1
|
Purohit K, Pathak R, Hayes E, Sunna A. Novel bioactive peptides from ginger rhizome: Integrating in silico and in vitro analysis with mechanistic insights through molecular docking. Food Chem 2025; 484:144432. [PMID: 40279907 DOI: 10.1016/j.foodchem.2025.144432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Ginger (Zingiber officinale) is widely recognised for its functional benefits, primarily attributed to its diverse phytochemicals. However, its proteome remains largely unexplored. This study hypothesised that isolated peptides may exhibit different bioactivities or more targeted mechanisms of action and could be investigated at a molecular level. Proteins were enzymatically hydrolysed under five conditions, and peptides were identified using LC-MS/MS. In silico screening suggested antioxidant, ACE-inhibitory, and antibacterial properties, further assessed through molecular docking and in vitro validation. 41 potentially bioactive peptides were identified. In vitro assays confirmed these properties for selected peptides, P1 (GSPVWIIPEPT), P2 (FASYPVKK), P3 (GPEKIFYDGPYL), and P4 (IAISPSYPIK). Notably, P4 exhibited potent mixed-type ACE-inhibition and bacteriostatic effects. Molecular docking provided mechanistic insights into these interactions. These findings highlight ginger as a promising source of bioactive peptides while underscoring the need to complement AI tools with in vitro and in vivo validations due to observed discrepancies.
Collapse
Affiliation(s)
- Kruttika Purohit
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia; Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia's Bioactives (FAAB), Sydney, NSW 2109, Australia
| | - Rachana Pathak
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia; Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia's Bioactives (FAAB), Sydney, NSW 2109, Australia
| | - Evan Hayes
- Factors Group Australia, Sydney, NSW 2116, Australia
| | - Anwar Sunna
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia; Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia's Bioactives (FAAB), Sydney, NSW 2109, Australia.
| |
Collapse
|
2
|
Wu J, Zhang X, Jin Y, Zhang M, Yu R, Song L, Liu F, Zhu J. Investigation of Anticancer Peptides Derived from Arca Species Using In Silico Analysis. Molecules 2025; 30:1640. [PMID: 40286246 PMCID: PMC11990805 DOI: 10.3390/molecules30071640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
This study employed an integrated in silico approach to identify and characterize anticancer peptides (ACPs) derived from Arca species. Using a comprehensive bioinformatics pipeline (BIOPEP, ToxinPred, ProtParam, ChemDraw, SwissTargetPrediction, and I-TASSER), we screened hydrolyzed bioactive peptides from Arca species, identifying seventeen novel peptide candidates. Subsequent in vitro validation revealed three peptides (KW, WQIWYK, KGKWQIWYKSL) with significant anticancer activity, demonstrating both high biosafety and clinical potential. Our findings highlight Arca species proteins as a valuable source of therapeutic ACPs and establish bioinformatics as an efficient strategy for rapid discovery of bioactive peptides. This approach combines computational prediction with experimental validation, offering a robust framework for developing novel peptide-based therapeutics.
Collapse
Affiliation(s)
- Jixu Wu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
- Shandong Engineering Research Center for Efficient Preparation and Application of Sugar and Sugar Complex, Shandong Academy of Pharmaceutical Science, Jinan 250101, China
| | - Xiuhua Zhang
- Shandong Engineering Research Center for Efficient Preparation and Application of Sugar and Sugar Complex, Shandong Academy of Pharmaceutical Science, Jinan 250101, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Science, Jinan 250101, China
| | - Yuting Jin
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Man Zhang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Liyan Song
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| | - Fei Liu
- Shandong Engineering Research Center for Efficient Preparation and Application of Sugar and Sugar Complex, Shandong Academy of Pharmaceutical Science, Jinan 250101, China
- Shandong Provincial Key Laboratory of Carbohydrate and Glycoconjugate Drugs, Shandong Academy of Pharmaceutical Science, Jinan 250101, China
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Yenny SW, Jamsari J, Hazmi AA, Cuandra KN, Hanifah W, Yahono AS, Wahyudi DP, Buana GR, Rahman ARK, Maharani AD, Firjatullah MF, Maulana R, Prayogi NM, Tristan CD. In silico analysis of Arbacia lixula-derived peptides and plasmid construction for recombinant anti-aging therapies. NARRA J 2024; 4:e1283. [PMID: 39816070 PMCID: PMC11731804 DOI: 10.52225/narra.v4i3.1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 01/18/2025]
Abstract
Skin aging is one of the degenerative processes influenced by tyrosinase, elastase, collagenase, hyaluronidase, and matrix metalloproteinase-9 (MMP9) activity. One promising avenue for discovering antiaging therapeutics is the peptides from the Arbacia lixula spine. The aim of this study was to explore the potential of peptides from A. lixula spine as a multitarget inhibitor for recombinant antiaging therapies through in silico approaches. The crystal structure of peptides previously identified in A. lixula spine was visualized using the UCSF Chimera. The protein data bank (PDB) database was used to obtain the crystal structures of protein targets. The webservers Innovagen, AllerTop, and ToxinPred were utilized to predict the peptide's water solubility, toxicity, and allergenicity. MOE application was used to prepare all ligands and proteins, molecular docking, and visualization. Molecular dynamics simulations were carried out on the protein-ligand complexes on Yasara Dynamics application. The Benchling website was used to perform virtual electrophoresis and reconstruct the recombinant plasmid (Psb1c3). Based on the molecular docking results, peptide REGSPDLLE has the potential as a multitarget inhibitor of tyrosinase (-9.07 kcal/mol), hyaluronidase (-10.57 kcal/mol), elastase (-9.32 kcal/mol), collagenase (-10.57 kcal/mol), and MMP9 (-10.43 kcal/mol). Peptide REGSPDLLE was selected due to its strong binding affinity on the active site of each target protein and exhibits non-toxic, non-allergenic, and good water-soluble as indicated by Support Vector Machine score <0. Molecular dynamics simulations confirmed stable interactions with receptor proteins. Peptide REGSPDLLE was successfully inserted into the recombinant pSB1C3 plasmid, confirmed by virtual electrophoresis with bands at ∼2000bp and ∼150 bp. Further in vitro and in vivo studies are necessary to verify the anti- aging efficacy of peptide REGSPDLLE.
Collapse
Affiliation(s)
- Satya W. Yenny
- Department of Dermatology, Venereology and Esthetic, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Jamsari Jamsari
- Department of Agrotechnology, Faculty of Agriculture, Universitas Andalas, Padang, Indonesia
| | - Auliya A. Hazmi
- Department of Dermatology, Venereology and Esthetic, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Kevin N. Cuandra
- Department of Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Wafiq Hanifah
- Department of Medicine, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Angela S. Yahono
- Department of Medicine, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dhyani P. Wahyudi
- Department of Medicine, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Gherriandi R. Buana
- Department of Medicine, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Awalil RK. Rahman
- Department of Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Annisa D. Maharani
- Department of Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Muhammad F. Firjatullah
- Department of Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Rafi Maulana
- Department of Medicine, Faculty of Medicine, Universitas Andalas, Padang, Indonesia
| | - Norbertus M. Prayogi
- Department of Medicine, Faculty of Medicine, Universitas Lampung, Lampung, Indonesia
| | - Christopher D. Tristan
- Department of Medicine, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| |
Collapse
|
4
|
Agüero-Chapin G, Domínguez-Pérez D, Marrero-Ponce Y, Castillo-Mendieta K, Antunes A. Unveiling Encrypted Antimicrobial Peptides from Cephalopods' Salivary Glands: A Proteolysis-Driven Virtual Approach. ACS OMEGA 2024; 9:43353-43367. [PMID: 39494035 PMCID: PMC11525497 DOI: 10.1021/acsomega.4c01959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 11/05/2024]
Abstract
Antimicrobial peptides (AMPs) have potential against antimicrobial resistance and serve as templates for novel therapeutic agents. While most AMP databases focus on terrestrial eukaryotes, marine cephalopods represent a promising yet underexplored source. This study reveals the putative reservoir of AMPs encrypted within the proteomes of cephalopod salivary glands via in silico proteolysis. A composite protein database comprising 5,412,039 canonical and noncanonical proteins from salivary apparatus of 14 cephalopod species was subjected to digestion by 5 proteases under three protocols, yielding over 9 million of nonredundant peptides. These peptides were effectively screened by a selection of 8 prediction and sequence comparative tools, including machine learning, deep learning, multiquery similarity-based models, and complex networks. The screening prioritized the antimicrobial activity while ensuring the absence of hemolytic and toxic properties, and structural uniqueness compared to known AMPs. Five relevant AMP datasets were released, ranging from a comprehensive collection of 542,485 AMPs to a refined dataset of 68,694 nonhemolytic and nontoxic AMPs. Further comparative analyses and application of network science principles helped identify 5466 unique and 808 representative nonhemolytic and nontoxic AMPs. These datasets, along with the selected mining tools, provide valuable resources for peptide drug developers.
Collapse
Affiliation(s)
- Guillermin Agüero-Chapin
- CIIMAR—Centro
Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto
de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal
- Departamento
de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Dany Domínguez-Pérez
- Department
of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Località Torre Spaccata 87071, 87071 Amendolara, Italy
- PagBiOmicS—Personalised
Academic Guidance and Biodiscovery-integrated OMICs Solutions, Porto 4200-603, Portugal
| | - Yovani Marrero-Ponce
- Universidad
San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional
(MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina,
Edificio de Especialidades Médicas; and Instituto de Simulación
Computacional (ISC-USFQ), Diego de Robles
y vía Interoceánica, Quito 170157, Pichincha, Ecuador
- Facultad
de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes
Mixcoac, Benito Juárez 03920, Ciudad de México, Mexico
| | - Kevin Castillo-Mendieta
- School
of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
| | - Agostinho Antunes
- CIIMAR—Centro
Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto
de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal
- Departamento
de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| |
Collapse
|
5
|
Chen Q, Wang C, Huang W, Chen F, Hu H, Yang C, He Q, Yu X. Novel dipeptidyl peptidase IV inhibitory peptides derived from sesame proteins: Screening, mechanisms and anti-hyperglycemic effects in zebrafish larvae. INDUSTRIAL CROPS AND PRODUCTS 2024; 215:118682. [DOI: 10.1016/j.indcrop.2024.118682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Chen Q, Nie X, Huang W, Wang C, Lai R, Lu Q, He Q, Yu X. Unlocking the potential of chicken liver byproducts: Identification of antioxidant peptides through in silico approaches and anti-aging effects of a selected peptide in Caenorhabditis elegans. Int J Biol Macromol 2024; 272:132833. [PMID: 38834112 DOI: 10.1016/j.ijbiomac.2024.132833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/28/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Chicken meat processing generates a substantial number of byproducts, which are either underutilized or improperly disposed. In this study, we employed in silico approaches to identify antioxidant peptides in chicken liver byproducts. Notably, the peptide WYR exhibited remarkable 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity with an IC50 of 0.13 ± 0.01 mg/mL and demonstrated stability under various conditions, including thermal, pH, NaCl, and simulated gastrointestinal digestion. Molecular docking analysis revealed significant hydrogen bonding interactions, while molecular dynamics showed differential stability with ABTS and 2,2-Diphenyl-1-picrylhydrazyl (DPPH). WYR exhibited improved stress resistance, decreased levels of reactive oxygen species (ROS), elevated the activities of superoxide dismutase (SOD) and catalase (CAT), and modulated the expression of crucial genes through the insulin/insulin-like growth factor (IIS) signaling pathway, mitogen-activated protein kinase (MAPK), and heat shock transcription factor-1 (HSF-1) pathways. These effects collectively contributed to the extension of Caenorhabditis elegans' lifespan. This study not only provides an effective method for antioxidant peptide analysis but also highlights the potential for enhancing the utilization of poultry byproducts.
Collapse
Affiliation(s)
- Qianzi Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xuekui Nie
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Wangxiang Huang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chen Wang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China
| | - Qiyi He
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| | - Xiaodong Yu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
7
|
Wang H, Fan M, Shen Y, Zhao H, Weng S, Chen Z, Xiao G. GhFAD3-4 Promotes Fiber Cell Elongation and Cell Wall Thickness by Increasing PI and IP 3 Accumulation in Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:1510. [PMID: 38891317 PMCID: PMC11174750 DOI: 10.3390/plants13111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The omega-3 fatty acid desaturase enzyme gene FAD3 is responsible for converting linoleic acid to linolenic acid in plant fatty acid synthesis. Despite limited knowledge of its role in cotton growth, our study focused on GhFAD3-4, a gene within the FAD3 family, which was found to promote fiber elongation and cell wall thickness in cotton. GhFAD3-4 was predominantly expressed in elongating fibers, and its suppression led to shorter fibers with reduced cell wall thickness and phosphoinositide (PI) and inositol triphosphate (IP3) levels. Transcriptome analysis of GhFAD3-4 knock-out mutants revealed significant impacts on genes involved in the phosphoinositol signaling pathway. Experimental evidence demonstrated that GhFAD3-4 positively regulated the expression of the GhBoGH3B and GhPIS genes, influencing cotton fiber development through the inositol signaling pathway. The application of PI and IP6 externally increased fiber length in GhFAD3-4 knock-out plants, while inhibiting PI led to a reduced fiber length in GhFAD3-4 overexpressing plants. These findings suggest that GhFAD3-4 plays a crucial role in enhancing fiber development by promoting PI and IP3 biosynthesis, offering the potential for breeding cotton varieties with superior fiber quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China; (H.W.); (Z.C.)
| |
Collapse
|
8
|
Iwaniak A, Minkiewicz P, Darewicz M. Bioinformatics and bioactive peptides from foods: Do they work together? ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 108:35-111. [PMID: 38461003 DOI: 10.1016/bs.afnr.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
We live in the Big Data Era which affects many aspects of science, including research on bioactive peptides derived from foods, which during the last few decades have been a focus of interest for scientists. These two issues, i.e., the development of computer technologies and progress in the discovery of novel peptides with health-beneficial properties, are closely interrelated. This Chapter presents the example applications of bioinformatics for studying biopeptides, focusing on main aspects of peptide analysis as the starting point, including: (i) the role of peptide databases; (ii) aspects of bioactivity prediction; (iii) simulation of peptide release from proteins. Bioinformatics can also be used for predicting other features of peptides, including ADMET, QSAR, structure, and taste. To answer the question asked "bioinformatics and bioactive peptides from foods: do they work together?", currently it is almost impossible to find examples of peptide research with no bioinformatics involved. However, theoretical predictions are not equivalent to experimental work and always require critical scrutiny. The aspects of compatibility of in silico and in vitro results are also summarized herein.
Collapse
Affiliation(s)
- Anna Iwaniak
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland.
| | - Piotr Minkiewicz
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Małgorzata Darewicz
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| |
Collapse
|
9
|
Langyan S, Yadava P, Khan FN, Sharma S, Singh R, Bana RS, Singh N, Kaur V, Kalia S, Kumar A. Trends and advances in pre- and post-harvest processing of linseed oil for quality food and health products. Crit Rev Food Sci Nutr 2023; 65:746-769. [PMID: 38032160 DOI: 10.1080/10408398.2023.2280768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Linseed is an ancient crop used for diverse purposes since the beginning of civilization. In recent times, linseed has emerged as a superfood due to its high content of health-promoting omega-3 fatty acids and other bioactive compounds. Among primary health effects, it has potential to manage hypertension, diabetes, osteoporosis, atherosclerosis, cancer, arthritis, neurological, cardiovascular diseases including blood cholesterol levels, constipation, diarrhea, and autoimmune disorders etc. due to the presence of omega-3 fatty acid, lignans, high dietary fibers, and proteins, whereas, secondary health effects comprise of relieving from various skin disorders. Due to these health-beneficial properties, interest in linseed oil necessitates the intensification of research efforts on various aspects. These include cultivation technology, varietal and genetic improvement, post-harvest processing, profiling of nutrients and bioactive compounds, pre-clinical and clinical studies, etc. The present review discussed the advances in linseed research including pre- and post-harvest processing. However, focus on the bioactive compounds present in linseed oil and their health effects are also presented. Linseed cultivation, pre- and post-harvest processing aspects are covered including climatic, edaphic, agronomic factors, type of cultivar and storage conditions etc, which impact the overall oil yield and its nutritional quality. Various emerging applications of linseed oil in functional food, nutraceutical, pharmaceutical, and cosmeceutical preparations were also presented in detail. Further, recommendations were made on linseed oil research in the field of genetics, breeding germplasm resources and genome editing for exploring its full applications as a nutrition and health product.
Collapse
Affiliation(s)
- Sapna Langyan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Pranjal Yadava
- Indian Agricultural Research Institute, New Delhi, India
| | | | - Sanjula Sharma
- Oilseed Section, Punjab Agricultural University, Ludhiana, India
| | - Renu Singh
- Indian Agricultural Research Institute, New Delhi, India
| | | | - Nisha Singh
- National Institute for Plant Biotechnology, New Delhi, India
| | - Vikender Kaur
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Ashok Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
10
|
Ngo NTT, Senadheera TRL, Shahidi F. Antioxidant Properties and Prediction of Bioactive Peptides Produced from Flixweed (sophia, Descurainis sophia L.) and Camelina ( Camelina sativa (L.) Crantz) Seed Meal: Integrated In Vitro and In Silico Studies. PLANTS (BASEL, SWITZERLAND) 2023; 12:3575. [PMID: 37896038 PMCID: PMC10609683 DOI: 10.3390/plants12203575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Flixweed (sophia) seed meal and camelina, both by-products of oil processing, were employed to generate protein hydrolysates by applying Flavourzyme and Alcalase. This study aimed to integrate in vitro and in silico methods to analyze sophia and camelina protein hydrolysates for releasing potent antioxidative, dipeptidyl peptidase IV (DPP IV) inhibitors and angiotensin-converting enzyme (ACE) inhibitory peptides. In vitro methods were used to investigate the antioxidant potential of sophia/camelina protein hydrolysates. Bioinformatics techniques, including Peptideranker, BIOPEP, Toxinpred, AlgPred, and SwissADME, were employed to obtain the identification of bioactive peptides produced during the hydrolysis process. Protein hydrolysates produced from sophia and camelina seed meal exhibited higher ABTS and DPPH radical scavenging activities Ithan their protein isolates. Among the produced protein hydrolysates, Alcalase-treated samples showed the highest oxygen radical absorbance capacity and hydroxyl radical scavenging activity. In addition, sophia/camelina hydrolysates prevented hydroxyl and peroxyl radical-induced DNA scission and LDL cholesterol oxidation. In silico proteolysis was conducted on Alcalase-treated samples, and resultant peptides showed potential DPP IV and ACE-inhibitory activities. Identified peptides were further assessed for their toxicity and medicinal properties. Results indicate that all digestive-resistant peptides were non-toxic and had desirable drug-like properties. The findings of this study suggest that sophia/camelina protein hydrolysates are promising candidates for functional foods, nutraceuticals, and natural therapeutics.
Collapse
Affiliation(s)
| | | | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (N.T.T.N.); (T.R.L.S.)
| |
Collapse
|
11
|
Peng H, Yang X, Fang H, Zhang Z, Zhao J, Zhao T, Liu J, Li Y. Simultaneous effect of different chromatographic conditions on the chromatographic retention of pentapeptide derivatives (HGRFG and NPNPT). Front Chem 2023; 11:1171824. [PMID: 37143822 PMCID: PMC10151710 DOI: 10.3389/fchem.2023.1171824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: Oligopeptides exhibit great prospects for clinical application and its separation is of great importance in new drug development. Methods: To accurately predict the retention of pentapeptides with analogous structures in chromatography, the retention times of 57 pentapeptide derivatives in seven buffers at three temperatures and four mobile phase compositions were measured via reversed-phase high-performance liquid chromatography. The parameters ( k H A , k A , and p K a ) of the acid-base equilibrium were obtained by fitting the data corresponding to a sigmoidal function. We then studied the dependence of these parameters on the temperature (T), organic modifier composition (φ, methanol volume fraction), and polarity ( P m N parameter). Finally, we proposed two six-parameter models with (1) pH and T and (2) pH and φ or P m N as the independent variables. These models were validated for their prediction capacities by linearly fitting the predicted retention factor k-value and the experimental k-value. Results: The results showed that log k H A and log k A exhibited linear relationships with 1 / T , φ or P m N for all pentapeptides, especially for the acid pentapeptides. In the model of pH and T, the correlation coefficient (R2) of the acid pentapeptides was 0.8603, suggesting a certain prediction capability of chromatographic retention. Moreover, in the model of pH and φ or P m N , the R2 values of the acid and neutral pentapeptides were greater than 0.93, and the average root mean squared error was approximately 0.3, indicating that the k-values could be effectively predicted. Discussion: In summary, the two six-parameter models were appropriate to characterize the chromatographic retention of amphoteric compounds, especially the acid or neutral pentapeptides, and could predict the chromatographic retention of pentapeptide compounds.
Collapse
Affiliation(s)
- Huan Peng
- Center for Brain Science, The First Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, China
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xiangrong Yang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
- Kangya of Ningxia Pharmaceutical Co., Ltd., Yinchuan, China
| | - Huanle Fang
- Medical College, Peihua University, Xi’an, Shaanxi, China
| | - Zhongqi Zhang
- Department of Polypeptide Engineering, Active Protein and Polypeptide Engineering Center of Xi’an Hui Kang, Xi’an, Shaanxi, China
| | - Jinli Zhao
- Department of Polypeptide Engineering, Active Protein and Polypeptide Engineering Center of Xi’an Hui Kang, Xi’an, Shaanxi, China
| | - Te Zhao
- College of Electronic Engineering, Xidian University, Xi’an, Shaanxi, China
| | - Jianli Liu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
- Medical College, Peihua University, Xi’an, Shaanxi, China
- *Correspondence: Yan Li, ; Jianli Liu,
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Yan Li, ; Jianli Liu,
| |
Collapse
|
12
|
Liu C, Guo Z, Yang Y, Hu B, Zhu L, Li M, Gu Z, Xin Y, Sun H, Guan Y, Zhang L. Identification of dipeptidyl peptidase-IV inhibitory peptides from yak bone collagen by in silico and in vitro analysis. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Langyan S, Bhardwaj R, Radhamani J, Yadav R, Gautam RK, Kalia S, Kumar A. A Quick Analysis Method for Protein Quantification in Oilseed Crops: A Comparison With Standard Protocol. Front Nutr 2022; 9:892695. [PMID: 35711548 PMCID: PMC9195008 DOI: 10.3389/fnut.2022.892695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Protein is one of the most abundant substances in plants and plays a major role in human health hence standardization of its analytical quantification method is essential. Various methods for protein quantification exist, such as Kjeldahl, Bradford, Lowry, bicinchoninic acid assay (BCA), Biuret, and total amino acid content methods. These methods are widely applied; however, the development of the rapid and efficient method is the need of the time hence the objective of this research was to analyze and comparing compare the modification of the Kjeldahl method for the determination of protein content in oilseed crops. The study was performed to improve the sample preparation method (processing and digestion) for protein quantification. Generally, the method initially requires homogenization of grains to a fine flour, which involves time and increases the risk of sample cross-contamination and partial loss of oil from the sample during grinding. Moreover at times, it becomes challenging to homogenize oil seeds to fine flour due to high oil content. However, in the present research, the whole grain was digested in place of grounded flour to accomplish quick protein quantification and compared it with the flour matrix of different oil seeds. To further reduce the digestion time and avoid frothing, we have used the modified digestion mixture. The developed method was statistically validated using analysis of variance (ANOVA), Pearson correlation reliability test, paired T-test, and different types of plot analysis. The validation of the sample preparation method in protein quantification demonstrated non-significant differences that the protein content from whole grain of all the five oilseed crops shows 100% non-significant results compared with the flour matrix in both the digestion mixtures. The developed novel method could be used to prepare the sample for protein analysis and reduces the overall analysis time while ensuring the accuracy of the results.
Collapse
Affiliation(s)
- Sapna Langyan
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - J. Radhamani
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Rashmi Yadav
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Raj Kumar Gautam
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Sanjay Kalia
- Department of Biotechnology (DBT), New Delhi, India
| | - Ashok Kumar
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| |
Collapse
|
14
|
Allai FM, Dar BN, Gul K, Adnan M, Ashraf SA, Hassan MI, Pasupuleti VR, Azad ZRAA. Development of Protein Rich Pregelatinized Whole Grain Cereal Bar Enriched With Nontraditional Ingredient: Nutritional, Phytochemical, Textural, and Sensory Characterization. Front Nutr 2022; 9:870819. [PMID: 35464008 PMCID: PMC9024333 DOI: 10.3389/fnut.2022.870819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
This study was aimed to use extrusion cooking as a pretreatment for non-conventional seeds (Indian horse chestnut flour) to blend them with whole grain flours (whole wheat flour, whole barley flour, and whole corn flour) for the development of a pregelatinized cereal bar (PCB). In this study, date paste (7.5-17.5%) and walnut grits (2.5-12.5%) were incorporated at varying levels to prepare PCB. The PCB was evaluated for its nutritional, color, textural (both three-point bending test and TPA), antioxidant activity, and sensory attributes. The flexural modulus, rupture stress, and fracture strain of PCB increased with the incorporation of a higher proportion of date paste. The protein and fiber content in PCB increased from 7.74 to 9.13% and 4.81 to 5.59% with the incorporation of walnut grits and date paste, respectively. The DPPH, total phenolic content, and water activity of PCB were determined, which progressively enhanced with increased levels of walnut grits and date paste. The correlation between sensory attributes and instrumental texture on PCB was also investigated. The correlation results showed a significant (p < 0.05) positive correlation between texture analysis and sensory hardness, springiness, adhesiveness, and negatively correlated to instrumental and sensory cohesiveness. For sensorial attributes, all PCB samples presented average scores of 7/10 and 4/5 for buying intention. Therefore, whole grain extrudates, date paste, and walnut grits can be efficiently used to develop PCB with improved nutritional, nutraceutical, and economic values.
Collapse
Affiliation(s)
- Farhana Mehraj Allai
- Department of Post-harvest Engineering and Technology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh, India
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| | - B. N. Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Science, University of Hail, Hail, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Z. R. A. A. Azad
- Department of Post-harvest Engineering and Technology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
15
|
Singh R, Langyan S, Sangwan S, Rohtagi B, Khandelwal A, Shrivastava M. Protein for Human Consumption From Oilseed Cakes: A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.856401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oilseed cakes left after the oil extraction for different purposes are chiefly used as cattle feed, compost amendment, or plant conditioner. These oilseed cakes are rich in protein, nitrogenous compounds, and minerals. Beside its conventional usage, studies have been conducted to utilize these protein rich resources for human consumption. Considering the exponentially increasing human population and escalating food prices, these protein rich sources can be a novel food commodity and used to extract protein. The quality and functional properties of extracted oilseed cake proteins not only supplement the existing protein sources for the human consumption but also solve the problem of oilseed cakes disposal along with the additional income to the oilseed crop producers and processers. Production of proteins for human consumption from oil seed cakes may also reduce the carbon and water footprints while producing animal protein. The present review will focused on analyzing the oilseed cake as a protein source, characterization, extraction techniques, and utilization in food products.
Collapse
|
16
|
YE XP, XU MF, TANG ZX, CHEN HJ, WU DT, WANG ZY, SONGZHEN YX, HAO J, WU LM, SHI LE. Flaxseed protein: extraction, functionalities and applications. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.22021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Juan HAO
- Hangzhou Normal University, China
| | | | - Lu-E SHI
- Hangzhou Normal University, China
| |
Collapse
|