1
|
HOW SS, CHIENG S, NATHAN S, LAM SD. ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis. J Zhejiang Univ Sci B 2024; 26:58-75. [PMID: 39815611 PMCID: PMC11735909 DOI: 10.1631/jzus.b2300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/17/2023] [Indexed: 10/22/2024]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation. The discovery of a large number of ABC systems in bacterial pathogens revealed that these transporters are crucial for the establishment of bacterial infections. The existing literature has highlighted the roles of ABC transporters in bacterial growth, pathogenesis, and virulence. These roles include importing essential nutrients required for a variety of cellular processes and exporting outer membrane-associated virulence factors and antimicrobial substances. This review outlines the general structures and classification of ABC systems to provide a comprehensive view of the activities and roles of ABC transporters associated with bacterial virulence and pathogenesis during infection.
Collapse
|
2
|
Yao S, Tu R, Jin Y, Zhou R, Wu C, Qin J. Improvement of the viability of Tetragenococcus halophilus under acidic stress by forming the biofilm cell structure based on RNA-Seq and iTRAQ analyses. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3559-3569. [PMID: 38147410 DOI: 10.1002/jsfa.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Tetragenococcus halophilus is a halophilic lactic acid bacterium (LAB) isolated from soya sauce moromi. During the production of these fermented foods, acid stress is an inevitable environmental stress. In our previous study, T. halophilus could form biofilms and the cells in the biofilms exhibited higher cell viability under multiple environmental stresses, including acid stress. RESULTS In this study, the effect of preformed T. halophilus biofilms on cell survival, cellular structure, intracellular environment, and the expression of genes and proteins under acid stress was investigated. The result showed that acid stress with pH 4.30 for 1.5 h reduced the live T. halophilus cell count and caused cellular structure damage. However, T. halophilus biofilm cells exhibited greater cell survival under acid stress than the planktonic cells, and biofilm formation reduced the damage of acid stress to the cell membrane and cell wall. The biofilm cells maintained a higher level of H+ -ATPase activity and intracellular ammonia concentration after acid stress. The RNA-Seq and iTRAQ technologies revealed that the genes and proteins associated with ATP production, the uptake of trehalose and N-acetylmuramic acid, the assembly of H+ -ATPase, amino acid biosynthesis and metabolism, ammonia production, fatty acid biosynthesis, CoA biosynthesis, thiamine production, and acetoin biosynthesis might be responsible for the stronger acid tolerance of T. halophilus biofilm cells together. CONCLUSION These findings further explained the mechanisms that allowed LAB biofilm cells to resist environmental stress. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongkun Tu
- Luzhou Lao Jiao Co., Ltd., Luzhou, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ugarelli K, Campbell JE, Rhoades OK, Munson CJ, Altieri AH, Douglass JG, Heck KL, Paul VJ, Barry SC, Christ L, Fourqurean JW, Frazer TK, Linhardt ST, Martin CW, McDonald AM, Main VA, Manuel SA, Marco-Méndez C, Reynolds LK, Rodriguez A, Rodriguez Bravo LM, Sawall Y, Smith K, Wied WL, Choi CJ, Stingl U. Microbiomes of Thalassia testudinum throughout the Atlantic Ocean, Caribbean Sea, and Gulf of Mexico are influenced by site and region while maintaining a core microbiome. Front Microbiol 2024; 15:1357797. [PMID: 38463486 PMCID: PMC10920284 DOI: 10.3389/fmicb.2024.1357797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Plant microbiomes are known to serve several important functions for their host, and it is therefore important to understand their composition as well as the factors that may influence these microbial communities. The microbiome of Thalassia testudinum has only recently been explored, and studies to-date have primarily focused on characterizing the microbiome of plants in a single region. Here, we present the first characterization of the composition of the microbial communities of T. testudinum across a wide geographical range spanning three distinct regions with varying physicochemical conditions. We collected samples of leaves, roots, sediment, and water from six sites throughout the Atlantic Ocean, Caribbean Sea, and the Gulf of Mexico. We then analyzed these samples using 16S rRNA amplicon sequencing. We found that site and region can influence the microbial communities of T. testudinum, while maintaining a plant-associated core microbiome. A comprehensive comparison of available microbial community data from T. testudinum studies determined a core microbiome composed of 14 ASVs that consisted mostly of the family Rhodobacteraceae. The most abundant genera in the microbial communities included organisms with possible plant-beneficial functions, like plant-growth promoting taxa, disease suppressing taxa, and nitrogen fixers.
Collapse
Affiliation(s)
- Kelly Ugarelli
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| | - Justin E Campbell
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - O Kennedy Rhoades
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Smithsonian Marine Station, Fort Pierce, FL, United States
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Calvin J Munson
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andrew H Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, United States
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - James G Douglass
- The Water School, Florida Gulf Coast University, Fort Myers, FL, United States
| | - Kenneth L Heck
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Savanna C Barry
- University of Florida, Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL, United States
| | | | - James W Fourqurean
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
| | - Thomas K Frazer
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States
| | - Samantha T Linhardt
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
| | - Charles W Martin
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
- University of Florida, Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL, United States
| | - Ashley M McDonald
- Smithsonian Marine Station, Fort Pierce, FL, United States
- University of Florida, Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL, United States
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States
| | - Vivienne A Main
- Smithsonian Marine Station, Fort Pierce, FL, United States
- International Field Studies, Inc., Andros, Bahamas
| | - Sarah A Manuel
- Department of Environment and Natural Resources, Government of Bermuda, Hamilton Parish, Bermuda
| | - Candela Marco-Méndez
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
- Center for Advanced Studies of Blanes (Spanish National Research Council), Girona, Spain
| | - Laura K Reynolds
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL, United States
| | - Alex Rodriguez
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
| | | | - Yvonne Sawall
- Bermuda Institute of Ocean Sciences (BIOS), St. George's, Bermuda
| | - Khalil Smith
- Smithsonian Marine Station, Fort Pierce, FL, United States
- Department of Environment and Natural Resources, Government of Bermuda, Hamilton Parish, Bermuda
| | - William L Wied
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Chang Jae Choi
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| | - Ulrich Stingl
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| |
Collapse
|
4
|
Yang F, Wei Z, Long C, Long L. Toxicological effects of oxybenzone on the growth and bacterial composition of Symbiodiniaceae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120807. [PMID: 36464119 DOI: 10.1016/j.envpol.2022.120807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Oxybenzone, a common ultraviolet (UV) filter, is a growing environmental concern due to its ecotoxicological effects. However, the responses of Symbiodiniaceae and their bacterial communities to oxybenzone are largely unknown. In this study, the effects of oxybenzone on Effrenium voratum and Cladocopium goreaui were investigated. The results revealed that sensitivity of Symbiodiniaceae to oxybenzone was species-dependent. 50 μg L-1 of oxybenzone significantly impacted the cell density of C. goreaui, causing a 36.73% decrease. When oxybenzone concentration increased to 500 μg L-1 and 5000 μg L-1, cell division was completely suppressed; meanwhile, chl-a content declined to zero. Compared to C. goreaui, E. voratum had higher resistance to oxybenzone. There was no significant difference in cell density between 50 μg L-1 group and control group. At higher dosage of oxybenzone (500 μg L-1 and 5000 μg L-1), the cell density declined 32.02% and 45.45% compared to the control group, respectively. Additionally, we revealed that the diversity and structure of bacterial community were affected by oxybenzone. Briefly, 500 μg L-1 and 5000 μg L-1 of oxybenzone altered the diversity of bacterial community in C. goreau. Furthermore, the relative abundances of Costertonia, Roseitalea, Rhodopirellula, and Roseobacter were negatively affected by oxybenzone ranging 50 μg L-1 to 5000 μg L-1. Compare to C. goreaui, the bacterial community composition associated with E. voratum was more stable. As revealed by KEGG pathway analysis, oxybenzone affected energy metabolism and inhibited the metabolism of cofactors and vitamins in C. goreaui, while 5000 μg L-1 of oxybenzone significantly altered the carbohydrate metabolism, membrane transport and amino acid metabolism in E. voratum. The changes of bacterial composition may contribute to the variation in algal growth. These results indicated that oxybenzone pollution could injury Symbiodiniaceae, even threaten coral reef ecosystems.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Zhangliang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Chao Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
5
|
Mgomi FC, Yuan L, Wang Y, Rao S, Yang Z. Physiological properties, survivability and genomic characteristics of
Pediococcus pentosaceus
for application as a starter culture. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fedrick C Mgomi
- School of Food Science and Technology Yangzhou University 196 Huayang West Road Yangzhou Jiangsu 225127 China
| | - Lei Yuan
- School of Food Science and Technology Yangzhou University 196 Huayang West Road Yangzhou Jiangsu 225127 China
| | - Yang Wang
- School of Food Science and Technology Yangzhou University 196 Huayang West Road Yangzhou Jiangsu 225127 China
| | - Sheng‐Qi Rao
- School of Food Science and Technology Yangzhou University 196 Huayang West Road Yangzhou Jiangsu 225127 China
| | - Zhen‐Quan Yang
- School of Food Science and Technology Yangzhou University 196 Huayang West Road Yangzhou Jiangsu 225127 China
| |
Collapse
|
6
|
Zaynab M, Peng J, Sharif Y, Albaqami M, Al-Yahyai R, Fatima M, Nadeem MA, Khan KA, Alotaibi SS, Alaraidh IA, Shaikhaldein HO, Li S. Genome-Wide Identification and Expression Profiling of DUF221 Gene Family Provides New Insights Into Abiotic Stress Responses in Potato. FRONTIERS IN PLANT SCIENCE 2022; 12:804600. [PMID: 35126430 PMCID: PMC8811145 DOI: 10.3389/fpls.2021.804600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The domain of the unknown function 221 proteins regulate several processes in plants, including development, growth, hormone transduction mechanism, and abiotic stress response. Therefore, a comprehensive analysis of the potato genome was conducted to identify the deafness-dystonia peptide (DDP) proteins' role in potatoes. In the present study, we performed a genome-wide analysis of the potato domain of the unknown function 221 (DUF221) genes, including phylogenetic inferences, chromosomal locations, gene duplications, gene structures, and expression analysis. In our results, we identified 10 DDP genes in the potato genome. The phylogenetic analysis results indicated that StDDPs genes were distributed in all four clades, and clade IV was the largest clade. The gene duplication under selection pressure analysis indicated various positive and purifying selections in StDDP genes. The putative stu-miRNAs from different families targeting StDDPs were also predicted in the present study. Promoter regions of StDDP genes contain different cis-acting components involved in multiple stress responses, such as phytohormones and abiotic stress-responsive factors. The analysis of the tissue-specific expression profiling indicated the StDDPs gene expression in stem, root, and leaf tissues. We subsequently observed that StDDP4, StDDP5, and StDDP8 showed higher expressions in roots, stems, and leaves. StDDP5 exhibited high expression against heat stress response, and StDDP7 showed high transcript abundance against salt stress in potatoes. Under abscisic acid (ABA) and indole acetic acid (IAA) treatments, seven StDDP genes' expressions indicated that ABA and IAA performed important roles in immunity response. The expression profiling and real-time qPCR of stems, roots, and leaves revealed StDDPs' significant role in growth and development. These expression results of DDPs are primary functional analysis and present basic information for other economically important crops.
Collapse
Affiliation(s)
- Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiaofeng Peng
- Instrument Analysis Center, Shenzhen University, Shenzhen, China
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahpara Fatima
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ibrahim A. Alaraidh
- Botany & Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Hassan O. Shaikhaldein
- Botany & Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Zaynab M, Peng J, Sharif Y, Al-Yahyai R, Jamil A, Hussain A, Khan KA, Alotaibi SS, Li S. Expression profiling of pathogenesis-related Protein-1 (PR-1) genes from Solanum tuberosum reveals its critical role in phytophthora infestans infection. Microb Pathog 2021; 161:105290. [PMID: 34808276 DOI: 10.1016/j.micpath.2021.105290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 11/19/2022]
Abstract
Pathogen-related (PR) proteins are an integral part of plants' defense mechanisms against various types of biotic and abiotic stresses. A little is known about the importance of these PR proteins in potato defense mechanisms. In the current study, a total of 22 pathogenesis-related 1 genes were identified in the potato genome. All identified proteins possessed the CAP superfamily domain with some other motifs. The cis-acting elements analysis identified several stress-responsive elements, including MYB, ABRE, and MeJRE. The gene duplication events demonstrated purifying and positive selection pressure. Expression profiling showed high transcripts level in root compared to other tissues; however, some genes have tissue-specific expression. Furthermore, the PR-1-5 gene is transcriptionally induced under Phytophthora infestans stress and hormonal (ABA and IAA) treatments. The Real-Time qPCR analysis also validated the RNA-seq data results of genes with maximum expression in roots compared to leaves and stems. The current study results provided basic data for functional characterization and can also use as a reference study for other important crops.
Collapse
Affiliation(s)
- Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 51807, China
| | - Jiaofeng Peng
- Instrument Analysis Center, Shenzhen University, Shenzhen, Guangdong, 51807, China
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Oman
| | - Atka Jamil
- National Institute of Genomics and Advanced Biotechnology, National Agriculture Research Center, Islamabad, Pakistan
| | - Athar Hussain
- Genomics Lab, Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science(RCAMS), King Khalid University, P.O. Box9004, Abha61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box9004, Abha61413, Saudi Arabia; Department, Faculty of Science, King Khalid University, P.O. Box9004, Abha61413, Saudi Arabia
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O.BOX 11099, Taif, 21944, Saudi Arabia
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 51807, China.
| |
Collapse
|
8
|
Zaynab M, Wang Z, Hussain A, Bahadar K, Sajid M, Sharif Y, Azam M, Sughra K, Raza MA, Khan KA, Li S. ATP-binding cassette transporters expression profiling revealed its role in the development and regulating stress response in Solanum tuberosum. Mol Biol Rep 2021; 49:5251-5264. [PMID: 34480688 DOI: 10.1007/s11033-021-06697-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
The ATP-binding cassette (ABC) transporter gene family plays a vital role in substance transportation, including secondary metabolites, and phytohormones across membranous structures. It is still uncovered in potato (Solanum tuberosum), grown worldwide as a 3rd important food crop. The current study identified a total of 54 Stabc genes in potato genome. The accumulative phylogenetic tree of Stabc with arabidopsis, divided into eight groups (ABCA to ABCH). ABCG was the most prominent group covering 90% of Stabc genes, followed by ABCB group. The number and architecture of exon-intron varied from gene to gene. In addition, the presence of stress-responsive elements in the regulatory regions depicted their role in environmental stress. Furthermore, the tissue-specific and stress-specific expression profiling of Stabc genes and their validation through real-time-qPCR analysis revealed their role in development and stress. The presented results provided useful information for further functional analysis of Stabc genes and can also use as a reference study for other important crops.
Collapse
Affiliation(s)
- Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, Guangdong, China
| | - Zongkang Wang
- Shenzhen Batian Ecotypic Engineering Company Limited, Shenzhen, 518105, China
| | - Athar Hussain
- Genomics Lab, Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Khalida Bahadar
- National Agriculture Research Center, PARC Institute of Advanced Studies in Agriculture, Islamabad, Pakistan
| | - Mateen Sajid
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Muhammad Azam
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Kalsoom Sughra
- Department of Biochemistry & Biotechnology, Hafiz Hayat Campus University of Gujrat, Gujrat City, Pakistan
| | - Muhammad Ammar Raza
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 51807, Guangdong, China.
| |
Collapse
|
9
|
Zaynab M, Hussain A, Sharif Y, Fatima M, Sajid M, Rehman N, Yang X, Khan KA, Ghramh HA, Li S. Mitogen-Activated Protein Kinase Expression Profiling Revealed Its Role in Regulating Stress Responses in Potato ( Solanum tuberosum). PLANTS 2021; 10:plants10071371. [PMID: 34371574 PMCID: PMC8309457 DOI: 10.3390/plants10071371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are the universal signal transduction networks that regulate cell growth and development, hormone signaling, and other environmental stresses. However, their essential contribution to plant tolerance is very little known in the potato (Solanum tuberosum) plant. The current study carried out a genome-wide study of StMAPK and provided a deep insight using bioinformatics tools. In addition, the relative expression of StMAPKs was also assessed in different plant tissues. The similarity search results identified a total of 22 StMAPK genes in the potato genome. The sequence alignment also showed conserved motif TEY/TDY in most StMAPKs with conserved docking LHDXXEP sites. The phylogenetic analysis divided all 22 StMAPK genes into five groups, i.e., A, B, C, D, and E, showing some common structural motifs. In addition, most of the StMAPKs were found in a cluster form at the terminal of chromosomes. The promoter analysis predicted several stress-responsive Cis-acting regulatory elements in StMAPK genes. Gene duplication under selection pressure also indicated several purifying and positive selections in StMAPK genes. In potato, StMAPK2, StMAPK6, and StMAPK19 showed a high expression in response to heat stress. Under ABA and IAA treatment, the expression of the total 20 StMAPK genes revealed that ABA and IAA played an essential role in this defense process. The expression profiling and real-time qPCR (RT-qPCR) exhibited their high expression in roots and stems compared to leaves. These results deliver primary data for functional analysis and provide reference data for other important crops.
Collapse
Affiliation(s)
- Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 51807, China; (M.Z.); (X.Y.)
| | - Athar Hussain
- Genomics Lab, Department of Life Science, University of Management and Technology (UMT), Lahore 54770, Pakistan;
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mahpara Fatima
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mateen Sajid
- Department of Horticulture, Ghazi University, Dera Ghazi Khan 32200, Pakistan;
| | - Nazia Rehman
- National Institute of Genomics and Advanced Biotechnology, National Agriculture Research Center, Islamabad 44000, Pakistan;
| | - Xuewei Yang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 51807, China; (M.Z.); (X.Y.)
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science(RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (K.A.K.); (H.A.G.)
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Research Center for Advanced Materials Science(RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (K.A.K.); (H.A.G.)
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 51807, China; (M.Z.); (X.Y.)
- Correspondence:
| |
Collapse
|