1
|
Khalifani S, Darvishzadeh R, Montaseri M, Zaman Zad Ghavidel S, Hatami Maleki H, Kordrostami M. Advanced computational approaches for predicting sunflower yield: Insights from ANN, ANFIS, and GEP in normal and salinity stress environments. PLoS One 2025; 20:e0319331. [PMID: 39992938 PMCID: PMC11849905 DOI: 10.1371/journal.pone.0319331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Prediction of crop yield is essential for decision-makers to ensure food security and provides valuable information to farmers about factors affecting high yields. This research aimed to predict sunflower grain yield under normal and salinity stress conditions using three modeling techniques: artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP). A pot experiment was conducted with 96 inbred sunflower lines (generation six) derived from crossing two parent lines, over a single growing season. Ten morphological traits-including hundred-seed weight (HSW), number of leaves, leaf length (LL) and width, petiole length, stem diameter, plant height, head dry weight (HDW), days to flowering, and head diameter-were measured as input variables to predict grain yield. Salinity stress was induced by applying irrigation water with electrical conductivity (EC) levels of 2 dS/m (control) and 8 dS/m (stress condition) using NaCl, applied after the seedlings reached the 8-leaf stage. The GEP model demonstrated the highest precision in predicting sunflower grain yield, with coefficient of determination (R2) values of 0.803 and 0.743, root mean squared error (RMSE) of 4.115 and 4.022, and mean absolute error (MAE) of 3.177 and 2.803 under normal conditions and salinity stress, respectively, during the testing phase. Sensitivity analysis using the GEP model identified LL, head diameter, HSW, and HDW as the most significant parameters influencing grain yield under salinity stress. Therefore, the GEP model provides a promising tool for predicting sunflower grain yield, potentially aiding in yield improvement programs under varying environmental conditions.
Collapse
Affiliation(s)
- Sanaz Khalifani
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Reza Darvishzadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Majid Montaseri
- Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Hamid Hatami Maleki
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| |
Collapse
|
2
|
Ren A, Wen T, Xu X, Wu J, Zhao G. Cotton HD-Zip I transcription factor GhHB4-like regulates the plant response to salt stress. Int J Biol Macromol 2024; 278:134857. [PMID: 39168205 DOI: 10.1016/j.ijbiomac.2024.134857] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Soil salinity is a major environmental constraint to plant production. The homeodomain-leucine zipper I (HD-Zip I) transcription factors play a crucial role in growth, development and defence responses of plants. However, the function and underlying mechanism of HD-Zip I in cotton remain unexplored. This study investigated the role of GhHB4-like, a cotton HD-Zip I gene, in plant tolerance to salt stress. Ectopic expression of GhHB4-like gene enhanced, while its silencing impaired the salt tolerance in Arabidopsis. Y1H and effector-reporter assays revealed that GhHB4-like activated the expression of GhNAC007, which is essential for salt resistance. Knock-down of GhNAC007 also impaired salt resistance of cotton plants. In addition, GhHB4-like-GhNAC007 might have positively regulated the expression of GhMYB96 and ABA signalling-related genes, thereby leading to enhanced salt resistance. Interestingly, deleting motifs 3 and 5 near the 3'-end of GhHB4-like significantly enhanced GhNAC007 activation, indicating that both motifs acted as transcriptional activation inhibitory domains. The results suggest that GhHB4-like-GhNAC007 regulated plant response to salt stress, potentially by modulating GhMYB96 and ABA signalling-related genes.
Collapse
Affiliation(s)
- Aiping Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianyang Wen
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Xu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiahe Wu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Plant Genomics, Institute of Microbiology Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ge Zhao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Gao Y, Ma X, Zhang Z, Wang Y. Transcription factors and plant hormones mediate wax metabolism in response to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14478. [PMID: 39149803 DOI: 10.1111/ppl.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 08/17/2024]
Abstract
Plants have, throughout evolution, developed a hydrophobic cuticle to protect them from various stresses in the terrestrial environment. The cuticle layer is mainly composed of cutin and cuticular wax, a mixture of very-long-chain fatty acids and their derivatives. With the progress of transcriptome sequencing and other research methods, the key enzymes, transporters and regulatory factors in wax synthesis and metabolism have been gradually identified, especially the study on the regulation of wax metabolism by transcription factors and others in response to plant stress has become a hot topic. Drought is a major abiotic stress that limits plant growth and crop productivity. Plant epidermal wax prevents non-stomatal water loss and improves water use efficiency to adapt to arid environments. In this study, the ways of wax synthesis, transport, metabolism and regulation at different levels are reviewed. At the same time, the regulation of wax by different transcription factors and plant hormones in response to drought is elaborated, and key research questions and important directions for future solutions are proposed to enhance the potential application of epidermal wax in agriculture and the environment.
Collapse
Affiliation(s)
- Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiaolan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Hamid R, Ghorbanzadeh Z, Jacob F, Nekouei MK, Zeinalabedini M, Mardi M, Sadeghi A, Ghaffari MR. Decoding drought resilience: a comprehensive exploration of the cotton Eceriferum (CER) gene family and its role in stress adaptation. BMC PLANT BIOLOGY 2024; 24:468. [PMID: 38811873 PMCID: PMC11134665 DOI: 10.1186/s12870-024-05172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The cuticular wax serves as a primary barrier that protects plants from environmental stresses. The Eceriferum (CER) gene family is associated with wax production and stress resistance. RESULTS In a genome-wide identification study, a total of 52 members of the CER family were discovered in four Gossypium species: G. arboreum, G. barbadense, G. raimondii, and G. hirsutum. There were variations in the physicochemical characteristics of the Gossypium CER (GCER) proteins. Evolutionary analysis classified the identified GCERs into five groups, with purifying selection emerging as the primary evolutionary force. Gene structure analysis revealed that the number of conserved motifs ranged from 1 to 15, and the number of exons varied from 3 to 13. Closely related GCERs exhibited similar conserved motifs and gene structures. Analyses of chromosomal positions, selection pressure, and collinearity revealed numerous fragment duplications in the GCER genes. Additionally, nine putative ghr-miRNAs targeting seven G. hirsutum CER (GhCER) genes were identified. Among them, three miRNAs, including ghr-miR394, ghr-miR414d, and ghr-miR414f, targeted GhCER09A, representing the most targeted gene. The prediction of transcription factors (TFs) and the visualization of the regulatory TF network revealed interactions with GhCER genes involving ERF, MYB, Dof, bHLH, and bZIP. Analysis of cis-regulatory elements suggests potential associations between the CER gene family of cotton and responses to abiotic stress, light, and other biological processes. Enrichment analysis demonstrated a robust correlation between GhCER genes and pathways associated with cutin biosynthesis, fatty acid biosynthesis, wax production, and stress response. Localization analysis showed that most GCER proteins are localized in the plasma membrane. Transcriptome and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) expression assessments demonstrated that several GhCER genes, including GhCER15D, GhCER04A, GhCER06A, and GhCER12D, exhibited elevated expression levels in response to water deficiency stress compared to control conditions. The functional identification through virus-induced gene silencing (VIGS) highlighted the pivotal role of the GhCER04A gene in enhancing drought resistance by promoting increased tissue water retention. CONCLUSIONS This investigation not only provides valuable evidence but also offers novel insights that contribute to a deeper understanding of the roles of GhCER genes in cotton, their role in adaptation to drought and other abiotic stress and their potential applications for cotton improvement.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | | | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
5
|
Wei H, Wang X, Wang K, Tang X, Zhang N, Si H. Transcription factors as molecular switches regulating plant responses to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14366. [PMID: 38812034 DOI: 10.1111/ppl.14366] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Plants often experience abiotic stress, which severely affects their growth. With the advent of global warming, drought stress has become a pivotal factor affecting crop yield and quality. Increasing numbers of studies have focused on elucidating the molecular mechanisms underlying plant responses to drought stress. As molecular switches, transcription factors (TFs) are key participants in drought-resistance regulatory networks in crops. TFs regulate the transcription of downstream genes and are regulated by various upstream regulatory factors. Therefore, understanding the mechanisms of action of TFs in regulating drought stress can help enhance the adaptive capacity of crops under drought conditions. In this review, we summarize the structural characteristics of several common TFs, their multiple drought-response pathways, and recently employed research strategies. We describe the application of new technologies such as analysis of stress granule dynamics and function, multi-omics data, gene editing, and molecular crosstalk between TFs in drought resistance. This review aims to familiarize readers with the regulatory network of TFs in drought resistance and to provide a reference for examining the molecular mechanisms of drought resistance in plants and improving agronomic traits.
Collapse
Affiliation(s)
- Han Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xiao Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Kaitong Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
6
|
Wang Y, Cao R, Yang L, Duan X, Zhang C, Yu X, Ye X. Transcriptome Analyses Revealed the Wax and Phenylpropanoid Biosynthesis Pathways Related to Disease Resistance in Rootstock-Grafted Cucumber. PLANTS (BASEL, SWITZERLAND) 2023; 12:2963. [PMID: 37631174 PMCID: PMC10458401 DOI: 10.3390/plants12162963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Cucumbers (Cucumis sativus L.) are a global popular vegetable and are widely planted worldwide. However, cucumbers are susceptible to various infectious diseases such as Fusarium and Verticillium wilt, downy and powdery mildew, and bacterial soft rot, which results in substantial economic losses. Grafting is an effective approach widely used to control these diseases. The present study investigated the role of wax and the phenylpropanoid biosynthesis pathway in black-seed pumpkin rootstock-grafted cucumbers. Our results showed that grafted cucumbers had a significantly higher cuticular wax contents on the fruit surface than that of self-rooted cucumbers at all stages observed. A total of 1132 differently expressed genes (DEGs) were detected in grafted cucumbers compared with self-rooted cucumbers. Pathway enrichment analysis revealed that phenylpropanoid biosynthesis, phenylalanine metabolism, plant circadian rhythm, zeatin biosynthesis, and diterpenoid biosynthesis were significantly enriched. In this study, 1 and 13 genes involved in wax biosynthesis and the phenylpropanoid biosynthesis pathway, respectively, were up-regulated in grafted cucumbers. Our data indicated that the up-regulated genes in the wax and phenylpropanoid biosynthesis pathways may contribute to disease resistance in rootstock-grafted cucumbers, which provides promising targets for enhancing disease resistance in cucumbers by genetic manipulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xueling Ye
- Collage of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang 110866, China; (Y.W.); (R.C.); (L.Y.); (X.D.); (C.Z.); (X.Y.)
| |
Collapse
|
7
|
Sun R, Qin T, Wall SB, Wang Y, Guo X, Sun J, Liu Y, Wang Q, Zhang B. Genome-wide identification of KNOX transcription factors in cotton and the role of GhKNOX4-A and GhKNOX22-D in response to salt and drought stress. Int J Biol Macromol 2023; 226:1248-1260. [PMID: 36442570 DOI: 10.1016/j.ijbiomac.2022.11.238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Cotton is one of the most important economic and fiber crops in the world. KNOX is one class of universal transcription factors, which plays important roles in plant growth and development as well as response to different stresses. Although there are many researches on KNOXs in other plant species, there are few reports on cotton. In this study, we systematically and comprehensively identified all KNOX genes in upland cotton and its two ancestral species; we also studied their functions by employing RNA-seq analysis and virus-induced gene silence (VIGS). A total of 89 KNOX genes were identified from three cotton species. Among them, 44 were from upland cotton, 22 and 23 were found in its ancestral species G. raimondii and G. arboreum, respectively. Plant polyploidization and domestication play a selective force driving KNOX gene evolution. Phylogenetic analysis displayed that KNOX genes were evolved into three Classes. The intron length and exon number differed in each Class. Transcriptome data showed that KNOX genes of Class II were widely expressed in multiple tissues, including fiber. The majority of KNOX genes were induced by different abiotic stresses. Additionally, we found multiple cis-elements related to stress in the promoter region of KNOX genes. VIGS silence of GhKNOX4-A and GhKNOX22-D genes showed significant growth and development effect in cotton seedlings under salt and drought treatments. Both GhKNOX4-A and GhKNOX22-D regulated plant tolerance; silencing both genes induced oxidative stresses, evidenced by reduced SOD activity and induced leave cell death, and also enhanced stomatal open and water loss. Thus, GhKNOX4-A and GhKNOX22-D may contribute to drought response by regulating stomata opening and oxidative stresses.
Collapse
Affiliation(s)
- Runrun Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Tengfei Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Sarah Brooke Wall
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yuanyuan Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xinlei Guo
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Jialiang Sun
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
8
|
Laskoś K, Myśków B, Dziurka M, Warchoł M, Dziurka K, Juzoń K, Czyczyło-Mysza IM. Variation between glaucous and non-glaucous near-isogenic lines of rye (Secale cereale L.) under drought stress. Sci Rep 2022; 12:22486. [PMID: 36577794 PMCID: PMC9797576 DOI: 10.1038/s41598-022-26869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Glaucous (811, L35, and RXL10) and non-glaucous (811bw, L35bw, and RXL10bw) near-isogenic lines (NILs) of rye (Secale cereale L.) forming three pairs of inbred lines were the subject of the research. The research aimed to study the relationship between wax cover attributes and the physio-biochemical drought reactions and yield of rye NILs and to uncover the differences in drought resistance levels of these lines. The greatest differences between glaucous and non-glaucous NILs were observed in the RXL10/RXL10bw pair. Of particular note were the stable grain number and the thousand grain weight of the non-glaucous line RXL10bw under drought and the accompanying reactions, such as an approximately 60% increase in MDA and a two-fold increase in wax amount, both of which were significantly higher than in the glaucous line RXL10 and in other NILs. The surprisingly high level of MDA in the RXL10bw line requires further analysis. Moreover, additional wax crystal aggregates were found under drought conditions on the abaxial leaf surface of the glaucous lines 811 and RXL10. The use of rye NILs indicated that line-specific drought resistance could be associated with wax biosynthetic pathways involved in physiological and biochemical responses important for increased drought resistance.
Collapse
Affiliation(s)
- Kamila Laskoś
- grid.460372.4The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Beata Myśków
- grid.411391.f0000 0001 0659 0011Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Słowackiego 17, 71-434 Szczecin, Poland
| | - Michał Dziurka
- grid.460372.4The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Marzena Warchoł
- grid.460372.4The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Kinga Dziurka
- grid.460372.4The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Katarzyna Juzoń
- grid.460372.4The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Ilona M. Czyczyło-Mysza
- grid.460372.4The Franciszek Górski Institute of Plant Physiology Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| |
Collapse
|
9
|
Venkatesh B, Vennapusa AR, Kumar NJ, Jayamma N, Reddy BM, Johnson AMA, Madhusudan KV, Pandurangaiah M, Kiranmai K, Sudhakar C. Co-expression of stress-responsive regulatory genes, MuNAC4, MuWRKY3 and MuMYB96 associated with resistant-traits improves drought adaptation in transgenic groundnut ( Arachis hypogaea l.) plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1055851. [PMID: 36466254 PMCID: PMC9709484 DOI: 10.3389/fpls.2022.1055851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/28/2022] [Indexed: 05/24/2023]
Abstract
Groundnut, cultivated under rain-fed conditions is prone to yield losses due to intermittent drought stress. Drought tolerance is a complex phenomenon and multiple gene expression required to maintain the cellular tolerance. Transcription factors (TFs) regulate many functional genes involved in tolerance mechanisms. In this study, three stress-responsive regulatory TFs cloned from horse gram, (Macrotyloma uniflorum (Lam) Verdc.), MuMYB96, involved in cuticular wax biosynthesis; MuWRKY3, associated with anti-oxidant defense mechanism and MuNAC4, tangled with lateral root development were simultaneously expressed to enhance drought stress resistance in groundnut (Arachis hypogaea L.). The multigene transgenic groundnut lines showed reduced ROS production, membrane damage, and increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) enzyme activity, evidencing improved antioxidative defense mechanisms under drought stress. Multigene transgenic plants showed lower proline content, increased soluble sugars, epicuticular wax content and higher relative water content suggesting higher maintenance of tissue water status compared to wildype and mock plants. The scanning electron microscopy (SEM) analysis showed a substantial increase in deposition of cuticular waxes and variation in stomatal number in multigene transgenic lines compared to wild type and mock plants. The multigene transgenic plants showed increased growth of lateral roots, chlorophyll content, and stay-green nature in drought stress compared to wild type and mock plants. Expression analysis of transgenes, MuMYB96, MuWRKY3, and MuNAC4 and their downstream target genes, KCS6, KCR1, APX3, CSD1, LBD16 and DBP using qRT-PCR showed a two- to four-fold increase in transcript levels in multigene transgenic groundnut plants over wild type and mock plants under drought stress. Our study demonstrate that introducing multiple genes with simultaneous expression of genes is a viable option to improve stress tolerance and productivity under drought stress.
Collapse
Affiliation(s)
- Boya Venkatesh
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapuram, India
| | - Amaranatha R. Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Nulu Jagadeesh Kumar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapuram, India
| | - N. Jayamma
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapuram, India
| | - B. Manohara Reddy
- Department of Botany, Government College (Autonomous), Anantapuram, India
| | | | - K. V. Madhusudan
- Department of Botany, Government College, Cluster University, Kurnool, India
| | - Merum Pandurangaiah
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapuram, India
| | - K. Kiranmai
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapuram, India
| | - Chinta Sudhakar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapuram, India
| |
Collapse
|
10
|
Zeb U, Wang X, AzizUllah A, Fiaz S, Khan H, Ullah S, Ali H, Shahzad K. Comparative genome sequence and phylogenetic analysis of chloroplast for evolutionary relationship among Pinus species. Saudi J Biol Sci 2022; 29:1618-1627. [PMID: 35280541 PMCID: PMC8913380 DOI: 10.1016/j.sjbs.2021.10.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/24/2021] [Accepted: 10/31/2021] [Indexed: 01/02/2023] Open
Abstract
Genus Pinus is a widely dispersed genus of conifer plants in the Northern Hemisphere. However, the inadequate accessibility of genomic knowledge limits our understanding of molecular phylogeny and evolution of Pinus species. In this study, the evolutionary features of complete plastid genome and the phylogeny of the Pinus genus were studied. A total of thirteen divergent hotspot regions (trnk-UUU, matK, trnQ-UUG, atpF, atpH, rpoC1, rpoC2, rpoB, ycf2, ycf1, trnD-GUC, trnY-GUA, and trnH-GUG) were identified that would be utilized as possible genetic markers for determination of phylogeny and population genetics analysis of Pinus species. Furthermore, seven genes (petD, psaI, psaM, matK, rps18, ycf1, and ycf2) with positive selection site in Pinus species were identified. Based on the whole genome this phylogenetic study showed that twenty-four Pinus species form a significant genealogical clade. Divergence time showed that the Pinus species originated about 100 million years ago (MYA) (95% HPD, 101.76.35–109.79 MYA), in lateral stages of Cretaceous. Moreover, two of the subgenera are consequently originated in 85.05 MYA (95% HPD, 81.04–88.02 MYA). This study provides a phylogenetic relationship and a chronological framework for the future study of the molecular evolution of the Pinus species.
Collapse
Affiliation(s)
- Umar Zeb
- Department of Biology, The University of Haripur, 22620, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, Shaanxi, China
- Corresponding authors.
| | | | - Sajid Fiaz
- Department of Plant Breeding anf Genetics, The University of Haripur, 22620 Haripur, Pakistan
- Corresponding authors.
| | - Hanif Khan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Shariat Ullah
- Department of Botany University of Malakand, Pakistan
| | - Habib Ali
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Khurram Shahzad
- Department of Plant Breeding anf Genetics, The University of Haripur, 22620 Haripur, Pakistan
| |
Collapse
|
11
|
Sun J, Cui H, Wu B, Wang W, Yang Q, Zhang Y, Yang S, Zhao Y, Xu D, Liu G, Qin T. Genome-Wide Identification of Cotton ( Gossypium spp.) Glycerol-3-Phosphate Dehydrogenase (GPDH) Family Members and the Role of GhGPDH5 in Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:592. [PMID: 35270062 PMCID: PMC8912411 DOI: 10.3390/plants11050592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Glycerol-3-phosphate dehydrogenase (GPDH) is a key enzyme in plant glycerol synthesis and metabolism, and plays an important role in plant resistance to abiotic stress. Here, we identified 6, 7, 14 and 14 GPDH genes derived from Gossypium arboreum, Gossypium raimondii, Gossypium barbadense and Gossypium hirsutum, respectively. Phylogenetic analysis assigned these genes into three classes, and most of the genes within the family were expanded by whole-genome duplication (WGD) and segmental duplications. Moreover, determination of the nonsynonymous substitution rate/synonymous substitution rate (Ka/Ks) ratio showed that the GPDH had an evolutionary preference for purifying selection. Transcriptome data revealed that GPDH genes were more active in the early stages of fiber development. Additionally, numerous stress-related cis-elements were identified in the potential promoter region. Then, a protein-protein-interaction (PPI) network of GPDH5 in G. hirsutum was constructed. In addition, we predicted 30 underlying miRNAs in G. hirsutum. Functional validation results indicated that silencing GhGPDH5 diminished drought tolerance in the upland cotton TM-1 line. In summary, this study provides a fundamental understanding of the GPDH gene family in cotton, GhGPDH5 exerts a positive effect during drought stress and is potentially involved in stomatal closure movements.
Collapse
Affiliation(s)
- Jialiang Sun
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266100, China;
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Hua Cui
- Key Laboratory of Cell and Gene Circuit Design, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Bingjie Wu
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Weipeng Wang
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Qiuyue Yang
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Yaxin Zhang
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Song Yang
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Yuping Zhao
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| | - Dongbei Xu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoxiang Liu
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266100, China;
| | - Tengfei Qin
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266100, China;
- College of Agriculture, Liaocheng University, Liaocheng 252059, China; (B.W.); (W.W.); (Q.Y.); (Y.Z.); (S.Y.); (Y.Z.)
| |
Collapse
|
12
|
Muhammad Ahmad H, Wang X, Fiaz S, Mahmood-Ur-Rahman, Azhar Nadeem M, Aslam Khan S, Ahmar S, Azeem F, Shaheen T, Mora-Poblete F. Comprehensive genomics and expression analysis of eceriferum (CER) genes in sunflower ( Helianthus annuus). Saudi J Biol Sci 2021; 28:6884-6896. [PMID: 34866989 PMCID: PMC8626276 DOI: 10.1016/j.sjbs.2021.07.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 11/06/2022] Open
Abstract
Sunflower occupies the fourth position among oilseed crops the around the world. Eceriferum (CER) is an important gene family that plays critical role in very-long-chain fatty acids elongation and biosynthesis of epicuticular waxes under both biotic and abiotic stress conditions. The aim of present study was to investigate the effect of sunflower CER genes during drought stress condition. Thus, comparative analysis was undertaken for sunflower CER genes with Arabidopsis genome to determine phylogenetic relationship, chromosomal mapping, gene structures, gene ontology and conserved motifs. Furthermore, we subjected the sunflower cultivars under drought stress and used qRT-PCR analysis to explore the expression pattern of CER genes during drought conditions. We identified thirty-seven unevenly distributed CER genes in the sunflower genome. The phylogenetic analysis revealed that CER genes were grouped into seven clades in Arabidopsis, Helianthus annuus, and Gossypium hirsutum. Expression analysis showed that genes CER10 and CER60 were upregulated in sunflower during drought conditions, indicating that these genes are activated during drought stress. The results obtained will serve to characterize the CER gene family in sunflower and exploit the role of these genes in wax biosynthesis under limited water conditions. Key message Cuticular waxes protect the plants from drought stress, so we observed the expression of wax bio synthesis genes in recently sequences genome of Helianthus annuus. We observed that expression of wax biosynthesis genes CER10 and CER60 was upregulated when the plants were subjected to drought stress.
Collapse
Affiliation(s)
- Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, 22620, Pakistan
| | - Mahmood-Ur-Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Sciences and Technology, Sivas 58140, Turkey
| | - Sher Aslam Khan
- Department of Plant Breeding and Genetics, The University of Haripur, 22620, Pakistan
| | - Sunny Ahmar
- Institute of Biological Sciences, Campus Talca, Universidad deTalca, Talca 3465548, Chile
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Tayyaba Shaheen
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, Campus Talca, Universidad deTalca, Talca 3465548, Chile
| |
Collapse
|