selected green alga Tetraspora sp. CU2551. The pigment extract was partially purified and fractionated using thin layer chromatography, and yielded two major and two minor carotenoid bands. The fractions were confirmed by high-performance liquid chromatography with a diode array detector (HPLC-DAD) before being identified and confirmed using Liquid Chromatograph-Quadrupole Time of Flight-Mass Spectrometry (LC-QTOF-MS). The spectral data of these fractions revealed four sub-fractions of interest that were lutein, canthaxanthin, neochrome, and β-carotene, which had percentages in the crude extracts of 30.57%, 25.47%, 7.89%, and 0.71%, respectively. Lutein and canthaxanthin were found to be the major carotenoid pigments present. Our findings in this present study are the first reporting of Tetraspora sp. CU2551 as a potential alternate source for carotenoid pigment production.
Collapse
Affiliation(s)
- Thanaporn Maswanna
- Scientific Instruments Center, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Cherdsak Maneeruttanarungroj
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand. .,Bioenergy Research Unit and Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
7
|
Abstract
The problem of global warming and the emission of greenhouse gases is already directly affecting the world’s energy. In the future, the impact of CO2 emissions on the world economy will constantly grow. In this paper, we review the available literature sources on the benefits of using algae cultivation for CO2 capture to decrease CO2 emission. CO2 emission accounts for about 77% of all greenhouse gases, and the calculation of greenhouse gas emissions is 56% of all CO2 imports. As a result of the study of various types of algae, it was concluded that Chlorella sp. is the best at capturing CO2. Various methods of cultivating microalgae were also considered and it was found that vertical tubular bioreactors are emerging. Moreover, for energy purposes, thermochemical methods for processing algae that absorb CO2 from flue gases were considered. Of all five types of thermochemical processes for producing synthesis gas, the most preferred method is the method of supercritical gasification of algae. In addition, attention is paid to the drying and flocculation of biofuels. Several different experiments were also reviewed on the use of flue gases through the cultivation of algae biomass. Based on this literature review, it can be concluded that microalgae are a third generation biofuel. With the absorption of greenhouse gases, the growth of microalgae cultures is accelerated. When a large mass of microalgae appears, it can be used for energy purposes. In the results, we present a plan for further studies of microalgae cultivation, a thermodynamic analysis of gasification and pyrolysis, and a comparison of the results with other biofuels and other algae cultures.
Collapse
|
8
|
Curcuraci E, Manuguerra S, Messina CM, Arena R, Renda G, Ioannou T, Amato V, Hellio C, Barba FJ, Santulli A. Culture Conditions Affect Antioxidant Production, Metabolism and Related Biomarkers of the Microalgae Phaeodactylum tricornutum. Antioxidants (Basel) 2022; 11:antiox11020411. [PMID: 35204292 PMCID: PMC8869413 DOI: 10.3390/antiox11020411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Phaeodactylum tricornutum (Bacillariophyta) is a worldwide-distributed diatom with the ability to adapt and survive in different environmental habitats and nutrient-limited conditions. In this research, we investigated the growth performance, the total lipids productivity, the major categories of fatty acids, and the antioxidant content in P. tricornutum subjected for 15 days to nitrogen deprivation (N-) compared to standard culture conditions (N+). Furthermore, genes and pathways related to lipid biosynthesis (i.e., glucose-6-phosphate dehydrogenase, acetyl-coenzyme A carboxylase, citrate synthase, and isocitrate dehydrogenase) and photosynthetic activity (i.e., ribulose-1,5-bisphospate carboxylase/oxygenase and fucoxanthin-chlorophyll a/c binding protein B) were investigated through molecular approaches. P. tricornutum grown under starvation condition (N-) increased lipids production (42.5 ± 0.19 g/100 g) and decreased secondary metabolites productivity (phenolic content: 3.071 ± 0.17 mg GAE g-1; carotenoids: 0.35 ± 0.01 mg g−1) when compared to standard culture conditions (N+). Moreover, N deprivation led to an increase in the expression of genes involved in fatty acid biosynthesis and a decrease in genes related to photosynthesis. These results could be used as indicators of nitrogen limitation for environmental or industrial monitoring of P. tricornutum.
Collapse
Affiliation(s)
- Eleonora Curcuraci
- Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (E.C.); (S.M.); (R.A.); (G.R.); (A.S.)
| | - Simona Manuguerra
- Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (E.C.); (S.M.); (R.A.); (G.R.); (A.S.)
| | - Concetta Maria Messina
- Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (E.C.); (S.M.); (R.A.); (G.R.); (A.S.)
- Correspondence: (C.M.M.); (F.J.B.); Tel.: +39-923-560162 (C.M.M.); +34-963-544-972 (F.J.B.)
| | - Rosaria Arena
- Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (E.C.); (S.M.); (R.A.); (G.R.); (A.S.)
| | - Giuseppe Renda
- Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (E.C.); (S.M.); (R.A.); (G.R.); (A.S.)
| | - Theodora Ioannou
- Department of Chemistry, Faculty of Science, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Vito Amato
- L’Avannotteria Società Agricola a Responsabilità Limitata, Contrada Triglia Scaletta, 91020 Petrosino, Italy;
| | - Claire Hellio
- LEMAR, IRD, CNRS, Ifremer, Université de Brest, F-29280 Plouzane, France;
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
- Correspondence: (C.M.M.); (F.J.B.); Tel.: +39-923-560162 (C.M.M.); +34-963-544-972 (F.J.B.)
| | - Andrea Santulli
- Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (E.C.); (S.M.); (R.A.); (G.R.); (A.S.)
- Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy
| |
Collapse
|
9
|
Roy UK, Nielsen BV, Milledge JJ. Tuning Dunaliella tertiolecta for Enhanced Antioxidant Production by Modification of Culture Conditions. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:482-500. [PMID: 34195924 PMCID: PMC8270869 DOI: 10.1007/s10126-021-10041-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Microalgae, a popular source of food and bioactive compounds, accumulate antioxidants in response to culture condition stresses. Using a factorial design (3 × 3), the effect of light, temperature, and nitrogen level on chlorophyll and carotenoids, total protein, total phenolic, ascorbate and glutathione content, and enzyme (catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD)) activities in Dunaliella tertiolecta was studied. Data were analysed using Design of Experiments (DoE), and recommendations are made for optimum cultivation conditions to achieve the highest antioxidant content (phenolics, ascorbate and glutathione) or enzyme (CAT, SOD, and POD) activities. This is the first study to apply three levels of three factors during cultivation to tune Dunaliella tertiolecta for optimal antioxidant production.
Collapse
Affiliation(s)
- Uttam K Roy
- School of Architecture, Building and Civil Engineering, Loughborough University, Epinal Way Leicestershire, Loughborough, LE11 3TU, United Kingdom.
- Algae Biotechnology Research Group, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, England, United Kingdom.
| | - Birthe V Nielsen
- Algae Biotechnology Research Group, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, England, United Kingdom
| | - John J Milledge
- Algae Biotechnology Research Group, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, England, United Kingdom
| |
Collapse
|
10
|
Almutairi AW. Effects of nitrogen and phosphorus limitations on fatty acid methyl esters and fuel properties of Dunaliella salina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32296-32303. [PMID: 32242318 DOI: 10.1007/s11356-020-08531-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
This study was designed to assess the synergistic effects of nitrogen (N) and phosphorus (P) concentrations on oil content, fatty acid profile, and predicted fuel properties of Dunaliella salina. Axenic D. salina cells were grown in F/2 growth medium of salinity 34 ppt containing 33.6 g.l-1 ultramarine synthetic sea salt. Growth dry weight, cell count, and their relationship were measured, and oils were extracted by soaking following Soxhlet extraction. Growth dry weight was markedly affected by N and P concentrations, with maximum growth dry weights of cultures grown at recommended N and P concentrations (control), half of the recommended N concentration (0.5 N) and (0.5 N/0.5P) being 0.911 g.l-1, 0.755 g.l-1, and 0.615 g.l-1, respectively. Oil content showed the reverse pattern, with cultures grown in the absence of phosphorus (0.0P), full N/P starvation (0.0 N/0.0P), and control resulting in maximum oil contents of 24.86%, 22.85%, and 5.88%, respectively. The majority of fatty acid methyl esters ranged between C14 and C22. Estimated fuel properties of algal cells grown under NP stress conditions were found to meet the American Society for Testing and Materials (ASTM) and European Committee for Standardization (EN) guidelines.
Collapse
Affiliation(s)
- Adel W Almutairi
- Biological Science Department, Rabigh- Faculty of Science and Arts, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
11
|
Zarkami R, Hesami H, Sadeghi Pasvisheh R. Assessment, monitoring and modelling of the abundance of Dunaliella salina Teod in the Meighan wetland, Iran using decision tree model. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:172. [PMID: 32040638 DOI: 10.1007/s10661-020-8148-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
The microalga Dunaliella salina has been broadly studied for different purposes such as beta-carotene production, toxicity assessment and salinity tolerance, yet research on the habitat suitability of this alga has rarely been reported. The present research aims to apply a suitable monitoring and modelling methods (two critical steps in ecological researches) to predict the abundance of D. salina. The abundance of D. salina was predicted by decision tree model (J48 algorithm) in 10 different monitoring sites during 1-year study period (2016-2017) in the Meighan wetland, one of the valuable hypersaline wetlands in Iran. The abundance of alga (as output of model) together with various water quality and physical-habitat wetland characteristics (as inputs of model) were monthly and repeatedly monitored in two different depths (one from the surface layer and another one from the depth of maximum 50 cm) which in total resulted in 240 instances (120 instances for each depth). Based on trial and error, a sevenfold cross-validation resulted in the highest predictive performances of the model (CCI > 75% and Cohen's Kappa > 0.65). According to the model's prediction, the number of sunny hours might be one of the most important driving parameters to meet the habitat requirements of alga in the hypersaline wetland. Model also predicted that an increase in dissolved oxygen and sodium concentrations might increase the abundance of D. salina in the salt wetland. In contrast, an increase in total suspended solids concentration and monthly precipitation might lead to a decrease in the abundance of alga. Chi-square test of independence showed a significant difference between the abundance of the D. salina and spatio-temporal patterns in the wetland (Pearson chi-square statistic = 221.7, p = 0.001) so warm seasons (spring and summer) had more contribution to the sampling of the species than cold seasons (autumn and winter). The difference in the abundance of the species in different sampling sites can be attributed due to the various anthropogenic activities.
Collapse
Affiliation(s)
- Rahmat Zarkami
- Department of Environmental Science, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran.
| | - Hedieh Hesami
- Department of Environmental Science, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran
| | - Roghayeh Sadeghi Pasvisheh
- Department of Plants and Crops, Faculty of Bio-Science Engineering, Ghent University, Coupure Links, 653, 9000, Ghent, Belgium
| |
Collapse
|