1
|
Yang P, Huo Y, Yang Q, Zhao F, Li C, Ju J. Synergistic anti-biofilm strategy based on essential oils and its application in the food industry. World J Microbiol Biotechnol 2025; 41:81. [PMID: 40011295 DOI: 10.1007/s11274-025-04289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
The microbial biofilm can induce a variety of food safety problems, and cause huge economic losses. Essential oils (EOs) not only have broad-spectrum antibacterial activity but also have a good ability to inhibit biofilm. However, the addition dose of EOs in practical application usually exceeds their flavor threshold, resulting in the appearance of undesired flavor. Therefore, synergistic antimicrobial may be a potential strategy to improve the antibacterial activity of EOs and to reduce their dosage. This paper focuses on the analysis of the synergistic anti-biofilm strategies based on EOs. Based on these, the action mechanism of EOs against biofilm and other commonly used anti-biofilm strategies in the food industry are summarized. The anti-biofilm mechanism of EOs is mainly related to inhibiting the synthesis of extracellular polysaccharides and proteins, destroying biofilm structure, inhibiting the metabolic activity of biofilm, inhibiting quorum sensing (QS) and regulating the formation of biofilm and the expression of toxicity-related genes. At present, the commonly used anti-biofilm strategies in the food industry mainly include physical strategies, chemical strategies and biological strategies, among which the combined application of different strategies is the future development trend. In particular, the synergistic anti-biofilm strategy based on EOs has shown great application value in the food industry. To sum up, some new information in this paper will give guidance and provide more reference for the development of efficient biofilm regulation strategies in future.
Collapse
Affiliation(s)
- Pei Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, 266109, People's Republic of China
- Key Laboratory of Special Food Processing (Co-Construction By Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, 266109, People's Republic of China
| | - Yuxiao Huo
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, 266109, People's Republic of China
- Key Laboratory of Special Food Processing (Co-Construction By Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, 266109, People's Republic of China
| | - Qingli Yang
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, 266109, People's Republic of China
- Key Laboratory of Special Food Processing (Co-Construction By Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, 266109, People's Republic of China
| | - Fangyuan Zhao
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, 266109, People's Republic of China
- Key Laboratory of Special Food Processing (Co-Construction By Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China
- Shandong Technology Innovation Center of Special Food, Qingdao, 266109, People's Republic of China
| | - Changjian Li
- School of Community Health, Weifang Medical University, Shandong, 261042, People's Republic of China
| | - Jian Ju
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
- Qingdao Special Food Research Institute, Qingdao, 266109, People's Republic of China.
- Key Laboratory of Special Food Processing (Co-Construction By Ministry and Province), Ministry of Agriculture Rural Affairs, Beijing, People's Republic of China.
- Shandong Technology Innovation Center of Special Food, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
2
|
Govindan R, Gnanasekaran C, Govindan R, Muthuchamy M, Quero F, Jothi A, Chelliah CK, Arunachalam A, Viswanathan MR, Natesan M, Kadaikunnan S, Li WJ. Anti-quorum Sensing and Anti-biofilm Effect of Nocardiopsis synnemataformans RMN 4 (MN061002) Compound 2,6-Di-tert-butyl, 1,4-Benzoquinone Against Biofilm-Producing Bacteria. Appl Biochem Biotechnol 2024; 196:3914-3948. [PMID: 37792174 DOI: 10.1007/s12010-023-04738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
In this study, the anti-biofilm compound of 2,6-Di-tert-butyl, 1,4-benzoquinone was purified from Nocardiopsis synnemataformans (N. synnemataformans) RMN 4 (MN061002). To confirm the compound, various spectroscopy analyses were done including ultraviolet (UV) spectrometer, Fourier transform infrared spectroscopy (FTIR), analytical high-performance liquid chromatography (HPLC), preparative HPLC, gas chromatography-mass spectroscopy (GC-MS), liquid chromatography-mass spectroscopy (LC-MS), and 2D nuclear magnetic resonance (NMR). Furthermore, the purified compound was shown 94% inhibition against biofilm-producing Proteus mirabilis (P. mirabilis) (MN396686) at 70 µg/mL concentrations. Furthermore, the metabolic activity, exopolysaccharide damage, and hydrophobicity degradation results of identified compound exhibited excellent inhibition at 100 µg/mL concentration. Furthermore, the confocal laser scanning electron microscope (CLSM) and scanning electron microscope (SEM) results were shown with intracellular damages and architectural changes in bacteria. Consecutively, the in vivo toxicity effect of the compound against Artemia franciscana (A. franciscana) was shown to have a low mortality rate at 100 µg/mL. Finally, the molecular docking interaction between the quorum sensing (QS) genes and identified compound clearly suggested that the identified compound 2,6-Di-tert-butyl, 1,4-benzoquinone has anti-quorum sensing and anti-biofilm activities against P. mirabilis (MN396686).
Collapse
Affiliation(s)
- Rajivgandhi Govindan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Facultad de CienciasFísicas y Matemáticas, Universidad de Chile, Biotecnología y MaterialesAvenida Beauchef 851, 8370456, Santiago, Chile
| | - Chackaravarthi Gnanasekaran
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ramachandran Govindan
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| | - Maruthupandy Muthuchamy
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Facultad de CienciasFísicas y Matemáticas, Universidad de Chile, Biotecnología y MaterialesAvenida Beauchef 851, 8370456, Santiago, Chile
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu, Busan, 49315, South Korea
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Facultad de CienciasFísicas y Matemáticas, Universidad de Chile, Biotecnología y MaterialesAvenida Beauchef 851, 8370456, Santiago, Chile
| | - Arunachalam Jothi
- School of Chemical & Biotechnology, SASTRA Deemed University, Tamil Nadu, Tanjore, India, 401
| | - Chenthis Knaisha Chelliah
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Tamil Nadu, Kumaracoil, Kanyakumari, 629180, India
| | - Arulraj Arunachalam
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Macul, Santiago, Chile
| | - Mangalaraja Ramalinga Viswanathan
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Región Metropolitana, Diag. Las Torres 2640, 7941169, Peñalolén, Santiago, Chile
| | - Manoharan Natesan
- Marine Pharmacology & Toxicology Lab, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
3
|
Kalia VC, Patel SKS, Lee JK. Bacterial biofilm inhibitors: An overview. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115389. [PMID: 37634478 DOI: 10.1016/j.ecoenv.2023.115389] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Bacteria that cause infectious diseases adopt biofilms as one of their most prevalent lifestyles. Biofilms enable bacteria to tolerate environmental stress and evade antibacterial agents. This bacterial defense mechanism has rendered the use of antibiotics ineffective for the treatment of infectious diseases. However, many highly drug-resistant microbes have rapidly emerged owing to such treatments. Different signaling mechanisms regulate bacterial biofilm formation, including cyclic dinucleotide (c-di-GMP), small non-coding RNAs, and quorum sensing (QS). A cell density-dependent phenomenon, QS is associated with c-di-GMP (a global messenger), which regulates gene expression related to adhesion, extracellular matrix production, the transition from the planktonic to biofilm stage, stability, pathogenicity, virulence, and acquisition of nutrients. The article aims to provide information on inhibiting biofilm formation and disintegrating mature/preformed biofilms. This treatment enables antimicrobials to target the free-living/exposed bacterial cells at lower concentrations than those needed to treat bacteria within the biofilm. Therefore, a complementary action of antibiofilm and antimicrobial agents can be a robust strategic approach to dealing with infectious diseases. Taken together, these molecules have broad implications for human health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Habib Adam M, Tandon N, Singh I, Tandon R. The Phytochemical Tactics for Battling Antibiotic Resistance in Microbes: Secondary Metabolites and Nano Antibiotics Methods. Chem Biodivers 2023; 20:e202300453. [PMID: 37535351 DOI: 10.1002/cbdv.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
One of the most serious threats to human health is antibiotic resistance, which has left the world without effective antibiotics. While continuous research and inventions for new antibiotics are going on, especially those with new modes of action, it is unlikely that this alone would be sufficient to win the battle. Furthermore, it is also important to investigate additional approaches. One such strategy for improving the efficacy of existing antibiotics is the discovery of adjuvants. This review has collected data from various studies on the current crisis and approaches for combating multi-drug resistance in microbial pathogens using phytochemicals. In addition, the nano antibiotic approaches, are discussed, highlighting the high potentials of essential oils, alkaloids, phenolic compounds, and nano antibiotics in combating antibiotic resistance.
Collapse
Affiliation(s)
- Mujahid Habib Adam
- School of Pharmaceutical Sciences, Lovely Professional University, 144411, Phagwara, India
| | - Nitin Tandon
- Department of Chemistry, School of Physical Sciences, Lovely Professional University, 144411, Phagwara, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, 144411, Phagwara, India
| | - Runjhun Tandon
- Department of Chemistry, School of Physical Sciences, Lovely Professional University, 144411, Phagwara, India
| |
Collapse
|
5
|
Bouguenoun W, Benbelaid F, Mebarki S, Bouguenoun I, Boulmaiz S, Khadir A, Benziane MY, Bendahou M, Muselli A. Selected antimicrobial essential oils to eradicate multi-drug resistant bacterial biofilms involved in human nosocomial infections. BIOFOULING 2023; 39:816-829. [PMID: 37870170 DOI: 10.1080/08927014.2023.2269551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
Biofilms are the primary source of contamination linked to nosocomial infections by promoting bacterial resistance to antimicrobial agents, including disinfectants. Using essential oils, this study aims to inhibit and eradicate the biofilm of enterobacteria and staphylococci responsible for nosocomial infections at Guelma Hospital, northeastern Algeria. Thymbra capitata, Thymus pallescens and Artemesia herba-alba essential oils were evaluated against clinical strains of Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. The antimicrobial activity of the essential oils under consideration was assessed using an agar disc diffusion assay and the determination of minimum inhibitory concentrations (MICs). In addition, the crystal violet method and scanning electron microscopy (SEM) evaluated biofilm inhibition and eradication by those antimicrobial agents. The results indicate that T. pallescens essential oil was the most effective antimicrobial agent against pathogenic bacteria, with large zones of inhibition (up to 50 mm against S. aureus), low MICs (0.16 to 0.63 mg/mL), and powerful biofilm eradication up to 0.16 mg/mL in both 24 h and 60-min exposure times. Thus, Algerian thyme and oregano could be used in various ways to combat the biofilm that causes nosocomial infection in local hospitals.
Collapse
Affiliation(s)
- Widad Bouguenoun
- Department of Biology, Faculty of Exact Sciences and Natural Life Sciences, Mohamed Khider University, Biskra, Algeria
| | - Fethi Benbelaid
- Department of Biology, Faculty of Exact Sciences and Natural Life Sciences, Mohamed Khider University, Biskra, Algeria
- Laboratory of Applied Microbiology to Agrifood, Biomedical and Environment (LAMAABE), Aboubekr Belkaïd University, Imama Biomedical Complex, Tlemcen, Algeria
| | - Salsabil Mebarki
- Department of Biology, Faculty of Exact Sciences and Natural Life Sciences, Mohamed Khider University, Biskra, Algeria
| | - Imane Bouguenoun
- Department of Biology, Faculty of Biology Sciences, and Agricultural Sciences, Mouloud Mammeri University, Tizi-Ouzou, Algeria
| | - Sara Boulmaiz
- Department of Biology, Faculty of Exact Sciences and Natural Life Sciences, Mohamed Khider University, Biskra, Algeria
| | - Abdelmonaim Khadir
- Laboratory of Applied Microbiology to Agrifood, Biomedical and Environment (LAMAABE), Aboubekr Belkaïd University, Imama Biomedical Complex, Tlemcen, Algeria
- Department of Biology, Oran University, Oran, Algeria
| | - Mohammed Yassine Benziane
- Laboratory of Applied Microbiology to Agrifood, Biomedical and Environment (LAMAABE), Aboubekr Belkaïd University, Imama Biomedical Complex, Tlemcen, Algeria
| | - Mourad Bendahou
- Laboratory of Applied Microbiology to Agrifood, Biomedical and Environment (LAMAABE), Aboubekr Belkaïd University, Imama Biomedical Complex, Tlemcen, Algeria
| | - Alain Muselli
- Laboratory of Natural Products Chemistry, University of Corsica, UMR CNRS 6134, Corte, France
| |
Collapse
|
6
|
Guchhait KC, Manna T, Barai M, Karmakar M, Nandi SK, Jana D, Dey A, Panda S, Raul P, Patra A, Bhattacharya R, Chatterjee S, Panda AK, Ghosh C. Antibiofilm and anticancer activities of unripe and ripe Azadirachta indica (neem) seed extracts. BMC Complement Med Ther 2022; 22:42. [PMID: 35152903 PMCID: PMC8843028 DOI: 10.1186/s12906-022-03513-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/07/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Antibiotic resistances of pathogens and breast cancer warrant the search for new alternative strategies. Phytoextracts can eradicate microbe-borne diseases as well as cancer with lower side effects compared to conventional antibiotics. AIM Unripe and ripe Azadirachta indica (neem) seed extracts were explored as potential antibiofilm and anticancer agents in combating multidrug-resistant infectious bacteria as well as anticancer agents against the MDR breast cancer cell lines. METHODS Shed-dried neem seeds (both unripe and ripe) were pulverized and extracted using methanol. The chemical components were identified with FTIR and gas chromatography - mass spectrometry. Antibiofilm activity of neem seed extracts were assessed in terms of minimum biofilm inhibitory concentration (MBIC), minimum biofilm eradication concentration (MBEC), and fluorescence microscopic studies on Staphylococcus aureus and Vibrio cholerae. Bacterial cells were studied by fluorescence microscopy using acridine orange/ethidium bromide as the staining agents. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were evaluated to observe the antibacterial activities. Cytotoxicity of the extracts against human blood lymphocytes and the anticancer activity against drug-resistant breast cancer cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting (FACS) studies. RESULTS 4-Ethyl-2-hydroxy-2-cyclopentene-1-one, phthalic acid, and 2-hexyl-tetrahydro thiophane were the major compounds in unripe neem seed, whereas 3,5-dihydroxy-6-methyl-2,3-dihydro-4-H-pyran-4-one and 4-ethylbenzamide were predominant in ripe neem seed. Triazine derivatives were also common for both the extracts. MBIC values of unripe and ripe neem seed extracts for S. aureus are 75 and 100 µg/mL, respectively, and for V. cholerae, they are 100 and 300 µg/mL, respectively. MBEC values of unripe and ripe seed extracts are 500 and 300 µg/mL, respectively for S. aureus and for V. cholerae the values are 700 and 500 µg/mL, respectively. Fluorescence microscopic studies at 16 and 24 h, after bacterial culture, demonstrate enhanced antibiofilm activity for the ripe seed extract than that of the unripe seeds for both the bacteria. MTT assay reveals lower cytotoxicity of both the extracts towards normal blood lymphocytes, and anticancer activity against breast cancer cell line (MDA-MB-231) with superior activity of ripe seed extract. FACS studies further supported higher anticancer activity for ripe seed extract. CONCLUSIONS Methanolic extract of neem seeds could substantially inhibit and eradicate biofilm along with their potent antibacterial and anticancer activities. Both the extracts showed higher antibiofilm and antibacterial activity against S. aureus (gram-positive) than V. cholerae (gram-negative). Moreover, ripe seed extract showed higher antibiofilm and anticancer activity than unripe extracts.
Collapse
Affiliation(s)
- Kartik Chandra Guchhait
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Tuhin Manna
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Manas Barai
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Monalisha Karmakar
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Sourav Kumar Nandi
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata, 700094, West Bengal, India
| | - Debarati Jana
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Aditi Dey
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Suman Panda
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Priyanka Raul
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Anuttam Patra
- Chemistry of Interfaces Group, Luleå University of Technology, SE- 97187, Luleå, Sweden
| | - Rittwika Bhattacharya
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata, 700094, West Bengal, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Sadhu Ram Chand Murmu University of Jhargram, Jhargram, 721507, West Bengal, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India.
| |
Collapse
|
7
|
Abstract
Biofilms are aggregates formed as a protective survival state by microorganisms to adapt to the environment and can be resistant to antimicrobial agents and host immune responses due to chemical or physical diffusion barriers, modified nutrient environments, suppression of the growth rate within biofilms, and the genetic adaptation of cells within biofilms. With the widespread use of medical devices, medical device-associated biofilms continue to pose a serious threat to human health, and these biofilms have become the most important source of nosocomial infections. However, traditional antimicrobial agents cannot completely eliminate medical device-associated biofilms. New strategies for the treatment of these biofilms and targeting biofilm infections are urgently required. Several novel approaches have been developed and identified as effective and promising treatments. In this review, we briefly summarize the challenges associated with the treatment of medical device-associated biofilm infections and highlight the latest promising approaches aimed at preventing or eradicating these biofilms.
Collapse
|