1
|
AlJindan R, Mahmoud N, AlEraky DM, Almandil NB, AbdulAzeez S, Borgio JF. Phenomics and genomic features of Enterococcus avium IRMC1622a isolated from a clinical sample of hospitalized patient. J Infect Public Health 2024; 17:102463. [PMID: 38833914 DOI: 10.1016/j.jiph.2024.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Enterococcus avium (E. avium) is a Gram-positive nosocomial pathogen that is commonly isolated from the alimentary tract. The objective of this functional genomics study was to identify the resistant genes by analyzing the genome of E. avium IRMC1622a, a type of bacteria found in feces collected from a patient at a Saudi Arabian tertiary hospital. METHODS The bacterial strain IRMC1622a was identified by 16 S rRNA sequencing as Enterococcus sp. The resistance phenomics were performed using VITEK® 2, and morphological analysis was achieved using a scanning electron microscope (SEM). Finally, the whole bacterial genome of the bacterial strain IRMC1622a was subjected to sequencing during October 2023 using Oxford Nanopore long-read sequencing technology, and mining for resistant genes. RESULTS The results of antimicrobial resistant phenomics indicated that the IRMC1622a strain was sensitive to all tested antimicrobial agents except for erythromycin, and the same result was confirmed by genomic analysis in addition to other classes of antibiotics. SEM showed E. avium IRMC1622a is ovoid shape, in single cells (L 1.2797 ± 0.1490 µm), in pairs (L 1.7333 ± 0.1054 µm), and in chains (L 2.44033 ± 0.1978 µm). The E. avium IRMC1622a genome has 14 (in CARD) antimicrobial resistance genes that were identified with several mechanisms of antimicrobial resistance, such as the efflux pump and conferring antibiotic resistance. The present study revealed that the E. avium IRMC1622a genome contains a high number of genes associated with virulence factors, and 14 matched pathogenic protein families and predicted as human pathogen (probability score 0.855). We report two (ISEnfa4 and ISEfa5) mobile genetic elements for the first time in the E. avium genome. CONCLUSIONS The study concludes that E. avium IRMC1622a is susceptible to all tested antibacterials except erythromycin. The IRMC1622a has 14 genes encoding antimicrobial resistance mechanisms, including the efflux pump and conferring antibiotic resistance. This could indicate a potential rise in E. avium resistance in healthcare facilities. These observations may raise concerns regarding E. avium resistance in healthcare. We need more research to understand the pathophysiology of E. avium, which leads to hospital-acquired infections.
Collapse
Affiliation(s)
- Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Nehal Mahmoud
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Doaa M AlEraky
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Noor B Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|
2
|
Mubaraki MA, Hussain M, Hassan FU, Munir S, Fozia F, Ahmad I, Bibi F, Sultan S, Zialluh Z. Antimicrobial Resistance and Associated Risk Factors for Clostridium difficile in Patients Attending Tertiary Care Settings. J Trop Med 2024; 2024:6613120. [PMID: 38784112 PMCID: PMC11115991 DOI: 10.1155/2024/6613120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
To determine the incidence of antimicrobial-resistant emerging pathogens, Clostridium difficile, and its associated risk factors in tertiary care setups of Pakistan. This cross-sectional prospective study was conducted from January 2019 to December 2020, to determine the prevalence and antimicrobial resistance patterns of C. difficile strains isolated from 450 stool specimens of patients suffering from diarrhea hospitalized in tertiary care hospitals in Peshawar, Pakistan. The stool samples of the patients were processed for culture and detection of toxin A and toxin B by enzyme-linked immunosorbent assay (ELISA) and tpi PCR. The drug sensitivity test was performed for antibiotics including ampicillin, cefixime, cefepime, amoxicillin, nalidixic acid, sulpha/TMP (SXT), chloramphenicol, metronidazole, vancomycin, ciprofloxacin, levofloxacin, and imipenem. Of 450 stool specimens, 108 (24%) were positive for C. difficile by stool culture, whereas 115 (25.5%) were only positive for C. difficile toxins based on ELISA and PCR (128 (28.6%). Of 108, 90.7% (n = 98) isolates were resistant to one antibiotic, and 90 (83.4%) were resistant to three or more antimicrobials. The highest resistance rates were found against penicillin (83.3%) followed by amoxicillin (70%), nalidixic acid (61%), and metronidazole (38%), and the lowest resistance was found against vancomycin (6.4%) and imipenem (3.7%). CDI was statistically significantly correlated with increased age, use of antibiotics, abdominal surgeries, use of proton pump inhibitors and H2a, and presence of comorbidities. The high frequency of C. difficile in Peshawar, Pakistan, indicates that CDI is an important nosocomial infection in different hospitals. The results will be helpful for clinicians to redesign control and therapeutic strategies in hospitals.
Collapse
Affiliation(s)
- Murad A. Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mubbashir Hussain
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Faaiz Ul Hassan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | | | - Fozia Fozia
- Department of Biochemistry, KMU Institute of Dental Sciences, Kohat 26000, Pakistan
| | - Ijaz Ahmad
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Fatima Bibi
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Samia Sultan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Ziaullah Zialluh
- College of Professional Studies, Northeastern University, Boston, MA, USA
| |
Collapse
|
3
|
Borgio JF, AlJindan R, Alghourab LH, Alquwaie R, Aldahhan R, Alhur NF, AlEraky DM, Mahmoud N, Almandil NB, AbdulAzeez S. Genomic Landscape of Multidrug Resistance and Virulence in Enterococcus faecalis IRMC827A from a Long-Term Patient. BIOLOGY 2023; 12:1296. [PMID: 37887006 PMCID: PMC10604365 DOI: 10.3390/biology12101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
We report on a highly virulent, multidrug-resistant strain of Enterococcus faecalis IRMC827A that was found colonizing a long-term male patient at a tertiary hospital in Khobar, Saudi Arabia. The E. faecalis IRMC827A strain carries several antimicrobial drug resistance genes and harbours mobile genetic elements such as Tn6009, which is an integrative conjugative element that can transfer resistance genes between bacteria and ISS1N via an insertion sequence. Whole-genome-sequencing-based antimicrobial susceptibility testing on strains from faecal samples revealed that the isolate E. faecalis IRMC827A is highly resistant to a variety of antibiotics, including tetracycline, doxycycline, minocycline, dalfopristin, virginiamycin, pristinamycin, chloramphenicol, streptomycin, clindamycin, lincomycin, trimethoprim, nalidixic acid and ciprofloxacin. The isolate IRMC827A carries several virulence factors that are significantly associated with adherence, biofilm formation, sortase-assembled pili, manganese uptake, antiphagocytosis, and spreading factor of multidrug resistance. The isolate also encompasses two mutations (G2576T and G2505A) in the 23S rRNA gene associated with linezolid resistance and three more mutations (gyrA p.S83Y, gyrA p.D759N and parC p.S80I) of the antimicrobial resistance phenotype. The findings through next-generation sequencing on the resistome, mobilome and virulome of the isolate in the study highlight the significance of monitoring multidrug-resistant E. faecalis colonization and infection in hospitalized patients. As multidrug-resistant E. faecalis is a serious pathogen, it is particularly difficult to treat and can cause fatal infections. It is important to have quick and accurate diagnostic tests for multidrug-resistant E. faecalis, to track the spread of multidrug-resistant E. faecalis in healthcare settings, and to improve targeted interventions to stop its spread. Further research is necessary to develop novel antibiotics and treatment strategies for multidrug-resistant E. faecalis infections.
Collapse
Affiliation(s)
- J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (R.A.); (N.F.A.)
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Lujeen H. Alghourab
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Rahaf Alquwaie
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Razan Aldahhan
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (R.A.); (N.F.A.)
| | - Norah F. Alhur
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (R.A.); (N.F.A.)
| | - Doaa M. AlEraky
- Department of Biomedical Dental Science, Microbiology and Immunology Division, Collage of Dentistry, Dammam 31441, Saudi Arabia
| | - Nehal Mahmoud
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (R.A.); (N.F.A.)
| |
Collapse
|
4
|
Novel Feather Degrading Keratinases from Bacillus cereus Group: Biochemical, Genetic and Bioinformatics Analysis. Microorganisms 2022; 10:microorganisms10010093. [PMID: 35056542 PMCID: PMC8781890 DOI: 10.3390/microorganisms10010093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
In this study, five keratinolytic bacteria were isolated from poultry farm waste of Eastern Province, Saudi Arabia. The highest keratinase activity was obtained at 40–45 °C, pH 8–9, feather concentration 0.5–1%, and using white chicken feather as keratin substrate for 72 h. Enhancement of keratinase activity through physical mutagen UV radiation and/or chemical mutagen ethyl methanesulfonate (EMS) resulted in five mutants with 1.51–3.73-fold increased activity over the wild type. When compared with the wild type, scanning electron microscopy validated the mutants’ effectiveness in feather degradation. Bacterial isolates are classified as members of the S8 family peptidase Bacillus cereus group based on sequence analysis of the 16S rRNA and keratinase genes. Interestingly, keratinase KerS gene shared 95.5–100% identity to keratinase, thermitase alkaline serine protease, and thermophilic serine protease of the B. cereus group. D137N substitution was observed in the keratinase KerS gene of the mutant strain S13 (KerS13uv+ems), and also seven substitution variations in KerS26 and KerS26uv of strain S26 and its mutant S26uv. Functional analysis revealed that the subtilisin-like serine protease domain containing the Asp/His/Ser catalytic triad of KerS gene was not affected by the predicted substitutions. Prediction of physicochemical properties of KerS gene showed instability index between 17.5–19.3 and aliphatic index between 74.7–75.7, which imply keratinase stability and significant thermostability. The docking studies revealed the impact of substitutions on the superimposed structure and an increase in binding of mutant D137N of KerS13uv+ems (affinity: −7.17; S score: −6.54 kcal/mol) and seven mutants of KerS26uv (affinity: −7.43; S score: −7.17 kcal/mol) compared to the wild predicted structure (affinity: −6.57; S score: −6.68 kcal/mol). Together, the keratinolytic activity, similarity to thermostable keratinases, and binding affinity suggest that keratinases KerS13uv+ems and KerS26uv could be used for feather processing in the industry.
Collapse
|
5
|
Borgio JF, Rasdan AS, Sonbol B, Alhamid G, Almandil NB, AbdulAzeez S. Emerging Status of Multidrug-Resistant Bacteria and Fungi in the Arabian Peninsula. BIOLOGY 2021; 10:biology10111144. [PMID: 34827138 PMCID: PMC8614875 DOI: 10.3390/biology10111144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The incidence and developing status of multidrug-resistant bacteria and fungi, as well as their related mortality, is reviewed by a systematic published literature search from nine countries in the Arabian Peninsula. In order to analyse the emerging status and mortality, a total of 382 research articles were selected from a comprehensive screening of 1705 papers. More than 850 deaths reported since 2010 in the Arabian Peninsula due to the infection of multidrug-resistant bacteria and fungi. Multidrug-resistant bacteria Acinetobacter baumannii, Mycobacterium tuberculosis, Staphylococcus aureus, and fungi Candida auris are the most prevalent and causing high deaths. To control these infections and associated deaths in the Arabian Peninsula, continuous preventive measures, accurate methods for early diagnosis of infection, active surveillance, constant monitoring, developing vaccines, eradicating multidrug resistance modulators, and data sharing among countries are required. Abstract We aimed to identify the prevalence and emerging status of multidrug-resistant bacteria and fungi and their associated mortality in nine countries in the Arabian Peninsula. Original research articles and case studies regarding multidrug-resistant bacteria and fungi in the Arabian Peninsula, published during the last 10 years, were retrieved from PubMed and Scopus. A total of 382 studies were included as per the inclusion and exclusion criteria, as well as the PRISMA guidelines, from a thorough screening of 1705 articles, in order to analyse the emerging status and mortality. The emerging nature of >120 multidrug-resistant (MDR) bacteria and fungi in the Arabian Peninsula is a serious concern that requires continuous monitoring and immediate preventive measures. More than 50% (n = 453) of multidrug-resistant, microbe-associated mortality (n = 871) in the Arabian Peninsula was due to MDR Acinetobacter baumannii, Mycobacterium tuberculosis and Staphylococcus aureus infection. Overall, a 16.51% mortality was reported among MDR-infected patients in the Arabian Peninsula from the 382 articles of this registered systematic review. MDR A. baumannii (5600 isolates) prevailed in all the nine countries of the Arabian Peninsula and was one of the fastest emerging MDR bacteria with the highest mortality (n = 210). A total of 13,087 Mycobacterium tuberculosis isolates were reported in the region. Candida auris (580 strains) is the most prevalent among the MDR fungal pathogen in the Arabian Peninsula, having caused 54 mortalities. Active surveillance, constant monitoring, the development of a candidate vaccine, an early diagnosis of MDR infection, the elimination of multidrug resistance modulators and uninterrupted preventive measures with enhanced data sharing are mandatory to control MDR infection and associated diseases of the Arabian Peninsula. Accurate and rapid detection methods are needed to differentiate MDR strain from other strains of the species. This review summarises the logical relation, prevalence, emerging status and associated mortality of MDR microbes in the Arabian Peninsula.
Collapse
Affiliation(s)
- J. Francis Borgio
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.R.); (B.S.); (G.A.)
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
- Correspondence: or ; Tel.: +966-013-3330864
| | - Alia Saeed Rasdan
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.R.); (B.S.); (G.A.)
| | - Bayan Sonbol
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.R.); (B.S.); (G.A.)
| | - Galyah Alhamid
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.R.); (B.S.); (G.A.)
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| |
Collapse
|